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Mixed Problem for one Class Semilinear Fourth-order
Hyperbolic Systems

V.F. Guliyeva

Abstract. Mixed problem for systems of fourth-order semilinear hyperbolic equations is consid-
ered, when fourth and second-order derivatives with different variables participate in each equation.
The theorem on local solvability is proved. Further, for a class of semilinear fourth-order systems,
the theorem on solvability ”as a whole” is proved.
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1. Statement of the problem and the main result on local solvability

Consider the systems of semilinear hyperbolic equations of the fourth order

ultt"i'A%lul _AJlul :fl (tvl'vulauQ)v } (1)

2
Ut + A[2u2 - AJQUQ = f2 (t7w7u17u2) )

2 2
where Alk = Zielk %_27 Ay = Zie]k %5_7 Iy C Ny = {17"'7n}7 Jp = Nn\Ik7 k =
i J
1,2. o
Let us denote by m, = J,,r = 1,2 the number of elements .J,., and denote by n, =

I, = n — m, the number of elements I,. For definiteness, suppose that
mq < mo. (2)

A system of type (1) is encountered in the study of oscillations of deformed systems
under moving loads (see e.g. [1]). In [2], the Cauchy problem for systems of equations

Ui + A%lul —Ajur +u = g1 (u2), }
ugte + AT, up — Agyug + ug = g2 (u1),

is investigated, where
|91 (u2)] < [ual”,  |g2(w1)| < |w|?,
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and found conditions for the growth of coefficients p, g ensuring the existence of global
solutions.

In this paper we study the existence and uniqueness of local and global solutions of a
mixed problem for the system (1).

Let IT = [0,1]™. In the cylinder Q7 = [0,7] x II we consider the mixed problem for
system (1) with the boundary conditions

g (b, X1, @9, ey Ty ooy ) = 0, ;=0 ,0;,=1,k=1,2; i=0,1,...,n; (3)

Afkuk(t,a:l,a:g,...,a:i,...,xn):0, ;=0 ,x;,=11€l, k=1,2; (4)

and the initial conditions
ug (0,2) = o (), uk (0,2) = (), z€Il, k=1,2. (5)
By W22 %%, k =1,2 denote the functional space with a finite norm:

2
2 2 2 2
Julfyzee = § el + D D2l + 3 || P2 o
’ i€l jE€Jk

and by H denote the functional space H = I/V22 11 X La(R™) X VV2221 x La(R™), with the scalar
product

<w1, w2>H:/HAhv% Ajlv%d$+/HVJ1v% V jvida+

+/ Ap,vi A12v§dx—|—/ V 5,vi V pvide.
| i

Let us assume that
n+mg < 4. (6)

and the following condition holds.

I. The functions f (¢, x,&, n) and fs (¢, x,&, ) are defined for all ¢t € [0,T], z € 1T,
£ € R, n € R and continuously differentiate with respect to t, £ and #;

The following theorem on local solvability is proved.

Theorem 1. Let (2), (6) and the condition I be satisfied. Then for any (1,1, p2,2) €
H there exists T' > 0 such that the problem (1), (3) - (5) has a unique solution (uj,uz) €

C (10,71 w3 x Wi )N C([0,77); La(T) x Ly(In)).

Moreover, if Tmax - the length of the mazimal interval of the existence of a weak solution
is (u1,u2) € C <[O, Thax) ; W2211 X W2221) N CL ([0, Timax) ; L2(I1) x Lo(I)), then one of the
following statements hold:

i) or Tyax = +00,
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it) or lim E(t) = 400, where
t_>’11111ax_0

2
Z [ |l (¢, ||W2 1+ Hukt HLQ(R")] t €10, Thax) -
k=1

If additionally (1,1, ¢2,12) € Wyt x Wayl x W3 x W3y, then
(unuz) € € (07775 W57 x wiz) () (017wt e i) )

()C? ([0,T"]; La(R™) x La(R™)) .

Now consider the case n+ ms > 4. In this case, the following condition on the growth
of nonlinearity is required. First let us consider the case n +m; < 4

I1. a) Let n4+my < 4, n+mg > 4 and for all (¢, z, &, n) € [0, T] x II x R? the following
estimates are fulfilled

|fr (B &) + | fre (82, &m)| < e(€) [gr(x) + InfP*]

‘fkg (t,x,& )| < c(€) [he(x) + [n]™],
| fin (ts2,6,m)| < (&) [ha(2) + [n|™]
where ¢ (-) € C(R; Ry), g (-) € Lo (IT)

n -+ meo

if n+mo =4 then py € [l,00) andif n+mg >4 then pp < ———.
n+mg —4

II b) Let n 4+ my > 4 and for all (¢, z, £, ) € [0,T] x II x R? satisfy the following
estimations

|fr @ m, &n)| + | fre (82, 6m)| < elgp(z) + [E[PF + [n]P*2]
| fre (£, 6,m)| < clhi(z) + [€]7 + |n|92];

| fry (82, &m)| < clle(z) + (€™ + |n|™2],

where ¢ € Ry = [0,00), gk (+) € Lo (IT), and hg (+),lk (+), pr; and gx; satisfy the following
conditions:

bi) hi (+) .l (-) € Ly(I), p € (2,00), prirqri € (1,00), i =1,2; k=1,2, if n+my =
n+mg=4;

bg) hk() S LP(H), pE (1,00),lk () S L%(H), k=12,

n -+ mso
) ) € 17 9 S N 7
Pk, k1, Tk € (1,00), P2 ntmy—4 (7)
n+ ma 4
k2 < s Tk2 > k= 1727 (8)

7’," <7’
n+mo —4 n+mo —4
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ifn+mi =4, n+mg>4;
b3) hk () € L7L+2m1 (H) ,lk () S L7L+2m2 (H) 3 k? == 1,2,

n+my n + mso
_ — k=12 9
pkl_n+m _47pk2_n+m2_47 y 4 ()
4 4(n+m2)
< < , =1,2, 10
W= —4 qkz_(n+m2—4)(n+m1) (10)
4(n +mq) 4
K1 < ,T , k=1,2, 11
kl_(n—l—ml—él)(n—l—mg) e (11)

ifn+mi >4, n+mo>4;

Theorem 2. Let (2) and the condition 1 be fulfilled. Suppose that conditions II a) or IT
b) are valid. Then the assertion of Theorem 1 holds.

2. Proof of the theorem on local solvability

In a Hilbert space H define a linear operator A as follows

0 I 0 0
—AL +A, 0 0 0 4,2 2,1 4,2 2,1
A= 110 1 0 0 I ,D(A) = Wz’vl % W2,71 % Wz,é % Wz,é-
0 0 —A%z +Ay O
Let us also define the nonlinear operator
0 o
F(t,w) = fults v, vs) , where w = V2
0 U3
fl(t,.,'l)l,?)g) V4

In a Hilbert space H the problem (1), (2) can be written as an operator differential equa-
tion:
w' (t) = Aw (t) + F (t,w (t)),
(12)
w(0) = wo,
Let us provide a well-known theorem on the local solvability of the Cauchy problem
in a Hilbert space H.

Theorem 3. (see [}]) Let a linear operator A generate a strongly continuous contracting
semigroup in the space H, the mapping (t,w) — F (t,w) : [0,T] x H — H satisfies the local
Lipschitz condition, i.e. for any t1, to € [0,T], w', w? € H

1 (b1 wh) = F (t2,w%) [y < e ([l [w[fgg) - flwo” = w2l

where ¢ (-,-) € C (R%).



20 V.F. Guliyeva

Then for any wo € H there exists T' > 0 such that the problem (1), (3)-(6) has a unique
solution w € C ([0,T']; H). Moreover, if Tyax the length of the maximal interval of the
existence of a weak solution is w € C ([0, Tymax); H), then one of the following statements
18 true:

i) or Tinax = +00,
ii) or t—ﬂl“lm OHw(t)HH = +o00.

max

If additionally wo € D(A) , then w € C ([0,T']; D(A)) N C ([0,7"]; H).

Using the definition of the space H and the operator A, we obtain the following state-
ment.

Lemma 1. Linear operator A generates a strongly continuous contracting semigroup in
the space H.

The following lemma is also true.

Lemma 2. The mapping F (t,w) is a bounded operator acting from [0,T] x H to H. The
mapping (t,w) — F (t,w) : [0,T] x H — H satisfies the local Lipschitz condition, i.e. for
any ty, ta € [0,7], w', w? € H

1 (b1 w") = F (t2,0%) |y < e ([l [[w?llg) - lw" =0l
where ¢ (-,-) € C (R%).

Proof. We will carry out the proof in the case when n +my > 4, kK = 1,2. The
remaining cases are considered analogously.
Using the expression for F' (¢, w), we obtain that
|1F (t1,w') = F (t2,07)[fy; <

2
<2 [[fi (b 01, 03) = fi (h,:n,vf,v%)HiI < G + Gop + Gy,
k=1

where

le:c/
II

ng:C/
I
G3k:C/

m

Using the condition II b3) we have

1 2
/ Fre (01 + T(ta —t1), 2, 0] + 7(0F —v}), 08 + (3 —03))| dr [t —t:]* da,
0

1 2
2
/ Fro, (B4 7(t2 — t1), 2,01 + 7(vF — v1),v5 + (v3 —3))| dr |v% - UH dz,
0

1 2
2
/ Siwy (b1 4 7(t2 — t1),z, vt +7(v} —vl), v} + (V3 — v%)) dr |fu§ — v%‘ dx.
0
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1
Gu < C/ / [gr() + |Tvf + (1 — T)vﬂpkl + oy + (1 - T)v§|pk2]2d7'dx Ity — t1]* <
/o

1
< [cl/gz(x)dx—kcl/ /‘TU%—F(l—T)v%‘QPM dx+
i o Ju

1
—1—01/ / ‘T’U% +(1- T)vg‘zpm dx} te — 2 (13)
o Ju
Taking into account the expression VV;k1 CL nim, (IT), k:=1,2 (see [3]) from (13)
’ n+mk74

we obtain that

G <C [1 + [ ol + (1 - T)U%H;Z;ll dr + [} ||rvd + (1 - T)vgui’;ﬁn dr| . Jts — 1> <
<0 U It + It + Db + o3t -
(14)
Similarly using the condition IT b3) we have

1
Gor < c/ / [y () + ‘TU% +(1-— T)’U%‘qkl + ‘TU% +(1-— T)vg‘qsz |v% - UH2 drdx <
mJo

’ 1/C¥/ ’ 1/C¥/
< la </ hia’“ (x)dx) by </ |7”U% +(1- 7')11%|2q'“a’c dm) by
I 1

1/ / 1/
’ (0% af
+ (/ ‘T’U% +(1— r)v§|2qk2°‘k (x)dm) "l [/ |v% - vﬂzak dx} , (15)
i i
where a, = L, of = ML
By virtue of (10) 2gx1c}, < i(ﬁz:n_li , 2qpa0d, < i(f;;nfi, k=1,2, and thus
1/a
k
[/ |v%—vﬂ2ak d:z:] §CH’U%—’U%H12/I/2,1, (16)
I 2,1
1/ ,
’ (0%
( / [rof + (1= o[ dav) f<
i
2qx 2 2 ak1
< clrob + (= 22 <€ (Ioblag + I2la) ™ an)

/ 1/0/
(/ |7”U% +(1— T)U%quza’“ d:z:> F<
i
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<cllrvi+ (-1 Hig;;fl<c(Hv2HW21+HU2HW2221)‘1“. (18)

From (14)-(18) it follows

Gaw <€ U+ ol + 19258 + WUy + D3] ot =iz 09

Taking into account (9)-(11) we similarly obtain
G < O |1+ [[od s + 1o s + o315 + o3I - ok

1112
2,1 2,1 2,1 2,1 — H 2,1 .
W2,1 W2,1 W2,2 Wik 1 W2,1

Thus, in view of (14), (19),(20) we obtain that

1 (b1 w') = F (82,07 [y < el [y 5 o) l|w® = 'l

From Lemmas 1 and 2 it follows that for the problem (2.12) all the conditions of
Theorem 3, on local solvability are satisfied.

3. Solvability ”as a whole” of the mixed problem for systems of
semilinear hyperbolic equations of the fourth order

In the domain Q7 = [0,7] x II let us consider the mixed problem

e+ A — A + P el = A1 (69), } (21)
g + A3 ugy — Agyug + [ug [P un P2 ug = fo (8, @),

with the boundary conditions
(6,21, @9, ooy Tjy vy Tpy) = 0, ;=0 ,2,=1,k=1,2; i=0,1,...,n; (22)
Aqug (21,22, ..., T, .y ) =0, ;=0 ,0;,=1,1€l, k=12; , (23)
and the initial conditions
ug (0,2) = o (), uk (0,2) =i (), z€Il, k=1,2, (24)

where
n+m2§47 p]207]:1727 (25)

fr(t,z), k =1,2 are real functions ¢t € [0,00), = € II and

Theorem 4. Let all the conditions (25) and (26) be fulfilled. Then for any ((p1,%1),
(p2,12)) € W2211 X Lo(R™) X 1/1/2221 X Lo(IT) and T > 0 the mized problem (21)-(24) has a
unique solution.

(u1,u2) € C ([O,T] WL X W;{;) (M C* (10,77 L(I1) x Lo(I1)).
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Proof. In view of Theorem 1, the problem (1)-(3) has a local solution and for the
possibility of a global extension of this solution it is sufficient to perform the following a
priori estimation:

2
= u 1'2 X
E(t) _;[/Hmk pr (t, @) do+

# [Vt Pt [ a0 de] <.t 0. Tom). (27)
II II

Let us multiply both sides of the first equation of the system (21) by (p1 + 1) uy (¢, ),

and the second equation by (p2 + 1) ug (¢, z) and integrate the obtaining identity over the
domain Qr = [0,¢] x II:

2
1
Zpk; [/ |ukr (¢, w)l2dx+/ A, uy (t, :L")|2d:17—|—/ IV ug (t, x)|2d$]+
I1 I I

k=1

—i—/ luy (T, x)]pﬁ'l lug (T, x)]sz dxdr =
I

2

2 t
+kZ:1(pk+1)/0 /Hf(Tv:E)-ukT (7', l‘)dl‘d’r .

Further, applying the Holder inequality and taking (25), (26) into account, we have:

2
+1
Zpk2 [/ lugr (¢, )% da +/ |A g (t, 2)|? d +/ |V g ug (2, x)]2daz] +
= i} i} i}

2 t
1
—I-/ luy (¢, x)|lerl lus (t, :E)|mJrl drdr < C + E pk; / / |uger (T, :E)|2 dxdr,
I P o Ji

where

2 1
-3 b [l [ s @Rt [ 1950 +

2 T
1
+ E Pk + / / lugr (1, z)|* dedr
— 2 Jo Jun

Here applying Gronwall’s lemma (see [5]) we obtain the estimation (27).
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