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On Some Properties of Harmonic Functions from Hardy-
Morrey type Classes
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Abstract. In this paper Morrey-Poisson class of harmonic functions in the unit circle is intro-
duced, the Dirichlet problem with the boundary value from the Morrey Lebesgue space is consid-
ered.
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1. Introduction

Let ω = {z ∈ C : |z| < 1} be the unit disk on the complex plane C and γ = ∂ω be its
circumference.

Consider the following Dirichlet problem for the Laplace equation

∆u = 0, in ω ,

u

/
γ

= f ,

 (1)

where f : γ → R some real function. Assume ur (t) = u
(
reit
)

and let

hp =
{
u : ∆u = 0 in ω , and ‖u‖hp < +∞

}
,

where

‖u‖hp = sup
0<r<1

‖ur‖p ,

‖g‖p =

(∫ π

−π
|g (t)|p dt

) 1
p

, 1 ≤ p < +∞.

By Pz (ϕ) denote a Poisson kernel for the unit circle
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Pz (ϕ) = Re
eiϕ + reit

eiϕ − reit
=

1− r2

1− 2r cos (t− ϕ) + r2
, z = reit ∈ ω.

If f ∈ Lp (γ) =: Lp, then the problem (1) is solvable in class hp, and its solution can be
represented as a Poisson-Lebesgue integral

u
(
reit
)

=
1

2π

∫ π

−π
Pz (ϕ) f (ϕ) dϕ =

1

2π

∫ π

−π

1− r2

1− 2r cos (t− ϕ) + r2
f (ϕ) dϕ,

wherein a boundary value u

/
γ

= f in (1) is understood in the sense that nontangential

values on γ:

u
(
eit
)

= lim
z→eit

u (z) ,

exist and a.e. on γ coincides with f
(
eit
)
, i.e.

u
(
eit
)

= f
(
eit
)
, a.e. t ∈ (−π, π) , (2)

and moreover

lim
r→1−0

‖ur (·)− f (·)‖p = 0. (3)

These results are well known and illuminated, e.g., in the monograph I.I.Danilyuk [27] .
It should be noted that the concept of Morrey space was introduced by C. Morrey [1]

in 1938 in the study of qualitative properties of the solutions of elliptic type equations with
BMO (Bounded Mean Oscillations) coefficients (see also [2, 3]). This space provides a large
class of weak solutions to the Navier-Stokes system [4]. In the context of fluid dynamics,
Morrey-type spaces have been used to model the fluid flow in case where the vorticity is a
singular measure supported on some sets in Rn [5]. There appeared lately a large number
of research works which considered many problems of the theory of differential equations,
potential theory, maximal and singular operator theory, approximation theory, etc. in
Morrey-type spaces (for more details see [2-26]). It should be noted that the matter of
approximation in Morrey-type spaces has only started to be studied recently (see, e.g.,
[11, 12, 16, 17]), and many problems in this field are still unsolved.

In the present paper non-tangential maximal function is considered and it is estimated
from above a maximum operator, and the proof is carried out for the Poisson-Stieltjes
integral, when the density belongs to the corresponding Morrey-Lebesgue space.

It should be noted that similar problems with respect to the analytical functions from
Hardy classes were considered in [16, 17, 31].

2. Needful Information

We will need some facts about the theory of Morrey-type spaces. Let Γ be some
rectifiable Jordan curve on the complex plane C. By |M |Γ we denote the linear Lebesgue
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measure of the set M ⊂ Γ. All the constants throughout this paper (can be different in
different places) will be denoted by c.

By Morrey-Lebesgue space Lp, α (Γ), 0 < α ≤ 1, p ≥ 1, we mean the normed space of
all measurable functions f (·) on Γ with the finite norm

‖f‖Lp, α(Γ) = sup
B

(∣∣∣B⋂Γ
∣∣∣α−1

Γ

∫
B

⋂
Γ
|f (ξ)|p |dξ|

)1/p
< +∞,

where sup is taken all over the balls B with the centre on Γ. Lp, α (Γ) is a Banach space with
Lp, 1 (Γ) = Lp (Γ), Lp, 0 (Γ) = L∞ (Γ). Similarly we define the weighted Morrey-Lebesgue
space Lp, αµ (Γ) with the weight function µ (·) on Γ equipped with the norm

‖f‖Lp, αµ (Γ) = ‖fµ‖Lp, α(Γ) , f ∈ L
p, α
µ (Γ) .

The inclusion Lp, α1 (Γ) ⊂ Lp, α2 (Γ) is valid for 0 < α1 ≤ α2 ≤ 1. Thus, Lp, α (Γ) ⊂ L1 (Γ),
∀α ∈ (0, 1], ∀p ≥ 1. For Γ = γ we will use the notation Lp, α (γ) = Lp, α and the spaces
Lp, α (γ) and Lp, α (−π, π) we will identify by usual method.

More details on Morrey-type spaces can be found in [2-26].
We will use the following concepts. Let Γ ⊂ C be some bounded rectifiable curve,

t = t (σ), 0 ≤ σ ≤ 1, be its parametric representation with respect to the arc length σ,
and l be the length of Γ. Let dµ (t) = dσ, i.e. let µ (·) be a linear measure on Γ. Let

Γt (r) = {τ ∈ Γ : |τ − t| < r} ,Γt(s) (r) = {τ (σ) ∈ Γ : |σ − s| < r} .

It is absolutely clear that Γt(s) (r) ⊂ Γt (r).

Definition 1. Curve Γ is said to be Carleson if ∃c > 0:

sup
t∈Γ

µ (Γt (r)) ≤ cr, ∀r > 0.

Curve Γ is said to satisfy the chord-arc condition at the point t0 = t (s0) ∈ Γ if there
exists a constant m > 0 independent of t such that |s− s0| ≤ m |t (s)− t (s0)|, ∀t (s) ∈ Γ.
Γ satisfies a chord-arc condition uniformly on Γ if ∃m > 0 : |s− σ| ≤ m |t (s)− t (σ)|,
∀t (s) , t (σ) ∈ Γ.

Let’s recall some facts about the homogeneous Morrey-type spaces from the work [10].
Let (X; d; ν) be a homogeneous space equipped with the quasi-distance d (· ; ·) and the
measure ν (·). Recall that the quasi-distance d : X2 → R+ is a function which satisfies
the following conditions:

i) d (x; y) ≥ 0 & d (x; y) = 0⇔ x = y; ∀x, y ∈ X;
ii) d (x; y) ≤ c (d (x; z) + d (z; y)), ∀x, y ∈ X.
Let Br (x) be an open ball

Br (x) = {y ∈ X : d (x; y) < r} .

Set
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ν (Br (x)) =

∫
Br(x)

1 dν.

Assume that X has a constant homogeneous dimension æ > 0, i.e. ∃c1; c2 > 0:

c1r
æ ≤ ν (Br (x)) ≤ c2r

æ, ∀x ∈ X,∀r > 0. (æ)

In this case, the Morrey space Lp, λ (X) is defined by means of the norm

‖f‖Lp, λ(X) = sup
x∈X, r>0

{
1

rλ

∫
Br(x)

|f (y)|p dν (y)

}1/p
.

Theorem 1 ([10]). Let (X; d; ν) be a homogeneous space equipped with the quasi-metrics
d and the measure ν with ν (X) = +∞, and the condition (æ) be true. Then the maximal
operator (|Br (x)|ν =: ν (Br (x))):

Mνf (x) = sup
r>0

1

|Br (x)|ν

∫
Br(x)

|f (y)| dν (y) ,

is bounded in Lp, λ (X) for 1 < p < +∞, 0 ≤ λ < æ.

3. Weighted Morrey-type space hp, αρ and Hardy-Littlewood operator

Let ρ : [−π, π] → R+ = (0, +∞), be some weight function. Consider the weighted
Morrey-type space hp, αρ of harmonic functions in ω furnished with the norm

‖u‖hp, αρ
= sup

0<r<1
‖ur (·) ρ (·)‖p, α ,

where

ur (t) = u
(
reit
)

= u (r cos t; r sin t) .

Assume that the weight ρ (·) satisfies the following condition

ρ−1 ∈ Lq,
1

p
+

1

q
= 1. (4)

Applying Hölder inequality we obtain

∫ π

−π
|ur (·)| dt ≤

(∫ π

−π
|ur (·) ρ (·)|p dt

)1/p
(∫ π

−π
ρ−q (t) dt

)1/q
≤

≤ (2π)
1−α
p sup

I∈[−π,π]

(
1

|I|1−α

∫
I
|urρ|p dt

)1/p ∥∥ρ−1
∥∥
Lq

=
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= (2π)
1−α
p
∥∥ρ−1

∥∥
Lq
‖ur‖hp, αρ

.

It follows immediately that if the condition (4) is true, then u ∈ h1. Consequently, every
function u ∈ hp, αρ has nontangential boundary values u+

(
eit
)

on γ. Then, by Fatou’s
lemma (see e.g. [28, 29, 30]) we have ur

(
eit
)
→ u+

(
eit
)

as r → 1 − 0 a.e. in [−π, π].
Applying Fatou theorem on passage to the limit, we obtain∫

I

∣∣u+
(
eit
)
ρ (t)

∣∣p dt ≤ lim
r→1−0

∫
I

∣∣ur (eit) ρ (t)
∣∣p dt ≤

≤ ‖u‖p
hp, αρ
|I|1−α ,

because ∣∣ur (eit) ρ (t)
∣∣→ ∣∣u+

(
eit
)
ρ (t)

∣∣ , r → 1− 0, for a.e. t ∈ [−π, π] .

It follows immediately that u+ ∈ Lp, αρ and∥∥u+
∥∥
p, α; ρ

≤ ‖u‖hp, αρ
.

If the relation

ρ−1 ∈ Lq+0 (−π, π) , i.e. ∃ε > 0 : ρ−1 ∈ Lq+ε (−π, π) , (5)

true, then we have

∫ π

π
|ur (·)|1+δ dt ≤

(∫ π

−π
|ur (·) ρ (·)|p dt

) 1+δ
p
(∫ π

−π
|ρ (·)|

− pq
p−qδ

dt

) 1
q
− δ
p

≤ cδ ‖u‖1+δ
hp, αρ

,

where δ > 0 is a sufficiently small number, and cδ is a constant depending only on δ.
Then, in view of the classical results, the representation

u
(
reit
)

=
1

2π

∫ π

−π
u+ (s)P (r; s− t) ds, (6)

is true, where u+ (s) =: u+
(
eis
)
, s ∈ [−π, π], and Pz (ϕ) =: P (r; θ − ϕ) is a Poisson

kernel for the unit disk

Pz (ϕ) = Pr (θ − ϕ) = P (r; θ − ϕ) =
1

2π

1− r2

1− 2r cos (θ − ϕ) + r2
, z = reiθ.

Thus, if u ∈ hp, αρ and ρ (·) satisfies the condition (5), then u+ ∈ Lp, αρ and the relation (6)
holds.

Now let’s prove the converse. In other words, let’s prove that if u+ ∈ Lp, αρ and the
representation (6) holds, then u ∈ hp, αρ . To do so, we need some auxiliary facts.
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Consider the arbitrary nontangential internal angle θ0 with a vertex at the point z =
eit ∈ γ, t ∈ [−π, π]. Denote by Mµf (t) the Hardy-Littlewood type maximal function (or
Hardy-Littlewood operator) of the function f (·):

Mµf (x) = sup
I�x

1

µ (I)

∫
I
|f (t)| dµ (t) ,

where sup is taken over all intervals I ⊂ [−π, π] which contain x, and µ (·) is a Borel
measure on [−π, π], which satisfies the condition

µ (I) > 0, for∀I : |I| > 0.

It is shown that there exists a positive constant Cθ0 , depending only on θ0 such that

sup
z∈θ0
|uµ (z)| ≤ Cθ0Mµf (t) ,∀t ∈ [−π, π] ,

where

uµ (z) = u
(
reit
)

=
1

2π

∫ π

−π
P (r; s− t)u+ (s) dµ (s) .

For a usual maximal operator, this fact was established in [29, p.237] and [30, p.30].
Consider the Poisson kernel Pz (t) in the upper half-plane

Pz (t) =: Py (x− t) =
1

π

y

(x− t)2 + y2
, z = x+ iy, y > 0.

Let f ∈ L1

(
dµ(t)
1+t2

)
and consider the Poisson integral

uµ (x; y) =

∫
R
Py (x− s) f (s) dµ (s) .

The following main lemma is proved.

Lemma 1. Let µ (·) be a Borel measure on R with

µ (I) > 0,∀I : |I| > 0; sup
y>0;x∈R

∫
R
Py (s− |x|) dµ < +∞.

Then, for f ∈ L1

(
dµ(t)
1+t2

)
, the function

uµ (x; y) =

∫
R
Py (x− s) f (s) dµ (s) ,

which is harmonic on the upper half-plane, satisfies the relation

sup
z∈Γµ;α0 (t)

|uµ (z)| ≤ Aα0Mµf (t) , t ∈ R,

where Mµ is the Hardy-Littlewood type maximal function
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Mµf (x) = sup
I�x

1

µ (I)

∫
I
|f (t)| dµ (t) ,

Γµ;α0 (t) = {(x; y) ∈ C : µ ((− |x− t| , |x− t|)) < α0y; y > 0} , α0 > 0,

and Aα0 is a constant depending only on α0.

By M we denote the usual Hardy-Littlewood operator, i.e.

Mf (x) = sup
I�x

1

|I|

∫
I
|f (t)| dt,

where |I| is a Lebesgue measure of the interval I ⊂ [−π, π].
It is not difficult to see that the Lebesgue measure on R satisfies all the conditions of

Lemma 1.
Let’s go back to Theorem 1 [10] . Let the condition (æ) be fulfilled. Note that Theorem

1 [10] is true in case µ (X) < +∞, too. Because its proof is based on the Fefferman-Stein
inequality which is true also in case µ (X) < +∞. Let’s apply this theorem to our case.
In our case we have X = R, d (x; y) = |x− y| and æ = 1. So, if the measure µ (·) satisfies
the conditions of Theorem 1 [10] in our case, then we have∫

I
|Mµf |p dµ ≤ c |I|1−α ,

where |I| is a Lebesgue measure of the set I ⊂ R. Then from (??) it directly follows that
uµ ∈ hp, α (dµ), where hp, α (dµ) is a class of harmonic functions on the upper half-plane
equipped with the norm

‖uµ‖hp, α(dµ) = sup
y>0

sup
I⊂R

(
1

|I|1−α

∫
I
|uµ (x; y)|p dµ (x)

)1/p
.

So we get the validity of the following theorem.

Theorem 2. Assume that the measure µ (·) satisfies the conditions (Iis an interval)

µ (I) ∼ |I| ,∀I ⊂ R; sup
y>0;x∈R

∫
R
Py (s− |x|) dµ (s) < +∞.

Let

uµ (z) = uµ (x; y) =

∫
R
Py (x− t) f (t) dµ (t) , f ∈ Lp, α (dµ) , 0 ≤ 1− α < 1,

where Lp, α (dµ) is a Morrey space equipped with the norm

‖f‖p, α; dµ = sup
I⊂R

{
1

|I|1−α

∫
I
|f (y)|p dµ (y)

}1/p
.
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Then for ∀α0 > 0, ∃Aα0 > 0:

sup
(x; y)∈Γα0 (t)

|uµ (x; y)| ≤ Aα0Mµf (t) , ∀t ∈ R, (7)

and u∗µ ∈ hp, α (dµ): ∥∥u∗µ∥∥hp, α(dµ)
≤ Aα0 ‖f‖p, α; dµ , (8)

where u∗µ (·) is a nontangential maximal function for u:

u∗µ (t) = sup
z∈Γα0 (t)

|uµ (z)| , t ∈ R.
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