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On Some Properties of Harmonic Functions from Hardy-
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Abstract. In this paper Morrey-Poisson class of harmonic functions in the unit circle is intro-
duced, the Dirichlet problem with the boundary value from the Morrey Lebesgue space is consid-
ered.
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1. Introduction

Let w={z € C': |z| < 1} be the unit disk on the complex plane C and v = dw be its

circumference.
Consider the following Dirichlet problem for the Laplace equation

Au=0, in w,

u/ . &
.

where f : v — R some real function. Assume u, (t) = u (reit) and let
h, = {u: Au=0 in w, and [ull, < —i—oo},

where

ull, = S lurll,

1
™ D
nmuz(/ mmvw),1Sp<+m.

By P. () denote a Poisson kernel for the unit circle
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eie 4 reit 1— 72
P, (¢) = Re— =

- z:reitEw.
et —rett 1 —2rcos(t—p)+1r2’

If f € L,(v) =: Ly, then the problem (1) is solvable in class h,, and its solution can be
represented as a Poisson-Lebesgue integral

; 1 [T 1 [™ 1—r?
wre) =5 [ P Qe =5 [ e i @),

—TT —

wherein a boundary value u / N = fin (1) is understood in the sense that nontangential
values on ~:
u (eit) = lim u(z),
z—>elt

exist and a.e. on y coincides with f (eit), ie.

u (eit) =f (eit) , a.e. t € (—m,m), (2)
and moreover
im Al () = £ O, = 0. (3)

These results are well known and illuminated, e.g., in the monograph I.I.Danilyuk [27] .

It should be noted that the concept of Morrey space was introduced by C. Morrey [1]
in 1938 in the study of qualitative properties of the solutions of elliptic type equations with
BMO (Bounded Mean Oscillations) coefficients (see also [2, 3]). This space provides a large
class of weak solutions to the Navier-Stokes system [4]. In the context of fluid dynamics,
Morrey-type spaces have been used to model the fluid flow in case where the vorticity is a
singular measure supported on some sets in R™ [5]. There appeared lately a large number
of research works which considered many problems of the theory of differential equations,
potential theory, maximal and singular operator theory, approximation theory, etc. in
Morrey-type spaces (for more details see [2-26]). It should be noted that the matter of
approximation in Morrey-type spaces has only started to be studied recently (see, e.g.,
[11, 12, 16, 17]), and many problems in this field are still unsolved.

In the present paper non-tangential maximal function is considered and it is estimated
from above a maximum operator, and the proof is carried out for the Poisson-Stieltjes
integral, when the density belongs to the corresponding Morrey-Lebesgue space.

It should be noted that similar problems with respect to the analytical functions from
Hardy classes were considered in [16, 17, 31].

2. Needful Information

We will need some facts about the theory of Morrey-type spaces. Let I' be some
rectifiable Jordan curve on the complex plane C. By |M | we denote the linear Lebesgue
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measure of the set M C I'. All the constants throughout this paper (can be different in
different places) will be denoted by c.

By Morrey-Lebesgue space LP** (T'), 0 < « < 1, p > 1, we mean the normed space of
all measurable functions f () on I' with the finite norm

1
/
a—1 p
1711201 = sup (\Bﬂr\r /Bm|f<§>”rd§|> < +oc,

where sup is taken all over the balls B with the centre on I'. LP-® (T") is a Banach space with
L»Y(T) = L, (1), LP°(T') = Lo (). Similarly we define the weighted Morrey-Lebesgue
space LIy (T') with the weight function p () on I' equipped with the norm

HfHLﬁ‘O‘(F) = Ifellpp. oy, f e Ly (T).

The inclusion LV (I") € LP*2 (T") is valid for 0 < a3 < ay < 1. Thus, LP-* (") C L, (I"),
Va € (0, 1], ¥p > 1. For I' = ~ we will use the notation L”* (y) = L»® and the spaces
LP% (y) and LP® (—m, 7) we will identify by usual method.

More details on Morrey-type spaces can be found in [2-26].

We will use the following concepts. Let I' C C be some bounded rectifiable curve,
t =t(0), 0 <o <1, be its parametric representation with respect to the arc length o,
and [ be the length of I'. Let du (t) = do, i.e. let p(-) be a linear measure on I'. Let

Li(r)={rel:|r—t|<r},Tysy(r)={r(0) €l :|o—s| <r}.
It is absolutely clear that Ty (r) C T'y (7).

Definition 1. Curve I is said to be Carleson if J¢ > 0:

sup p (I'y (1)) < er,¥r > 0.
tel’

Curve I is said to satisfy the chord-arc condition at the point tg = ¢ (sg) € I if there
exists a constant m > 0 independent of ¢ such that |s — so| < m |t (s) —t(so)|, Vt(s) € T
I satisfies a chord-arc condition uniformly on I' if 3m > 0 : [s—o| < m|t(s) —t(0)],
Vi(s), t(o) eT.

Let’s recall some facts about the homogeneous Morrey-type spaces from the work [10].
Let (X; d; v) be a homogeneous space equipped with the quasi-distance d(-; -) and the
measure v (-). Recall that the quasi-distance d : X? — R, is a function which satisfies
the following conditions:

)d(z;y) 20&d(z;y) =0 2=y; Vz, y € X;

i) d(z; y) < cld(w; 2) +d (2 ), Vo, y € X.

Let B, () be an open ball

B, (z)={ye X:d(x;y) <r}.
Set



40 N.R. Ahmedzade, Z.A. Kasumov

V(Br(a:)):/B( )1dy.

Assume that X has a constant homogeneous dimension & > 0, i.e. decg; co > 0:

car® < v (B, (x)) < cor®,Vz € X, Vr > 0. ()
In this case, the Morrey space LP* (X) is defined by means of the norm
1
1 b
Pl = s S [ Jf@rare
zeX,r>0 | T By (x)

Theorem 1 ([10]). Let (X; d; v) be a homogeneous space equipped with the quasi-metrics
d and the measure v with v (X) = 400, and the condition (&) be true. Then the mazimal
operator (|By ()|, =: v (B, (x))):

v

1

Mo (1) = sup ot /B @),

is bounded in LP* (X) for 1 <p < 400, 0 <\ < 2.

3. Weighted Morrey-type space h)“ and Hardy-Littlewood operator

Let p : [-m, 7] = Ry = (0, 400), be some weight function. Consider the weighted
Morrey-type space hiy® of harmonic functions in w furnished with the norm
||u||hg’a = Sup ||’LL7« () p(')Hp,a )
0<r<1

where

up (t) = u (reit) = u (rcost; rsint).
Assume that the weight p (-) satisfies the following condition

1 1
P_leLmI;‘i‘g:l- (4)

Applying Hélder inequality we obtain

[ora ([ i) ([ reon)

1
1a 1 b
<(2m) 7 sup (1_& / |urplpdt) o=z, =
= \|1] I !

Ie[—m,
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= 2m) " [lo7 I, urllagee

It follows immediately that if the condition (4) is true, then u € hy. Consequently, every
function u € h5'* has nontangential boundary values u™ (¢*) on v. Then, by Fatou’s
lemma (see e.g. [28, 29, 30]) we have u, (") — u™ (¢) as r — 1 — 0 a.e. in [-7, 7).
Applying Fatou theorem on passage to the limit, we obtain

/I‘u+ (eit) p(t)lp dt < Tlimo/l |y (eit) p(t)’p dt <

—1—
P 11—«
<lullp.o I,
P
because

fur () p (1)) = [u* () p (1)

It follows immediately that u* € LE'* and

,7—1—0, for ae.t€[-m, 7.

Hu—i_Hp,a;p < HUth,a .

If the relation
pt € Lyro(—m ), ie.Ie>0:p ' € Lyye (—m, ), (5)

true, then we have

1+6

1§
™ ™ v s \aw
[ ersas ([Cwooora) " ([pore)" " <,

where § > 0 is a sufficiently small number, and ¢s is a constant depending only on 4.
Then, in view of the classical results, the representation

u(re') = ! /7r ut (s) P (r; s —t)ds, (6)

=5 -

is true, where u™ (s) =: u* (¢"), s € [-m, @], and P, () =: P(r; § — ¢) is a Poisson
kernel for the unit disk

1 1—r? 0

PZ(SO):PT(Q*SD):P(TQ0*@):%1_274005(0_@)_*_737 z =

Thus, if u € h’® and p (-) satisfies the condition (5), then u™ € L'® and the relation (6)
holds.

Now let’s prove the converse. In other words, let’s prove that if u™ € LJ'® and the
representation (6) holds, then u € h)®. To do so, we need some auxiliary facts.
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Consider the arbitrary nontangential internal angle 6y with a vertex at the point z =
e € v, t € [—m, n]. Denote by M, f (t) the Hardy-Littlewood type maximal function (or
Hardy-Littlewood operator) of the function f (-):

M, f (z) :S“Puzz) /1 @)l du (1),

Iz

where sup is taken over all intervals I C [—m, 7] which contain z, and p(-) is a Borel
measure on [—m, 7|, which satisfies the condition

w(I) >0, forVI :|I] > 0.

It is shown that there exists a positive constant Cp,, depending only on 6y such that

Suep |u# (Z)‘ § CeoMﬂf (t) th € [_ﬂ-v 77]»
z€bp

where

u#(z):u(reit) :;T/_WP(r;s—t)zﬁ'(s)d,u(s).

For a usual maximal operator, this fact was established in [29, p.237] and [30, p.30].
Consider the Poisson kernel P, (¢) in the upper half-plane

P.(t)=Py(x—t)=~—Y

— 2 z=ux+iy,y>0.
T (x 1) + 42

Let f e Ly (Cll’jr(t? > and consider the Poisson integral

w (o 9) = [ Pya =) 1 (5)di o).
The following main lemma is proved.

Lemma 1. Let i (-) be a Borel measure on R with

w(l)>0,VI:|I| >0; sup /Py(s—|x])du<+oo.
y>0;zeRJR

Then, for f € Ly (“fi(f;), the function

w (2 y)=/RPy(:v—8)f(8)du(8),

which is harmonic on the upper half-plane, satisfies the relation

sup  |uy (2)] < Aoy M, f ()t € R,
2€L ;o ()

where M,, is the Hardy-Littlewood type maximal function
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My f (@) = s [ 1 @)1 du(t)
1950/1’
LCpiao () ={(z5 ) € C:pu((— |z —1t], |z —t])) < aoy; y > 0}, a0 > 0,

and Aq, is a constant depending only on «y.

By M we denote the usual Hardy-Littlewood operator, i.e.

Mf(x supm/]f )| dt,

VYA

where |I] is a Lebesgue measure of the interval I C [—m,7].

It is not difficult to see that the Lebesgue measure on R satisfies all the conditions of
Lemma 1.

Let’s go back to Theorem 1 [10] . Let the condition (&) be fulfilled. Note that Theorem
1 [10] is true in case pu (X) < 400, too. Because its proof is based on the Fefferman-Stein
inequality which is true also in case pu (X) < 400. Let’s apply this theorem to our case.
In our case we have X = R, d(x; y) = |z — y| and & = 1. So, if the measure p (-) satisfies
the conditions of Theorem 1 [10] in our case, then we have

/ M, FIP e < e 1]
I

where |I| is a Lebesgue measure of the set I C R. Then from (??) it directly follows that
€ hP (du), where h?® (du) is a class of harmonic functions on the upper half-plane
equipped with the norm

1 » )
||uu||hp,a(du) sup sup ml - I|uu (; y)’ dp () .

y>0ICR

So we get the validity of the following theorem.

Theorem 2. Assume that the measure pu (-) satisfies the conditions (Iis an interval)

w(l)~|I|,YI C R; sup / Py (s —|z|)du(s) < +oo.
y>0;z€eRJR

Let

w (2) = u (x y):/RPy(x—t)f(t)d,u(t),fEL”’O‘(dp,),Og1—a<1,

where LP* (du) is a Morrey space equipped with the norm

1

1 p

L, = su _ Pq .
P, o dp Icg{mla/llf(y)\ u(y)}

I/
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Then for Vag > 0, 3A,, > 0:

sup lup (2;9)| < AagMpf (t),Vt € R, (7)
(z;y)€laq (t)

and uj, € hP< (dp):

ety < Aco 1F 1, a5 (8)

where u?, (+) is a nontangential mazimal function for w:

m

uy, ()= sup |u,(2)|,t € R.
2€laq (1)
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