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Generating Function of the Number of Jumps at which
Complex Process of Semi-Markov Walk Achieves First
the Level "a”(a > 0)

T.I. Nasirova®, E.M. Neymanov, U.Y. Kerimova

Abstract. Using the sequence of independent random variables, we construct difference process of
semi-markov walk. The generating function of the number of jumps under which complex process
of semi-markov walk achieves first the level "a” (a > 0), is found.
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1. Introduction

There are a few papers devoted to studying generating function of the number of jumps
under which complex process of semi-markov walk achieves first the level ”a” (a > 0).

In the paper [1,p. 61-63], asymptotic behavior of random walks in a random medium
with delaying barrier was studied. Random walk in a band was studied in [2, p. 160-165].
In [3, p. 26-51], asymptotic expansion of distributions determined on Markov chains,
was found. Different semi-makrov chains with delaying barrier and functionals of these
processes were studied in the paper [4, p. 61-63]. In [5,p. 77-84], Laplace transform of
distribution of the lower boundary functional of the process of semi-markov walk with
delaying barrier in zero, was found. The Laplace transform of ergodic distribution of the
process of semi-markov walk with negative drift, nonnegative jumps and delaying barrier
in zero was found in [6,p. 49-60].

In the present paper we find a generating function of the number of jumps under which
the complex process of semi-markov walk achieves first the level a” (a > 0).

As far as we know, a generating function of the number of jumps at which it achieves
first the level "a” (a > 0) was not found for complex process of semi-markov walk.
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2. Mathematical statement of the problem.
On probability space (2, F, P(-)) we are given the sequence of independent identically
distributed positive random variables 5,’:, n,j,g,;,n,;, k=1,00.
k+1
Introduce the following denotation v4(¢) = min {k: S et t} is the number of
i=1

positive jumps of the process X*(t) for time ¢

X(t) = XT(t) — X~ (t)

The process X(t) = Xt (t) — X~ (t) is called a complex process of semi-markov walk.

The goal of the paper is to find explicit form of the generating function of the number
of jumps under which the process X (t) achieves first the level ”a”.

We denote it by v{.

Let X(0) =z > 0.

3. Setting-up integral equation for generating function of the number of
jumps of the process X (t) under which it achieves first the level
"a"(a > 0).

Denote by v{ the number of jumps of the process X (¢) under which it achieves first
the level 7a” (a > 0).
Denote

U(ulz) =Y uFP{vf = kIX(0) =2}, [ul <1
k=1

Theorem 1. V(u|z) satisifies the following integral equation

a

U(ulz) = uP {nfr >a— z} +u / U (uly)dyP {nf <y-— z} P {{fr < 51_} +
Yy==z

a < e
+u/ \If(u]y)/dyZP{nl~|—...+n;L<m—y}><
y==z z=y m=1

o0

X /P{V(t)zm}dtp{ff—ff <t}dyP{nf <y}+
t=0
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z

+u / \I/(u]y)/dyZP{nf—i—...#—nfn<m—y}
m=1

Yy=—00 T=z

X

x / P{v(t) =m) dP & — & <t} d,P {nt <y}, (1)

Proof. Let k>2. Then by the total probability formula we have

P{vf =k[X(0) = 2} = P{V1—k(§1 <&UE <&0)1X(0 —Z}—
_P{Vl_k(& <& )|X(0 —Z}"‘P{Vl—k(fl <§1 )IX(0 _Z}_

= f P& <&z +nf <asz+ny edy} PO =k —1|1X(0) =y} +
y=z

a
+ f P{f;<§f;2—77f—ng—...—nyf(g_g)JrnfGdy}P{y‘f:k—HX(O):y}
y=z

So,by x —y >0 and z — z > 0 we get

a

P (v = K|X(0) = 2} = /P{V%—k—uX(m — P g <y 2} PLEF <) -

Yy=z
_ / P{vf =k~ 1|X(0) = y} / dy S P {0+t <a—y)
y=z rz=max(y,z) m=1
/ P{v=(t)=m}dP{& — & <t} doP{nf <a—z}.
t=0

Then we have

P{v§ =k|X(0) =2z} = /P{yf:k—l\X(o):y}dyP{nl+ <y—-z}P{& - & <t} -
Yy==z

a

/P{yl_k—1|X( _y}/dPZP{n1+ A, <z -y}

y=z r=y m=1

/P{y(t) —my P e — 6 <ty d P (g <x— 2}t
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z

- / P{I/f:k—1|X(0):y}/dyPZP{nl_+...+77;<x—y}

y=—00 z= m=1

/ P{(t)=m}dP{& —& <t} d,P{nf <y— =}
t=0
We multiply the both hand sides of (1) by ©* and sum over k>2.

> kP {vf = kX (0) = 2} =
k=2

= /Zukp{yf:k—uX(o):y}dyp{nf<y—z}P{gf<51}+
., k=2

—/Zukp{yf:k—uX(O):y}x
y= k=2

o0

x/dyzp{n;+...+n,;<x—y}

=y m=1

/p{w@) —m}dPLEf & <ty dP{gf <o — 2} —
t=0

- / ukP{yf—k—llX(O)—y}/dyZP{nl_+...+nm<x—y}><
k=2 T2z m=1

Yy=—00
x/p{y—@):m}dtp{gf—gl<t}dyp{nl+<y_z}. 2)
t=0

Obviously,

P{z+nf >a} = P{f =1|X(0) = 2}. (3)

Adding (3) to both hand sides of (2), we complete the proof of the theorem.

We will solve the equation with respect to W(u|z) if the random variables 5; , n:,fk_,nk_
have exponential distribution with the parameters Ay > 0, A > 0, gy > 0, u_ > 0,
respectively.
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0,t<0
Pt < ={ 7' 25.

t>0,)\+>0,)\>OP{n1i<m}={ (1)7f€<—/9it x>0,up >0,u_>0. (4)

It is easy to find that under supposition (4),

_ A
P{£f<§1}:ﬁ,
o A
P{& <51}:m’

AN

CltP {ff - 51_ < t} - mei)\+tdt.

From references it is known that

P{v*(t)=m} = ()\;trf!)me‘kit

dyP{ny +m5 +..+n, <y} = L_Z/)Wkltf_”*yci
yUh T T Ty S Yy = M (m—1)! y.

We substitute these formuls in equation (1)

a

A
U(ulz) = ue H+oel+? + Al e / e MY (uly)dy+

A+ A
y=z
AAZ pig i / g An_(e=w)
it uens [ arwaly) [ eSSy
e |
(A+ ) . J
AL\2 _ o0 7 A_p_(z—y)
oy o vty [ e S ey @
z=y

Having multiplied the both hand sides by e #* and differentiated with respect to z,
we get

Ap
W' (ulz) — py W(ulz) = —ﬁu\l}(u!z)—
MN g (AP e [ SV,
—7()\++)\_)3ue A+A- / e YU (uly)e *++r-"dy. (6)
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A_p_

We multiply the both hand sides by xR )?

(- xys)2 Afiy (- xyi5o)2
[\If’(u|z) - ,qu\Il(u|z)] e PV Wy _ﬁqu(uk)e PWIES Sy L
+ —
AN — / _Ar
y=—00

Differentiate both hand sides with respect to z.

A_p—

M
— ) W (ule) — W (ufz) | TR
+ _

(W' (ulz) — p4 9 (ul2)) (u—

)\ _77A,u7 z
_)\++—ifh)r\_ ue(“ ) (W' (ul2) + (p- — ~———

A2 _ A=k
_(;liufﬂ)?’ue*‘*z‘lf(u\z)e Az
+ —

A_p_

Multiply both hand sides by ¢ =~ 3+ +3-)

(1 = 25 ) — Pl W) — )
A : A_pi A A2 g
_ _ﬁu[w (u]2) + (p_ — ﬁ)\y(up)] _ ﬁw(um

We get a second order homogeneous differential equation

A Ap Appype | Npgp-
Nk - + +M+ o das +
D Vs wil s Wil MOl e vy Wl o Wi W P
A+A%M+M,
— |V =0.
+ O+ )\_)3“] (ulz) =0
Let us solve this equation.
Characteristic equation and the roots
T A
Kz(u) g+ +H + +H4 u] %

VNS N W W

CAapape o Apepe o M AZpgpe
A+ (A +A0)? Ay +A2)3

K () + | =0
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App— A py + 1

2,2 2,2 4 224 A pqp (A —A-)
pVED A \/>‘+M— + AL pd SRR
Kip(1) = 5

if u =1 we get,

T N T I e
2004 +A0)
We get the solution of the differential equation

Ki2(1) =

U(ulz) = Cr(u)e? 4 Co(u)et>?

If in equations (5) and (6) we substitute z = 0, we get the system of equations

(9)

Ao i Ry
C1 (u) {1 B (A++A,)+(7§(u)—u+) (ebr=ni)a 1) —
_ Mp_u " AeA2 g p_u +}
O A ) g A TR ) T g A ) (s e A ) s e (R () i)
Aot e
+C5 (u) [1 — ()\++>\7-)'—(!]L€-2F(U)—u+) (e( 2—p4)a _ 1) _
_ )\2_N7u + >\+>‘2—H‘+IJJ7U :| B
Ot A ) B2 (@) A+ A ) A=) T (A 4+A ) (g O A )+ Ay e (ko (u)—py )
= US_M_'_Q
— A AA2 pyp—u
C1 (u) [/ﬁ (u) = pg + T (>\++)\)2(/§1(%)(>\++)\)+>\+u)] +
+CQ (U) |:k’2 (u) — My + >‘+:u+u >\+>‘7M+M7u

DA T AP k2 () g A ) A | 0

Simplify the second equation of system (10). For that we use the characteristic equation
and get

A U A2 _u
k‘l(U) — g+ + M+ - + Mo .

A Og AT (@O A ]

A U A2 _u
kQ(U) — g+ +H+ - + Mo o

WIS W 6 WD W 1 071 S VAR W BV W

Agp— At p4u
C k3 Ky (u)[— + -
) (R0 + R+ 35 R
CAppape | ANipgpeu )\+)\2M+M—U]+
A +A- 0 A +20)2 0 A +a0)3

A p— APt u
k2 kg (u)[— a -
+Calu) [B(0) + Rl 3 2
Apppe | ANipgpp-u /\+>\2M+M—U] —0
A +A- Ar+2A0)2 0 Ap+ A3 '
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We get
Cl(u) -O-l—Cg(u) -0=0

Then we substitute Co(u) = 0 in the first equation and get an expression for Cj(u)

- Af iy ki—
Ci(u) = e M9/ |1 — elki—pi)a _ 1y _
() M oD ) =) )
A2 N A A2
(A + A (W) A +A) +App-] (A + A2 (e A+ A2) + Appe(kr (u) — py)
We simplify it using the roots of the characteristic equation and get

Cl (u) =
efiu’-‘-a
B Ag i elk1i—pi)a _ A2 p A A=) (b (u) +p4)
A +A) (R (u)—pq) A A R () e A ) FA4 o[ (o A+ A )+H A ) (R (w) — )

If we substitute the values of Cy(u) and Cy(u) in equation (9), we get

U(ulz) =
ek (u)z
B Apig ohi(wa _ N2 = (A i+ d ) (b (u)+t) prisa
A+ +A-) (k1 (u)—p4) A AR () A +A)FA4 p =] (p A A )+ AL ) (R (w) — )

or

(At + A0 (k1) — pr )b (00

ki(w)a A2 pm A pg X =) (R (w) + )
Rl 7 71V wy e w7 i ey

U(ulz) =

eH+a

4. Conclusion

Using the sequence of independent random variables, we constructed difference process
of semi-markov process. We found generating function of the number of jumps under which
complex process of semi-markov walk achieves first the level “a”(a > 0).
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