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Global Bifurcation of Solutions for the Problem of Pop-
ulation Modeling
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Abstract. We consider nonlinear Sturm-Liouville problem with indefinite weight function which
arise from population modeling. We show the existence of two families of continua of solutions
corresponding to the usual nodal properties and emanating from zero and infinity.
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1. Introduction

We consider the following nonlinear Sturm-Liouville equation

(`y)(x) ≡ −(p(x)y′(x))′ + q(x)y(x) = λρ(x)y(x) + g(x, y(x), y′(x), λ), x ∈ (0, 1), (1)

subject to the boundary conditions

α0y(0)− β0y′(0) = 0, (2)

α1y(1) + β1y
′(1) = 0, (3)

where λ ∈ R is a spectral parameter, p(x) is a positive and continuously differentiable
function on [0, 1], q(x) and ρ(x) are real-valued continuous functions on [0, 1], αi, βi, i =
0, 1, are real constants such that |αi| + |βi| > 0, i = 0, 1. We also assume that the
nonlinear term g is continuous function on [0, 1]× R3 satisfying the condition:

g(x, u, s, λ) = o(|u|+ |s|), as |u|+ |s| → 0, (4)

or
g(x, u, s, λ) = o(|u|+ |s|), as |u|+ |s| → ∞, (5)

uniformly in x ∈ [0, 1] and λ ∈ Λ for any bounded interval Λ ⊂ R.
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Nonlinear Sturm-Liouville eigenvalue problems arise in many applications, for example,
the problem (1)-(3) with indefinite weight arise from population modeling. In this model,
weight function ρ changes sign corresponding to the fact that the intrinsic population
growth rate is positive at same points and is negative at others, for details, see [5, 7].

If condition (4) holds then we can consider bifurcation from zero, i.e., bifurcation of
nontrivial solutions from the set of trivial solutions R = R× {0}. Problem (1)-(3) in the
case ρ > 0 has been considered in [10]. This paper prove the existence of global continua of
nontrivial solutions in R×C1[0, 1] emanating from bifurcation point (in R) corresponding
to the eigenvalues of the linear problem, obtained from (1)-(3) by setting F ≡ 0. Similar
problems for the nonlinear eigenvalue problems of ordinary differential equations of second
and fourth order with definite weight function have been considered in [1-4, 12].

If condition (5) holds then the problem (1)-(3) is said to be asymptotically linear (see
[9]) and we consider bifurcation from infinity, i.e., the existence of solutions of problem
(1)-(3) having arbitrarily large norm. In the case ρ > 0 the existence of solutions of
problem (1)-(3) with large norm (bifurcating from infinity) is considered in [11] and [12].
In these papers the bifurcation problem from infinity is transformed to a problem involving
bifurcation from zero for the eigenvalues of the corresponding linear problem and then the
global bifurcation theorems from [11] is applied.

In the investigation of bifurcation from zero and infinity for the problem (1)-(3) with
indefinite weight function ρ, the main difficulty is connected with the fact that the eigen-
functions of the linear problem corresponding to the positive and negative eigenvalues with
the same serial numbers have same number of zeros. Therefore in this case the standard
global bifurcation results from [10] and [11] are not directly applicable. However, by using
the results of [6], [10] and [11], we shall establish the global bifurcation results from zero
and infinity for the problem (1)-(3) with indefinite weight function ρ. We prove the exis-
tence of global continua of solutions bifurcating from zero and infinity which are similar
to those obtained in [10], [11] and [12].

2. Preliminary

By (4) the linearization of problem (1)-(3) at y = 0 is the linear Sturm-Liouville
problem {

− (p(x)y′(x))′ + q(x)y(x) = λρ(x)y(x), x ∈ (0, 1),
y ∈ B.C., (6)

where by B.C. is the set of the boundary conditions (2)-(3). It is a classical result (see
[8]) that the problem (6) in the case ρ(x) > 0, x ∈ [0, 1], possesses infinitely many real
eigenvalues λ1 < λ2 < ... < λk < ... , all of which are simple, and lim

k→+∞
λk = + ∞ .

The eigenfunction yk(x) corresponding to eigenvalue λk, k ∈ N, has exactly k − 1 simple
nodal zeros in the interval (0, 1) (by a nodal zero we mean the function changes sign at
the zero and at a simple nodal zero, the derivative of the function is nonzero).

Let E be the Banach space of all continuously differentiable functions on [0, 1] which
satisfy the conditions B.C. . E is equipped with its usual norm ||u||1 = ||u||∞ + ||u′||∞,
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where ||u||∞ = max
x∈[0,1]

|u(x)|. Let S+
k be the set of u ∈ E which have exactly k − 1 simple

nodal zeroes on (0, 1) and which are positive for 0 6= x near 0; then, S−k = −S+
k and

Sk = S−k ∪ S
+
k . The sets S+

k , S
−
k and Sk are open in E. Moreover, if u ∈ ∂Sk, then u has

at least one double zero in [0, 1].

Theorem 2.1. (see [8; Ch. 10, § § 10·6, 10·61]). If ρ changes sign in the interval (0, 1)
(i.e. meas {x ∈ [0, 1] : σρ(x) > 0} > 0, σ ∈ {+, −}), q(x) ≥ 0, x ∈ [0, 1] , and α0β0 ≥
0, α1β1 ≥ 0, then the eigenvalues of problem (6) are all real and simple, and form a two
sequences

0 > λ−1 > λ−2 > ... > λ−k 7→ −∞ and 0 < λ+1 < λ+2 < ... < λ+k 7→ +∞.

Moreover, for each k ∈ N and each σ ∈ {+, −} the eigenfunction yσk (x) corresponding to
eigenvalue λσk , has exactly k − 1 simple nodal zeros in the interval (0, 1) (more precisely,
yσk (x) ∈ Sk).

Throughout the sequel we assume that the following conditions are satisfied:

meas {x ∈ [0, 1] : σρ(x) > 0} > 0, σ ∈ {+, −},
q(x) ≥ 0, x ∈ [0, 1], and αiβi ≥ 0, i = 0, 1.

(7)

It follows from Theorem 2.1 that for each k ∈ N the eigenfunctions of y−k (x) and y+k (x),
corresponding to the eigenvalues λ−k and λ+k , respectively, have exactly k− 1 simple nodal
zeros in the interval (0, 1). Hence, if the conditions (7) are satisfied, then first sight it seems
that the continua which bifurcates from the point (λ+k , 0) and is contained in R× Sk, will
meet (λ−k , 0) and this prevents the first alternative of [10, Theorem 1.3] occurring. But
thanks to Dancer [6] we show that this is not happening.

3. Global bifurcation from zero for problem (1)-(3)

We denote by L the closure in R×E of the set of nontrivial solutions of (1)-(3). The
eigenfunction yσk , σ ∈ {+,−}, corresponding to the eigenvalue λσk of problem (6) is made
unique by requiring that yσk ∈ S

+
k and ||yσk || = 1.

One of the main results is the following theorem.

Theorem 3.1. For each k ∈ N, each ν ∈ {+, −} and each σ ∈ {+, −} there exists a
continuum (Lσk)ν of solutions of problem (1)-(3) in (R×Sνk )∪{(λσk , 0)} which meets (λσk , 0)
and ∞ in R× E.

Proof. Let (λ, y) is a solution of problem (1)-(3) and y ∈ ∂Sνk . Hence y has double
zero in [0, 1]. Then, using growth estimate on g near the double zero and linearity of `
and ρy and applying Gronwall’s inequality we obtain that y ≡ 0 on [0, 1].
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By (7) λ = 0 is not an eigenvalue of the spectral problem (6). Then using Green’s
function h(x, t) of differential expression `(y) together with the boundary conditions (2)-
(3) problem (1)-(3) can be converted to the equivalent integral equation

y(x) = λ

π∫
0

h (x, t) ρ(t)y(t)dt+

π∫
0

h (x, t) g(t, y(t), y′(t), λ) dt. (8)

Define L : E → E and F : R× E → E by

Ly(x) =

π∫
0

h (x, t) ρ(t)y(t)dt and F (λ, y(x)) =

π∫
0

h (x, t) g(t, y(t), y′(t), λ) dt, (9)

respectively.
Since ρ(x) is continuous, it follows from the properties of h(x, t) that L : E → E is a

completely continuous operator. The operator G can be represented as the composition
of the Fredholm operator L with ρ(x) ≡ 1 and the superposition operator g(λ, y(x)) =
g(x, y(x), y′(x), λ). Since g is continuous in [0, l]× R3, it follows that g : R× E → C[0, 1]
is continuous. Hence G : R× E → E is completely continuous. By (4) we have

G(λ, y) = o(||y||) as ||y|| → 0, (10)

uniformly with respect to λ ∈ Λ.
By virtue of (8)-(9) problem (1)-(3) can be written in the following equivalent form

y = λLy +G(λ, y), (11)

and therefore, it is enough to investigate the structure of the set of solutions of (1)-(3) in
R× E.

Note that problem (11) is of the form (0.1) of [10]. The linearization of this problem
at y = 0 is the spectral problem

y = λLy. (12)

Obviously, the problem (12) is equivalent to the spectral problem (6). Consequently, the
eigenvalues of (6) are the characteristic values of (12) and are simple. Hence all eigenvalues
λσk , k ∈ N, σ ∈ {+,−}, satisfy the hypotheses of Theorem 1.3 from [10] and accordingly
there exists a component Lσk of L with contains (λσk , 0) and is either unbounded in R×E
or contains (λσj , 0), where j 6= k. It follows from [10; Lemma 1.24] that if (λ, y) ∈ Lσk and
is near (λσk , 0), then y = τyσk +w with w = o(|τ |). Since Sk is open in E and yσk ∈ Sk, then

(λ, y) ∈ R× Sk and ((Lσk\{(λσk , 0)}) ∩Bδ(λσk)) ⊂ R× Sk (13)

for all δ > 0 small, where Bδ(λ
σ
k) is a open ball in R × E of radius δ centered at (λσk , 0).

By an above remark,

(Lσk\{(λσk , 0)}) ∩ (R× ∂Sk) = ∅. (14)
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Next we decompose Lσk , k ∈ N, σ ∈ {+,−}, into two subcontinua (Lσk)+ and (Lσk)− in
accordance with Dancer’s construction (see [6, p. 1070-1071). Again writing y = τyσk +w
for (λ, y) ∈ (Lσk\{(λσk , 0)}) and near (λσk , 0) we have τyσk ∈ R×Sνk if 0 6= τ ∈ Rν . Therefore,
by (13) we have

(((Lσk)+\{(λσk , 0)}) ∩Bδ(λσk)) ⊂ R× S+
k and (((Lσk)−\{(λσk , 0)}) ∩Bδ(λσk)) ⊂ R× S−k

for all δ > 0 small. Moreover, it follows from (14) that

(Lσk)+ ∩ (R× ∂S+
k ) = ∅ and (Lσk)− ∩ (R× ∂S−k ) = ∅.

It is clear from the last four relations that (Lσk)ν\{(λσk , 0)}), ν ∈ {+,−}, cannot leave
R × Sνk outside of a neighborhood of (λσk , 0). Since S+

k ∩ S
−
k = ∅ it follows by remark to

Theorem 2 from [6, p. 1073] that

((Lσk)+\{(λσk , 0)}) ∩ ((Lσk)+\{(λσk , 0)}) = ∅.

Hence by [8, theorem 2] we have

(Lσk)+ ⊂ ((R× S+
k ) ∪ {(λσk , 0)}) and (Lσk)− ⊂ ((R× S−k ) ∪ {(λσk , 0)}),

and both are unbounded in R× E. The proof of this theorem is complete.

Remark 3.1. If the nonlinear term g has the form g(x, y, s, λ) = λ g1(x, y, s, λ), where g1
is continuous function on [0, 1]×R3 satisfying the condition (4), then the problem (1)-(3)
does not have a solution of the form (0, u) (this follows from the fact that 0 is not an
eigenvalue of the corresponding linear problem (6)). In this case it is obvious that for each
k ∈ N and each ν ∈ {+ , −} the continua (L+

k )ν and (L−k )ν do not intersect and this again
confirms the validity of Theorem 3.1

4. Global bifurcation from infinity for problem (1)-(3)

Now we consider problem (1)-(3) under condition (5). We say (λ,∞) is a bifurcation
point for (1)-(3) if every neighborhood of (λ,∞) contains solutions of (1)-(3), i.e. there
exists a sequence {(λn, un, )}∞n=1 of solutions of this problem such that λn → λ and un →∞
as n→∞.

Theorem 4.1. If (5) holds then, for each k ∈ N and each σ ∈ {+ , −} there exists an
unbounded component Dσ

k of L ∪ (λσk × {∞}), containing Ik × {∞}. Moreover, if Λ ⊂ R
is an interval such that Λ ∩ {λσk}∞k=1 = λσk and M is a neighborhood of Iσk × {∞} whose
projection on R lies in Λ and whose projection on E is bounded away from 0, then either

1o. Dσ
k\M is bounded in R× E in which case Dk\M meets R = {(λ, 0) |λ ∈ R} or

2o. Dk\M is unbounded.

If 2o occurs and Dk\M has a bounded projection on R, then Dk\M meets λσj × {∞}
for some j 6= k.
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The proof of this theorem is similar to that of [11, Theorems 1.6 and 2.4] with the use
of Theorem 3.1.

By using Theorems 3.1, 3.4 and [11, Corollary 1.8 and Theorem 2.4] we can prove the
following theorem.

Theorem 4.2. If (5) holds, then for each k ∈ N and each σ ∈ {+ , −} there are two
subcontinua (Dσ

k)+ and (Dσ
k)−, consisting of the bifurcation branch Dσ

k , which satisfy the
alternates of Theorem 4.1. Moreover, there exists a neighborhood N ⊂ M of λσk × {∞}
such that ((Dσ

k)ν ∩N ) ⊂ ((R× Sνk ) ∪ (λσk × {∞})) for each ν ∈ {+ , −}.

Next, if conditions (4) and (5) both hold then we can improve Theorems 3.1, 4.1 and
4.2 as follows.

Theorem 4.3. If (4) and (5) hold then, for each k ∈ N, each σ ∈ {+ −} and each
ν ∈ {+ , −}, we have (Dσ

k)ν ⊂ R × Sνk , and alternative 2o of Theorem 4.1 cannot hold.
Furthermore, if (Dσ

k)ν meets R for some λ, then λ = λσk . Similarly, if (Lσk)ν meets
{(λ,∞) : λ ∈ R}, then λ = λσk .

Proof. If (4) holds, then it follows from the proof of Theorem 3.1 that L ∩ (R×∂Sνk ) =
∅. Hence the sets L∩ (R×Sνk ) and L\(R×Sνk ) are mutually separated in R×E. Then by
virtue of [13, Corollary 26.6] every component of L must be a subset of one or another of
these sets. Since for each σ ∈ {+ , −} the set (Dσ

k)ν is the component of L which intersect
R × Sνk , this component must be a subset of R × Sνk , i.e. (Dσ

k)ν ⊂ (R × Sνk ). Hence by
the second assertion of Theorem 4.2 it follows that alternative 20 of Theorem 4.1 cannot
hold. Then from Theorem 2.1 and 3.1 implies that (Dσ

k)ν can only meet R if λ = λσk . In
a similar way, by Theorems 4.1 and 4.2, (Lσk)ν can only meet (λ,∞) if λ = λσk . The proof
of this theorem is complete.
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