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H-Monotone Operators with an Application to a System
of Nonlinear Implicit Variational Inclusions
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Abstract. In this paper, we introduce and study a system of variational inclusions called system of
nonlinear implicit variational inclusion problem involving A-monotone and H-monotone operators
in semi-inner product spaces. We prove that the resolvent operator associated with A-monotone
and H-monotone operators is Lipschitz continuous. Further, we prove the existence and uniqueness
of solutions for this system of variational inclusions. Furthermore, we suggest an iterative algorithm
for finding the approximate solution of this system and discuss the convergence criteria of the
sequences generated by the iterative algorithm under some suitable conditions.
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1. Introduction

Variational inequality problems have a wide range of applications in the fields of opti-
mization and control, economics and transportation equilibrium and engineering sciences.
Variational inequality problems have been generalized and extended in different directions
using the novel and innovative techniques. A useful generalization of variational inequality
is a variational inclusion. There are a number of numerical methods, including projec-
tion methods, Wiener-Hopf equations, descent and decomposition for solving variational
inequalities. For further details of the approximation solvability of variational inclusions,
we refer to [1,4,6,9,11,13-15].

The projection method and its generalizations such as resolvent operators have been
widely used to solve variational inequalities/inclusions and their generalizations, see for
example [1,4-7,11,13,15,17]. It is known that the monotonicity of the underlying operator
plays a prominent role in solving different classes of variational inequality problems. In
2003, Fang and Huang [5] introduced and studied a new class of variational inclusions
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involving H-monotone operators in a Hilbert space. They have obtained a new algorithm
for solving the associated class of variational inclusions using resolvent operator technique.

A considerable research in approximation solvability and A-monotone operators and
H-η-accretive operators has been carried out by Mohsen et al. [19], He et al. [10], Lan
et al. [16], Verma [25,27]. Fang et al. [6] have considered a class of variational inclusions
and discussed its solvability using H-η-accretive operators.

Motivated and inspired by the work going on in this direction, in this paper
we give the existence and Lipschitz continuity of the resolvent operators. As an applica-
tion, we consider a class of system of nonlinear implicit variational inclusions involving
A-monotone and H-monotone operators in semi-inner product spaces. Furthermore, we
prove the existence and uniqueness of solution of the system of nonlinear implicit varia-
tional inclusions. Moreover, using resolvent operator, we suggest an iterative algorithm
for approximating the solution of this system and discuss the convergence analysis of the
sequences generated by the iterative algorithm. The results presented in this paper gen-
eralize and improve many known results in the literature, see for example [7,9,14,23] and
the related references cited therein.

2. Resolvent Operator and Formulation of Problem

We need the following definitions and results from the literature.
Definition 1 [18]. Let X be a vector space over the field F of real or complex numbers.
A functional [., .] : X ×X → F is called a semi-inner product if it satisfies the following:

(i) [x+ y, z] = [x, z] + [y, z], ∀x, y, z ∈ X;

(ii) [λx, y] = λ[x, y], ∀λ ∈ F and x, y ∈ X;

(iii) [x, x] > 0, for x 6= 0;

(iv) |[x, y]|2 ≤ [x, x][y, y].

The pair (X, [., .]) is called a semi-inner product space.

We observe that ||x|| = [x, x]
1
2 is a norm on X. Hence every semi-inner product

space is a normed linear space. On the other hand, in a normed linear space, one can
generate semi-inner product in infinitely many different ways. Giles [8] had proved that if
the underlying space X is a uniformly convex smooth Banach space then it is possible to
find a semi-inner product, uniquely. Also the unique semi-inner product has the following
nice properties:

(i) [x, y] = 0 if and only if y is orthogonal to x, that is if and only if ||y|| ≤ ||y +
λx||, ∀ scalars λ.

(ii) Generalized Riesz representation theorem: If f is a continuous linear functional on
X then there is a unique vector y ∈ X such that f(x) = [x, y], ∀x ∈ X.
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(iii) The semi-inner product is continuous, that is for each x, y ∈ X, we have Re[y, x +
λy]→ Re[y, x] as λ→ 0.

The sequence space lp, p > 1 and the function space Lp, p > 1 are uniformly convex
smooth Banach spaces. So one can define semi-inner product on these spaces, uniquely.

Example 2 The real sequence space lp for 1 < p <∞ is a semi-inner product space with
the semi-inner product defined by

[x, y] =
1

||y||p−2p

∑
i

xiyi|yi|p−2, x, y ∈ lp.

Example 3 [8]. The real Banach space Lp(X,µ) for 1 < p <∞ is a semi-inner product
space with the semi-inner product defined by

[f, g] =
1

||g||p−2p

∫
X
f(x)|g(x)|p−1sgn(g(x))dµ, f, g ∈ Lp.

Definition 4 [29]. Let X be a real Banach space. Then:

(i) The modulus of smoothness of X is defined as

ρX(t) = sup

{
||x+ y||+ ||x− y||

2
− 1 : ||x|| = 1, ||y|| = t, t > 0

}
.

(ii) X is said to be uniformly smooth if lim
t→0

ρX(t)

t
= 0.

(iii) X is said to be p-uniformly smooth if there exists a positive real constant k such that
ρX(t) ≤ ktp, p > 1. Clearly, X is 2-uniformly smooth if there exists a positive real
constant k such that ρX(t) ≤ kt2.

Lemma 5 [29]. Let p > 1 be a real number and X be a smooth Banach space. Then the
following statements are equivalent:

(i) X is 2-uniformly smooth.

(ii) There is a constant k > 0 such that for every x, y ∈ X, the following inequality holds

||x+ y||2 ≤ ||x||2 + 2〈y, fx〉+ k||y||2, (1)

where fx ∈ J(x) and J(x) = {x? ∈ X? : 〈x, x?〉 = ||x||2 and ||x?|| = ||x||} is the normalized
duality mapping.

Remark 6. Every normed linear space is a semi-inner product space (see[18]). In fact
by Hahn Banach theorem, for each x ∈ X, there exists atleast one functional fx ∈ X?

such that 〈x, fx〉 = ||x||2. Given any such mapping f from X into X?, we can verify that
[y, x] = 〈y, fx〉 defines a semi-inner product. Hence we can write the inequality (1) as

||x+ y||2 ≤ ||x||2 + 2[y, x] + k||y||2, ∀x, y ∈ X. (2)
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The constant k is chosen with best possible minimum value. We call k, as the constant of
smoothness of X.

Example 7. The function space Lp is 2-uniformly smooth for p ≥ 2 and it is p-uniformly
smooth for 1 < p < 2. If 2 ≤ p <∞, then we have for all x, y ∈ Lp,

||x+ y||2 ≤ ||x||2 + 2[y, x] + (p− 1)||y||2.

Here the constant of smoothness is p− 1.

Definition 8. Let X be a real 2-uniformly smooth Banach space. A mapping T : X → X
is said to be:

(i) r-strongly monotone if there exists a positive constant r such that

[Tx− Ty, x− y] ≥ r||x− y||2, ∀x, y ∈ X.

(ii) m-relaxed monotone if there is a positive constant m such that

[Tx− Ty, x− y] ≥ (−m)||x− y||2, ∀x, y ∈ X.

Let M : X → 2X be a set-valued map. We denote both the mapping and its graph by M ,
that is M = {(x, y) : y ∈M(x)}. The domain of M is defined by

Dom(M) = {x ∈ X : ∃ y ∈ X : (x, y) ∈M}.

The range of M is defined by

Range(M) = {y ∈ X : ∃ x ∈ X : (x, y) ∈M}.

The inverse M−1 of M is {(y, x) : (x, y) ∈M}.
For any two set-valued mappings N and M , and any real number ρ, we define

N +M = {(x, y + z) : (x, y) ∈ N, (x, z) ∈M},

ρM = {(x, ρy) : (x, y) ∈M}.

For a map A : X → X and a set-valued map M : X → 2X , we define

A+M = {(x, y + z) : Ax = y and (x, z) ∈M}.

Definition 9. Let X be a real 2-uniformly smooth Banach space. The mapping M : X →
2X is said to be

(i) Monotone if
[x− y, u− v] ≥ 0, ∀(x, u), (y, v) ∈M ;

(ii) r-strongly monotone if there exists a positive constant r > 0 such that

[x− y, u− v] ≥ r||u− v||2, ∀(x, u), (y, v) ∈M ;
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(iii) m-relaxed monotone if there exists a positive constant m such that

[x− y, u− v] ≥ (−m)||u− v||2, ∀(x, u), (y, v) ∈M.

Definition 10. Let X be a real 2-uniformly smooth Banach space. Let A : X → X be a
single-valued mapping and M : X → 2X be a set-valued mapping on X. The map M is
said to be A-monotone if

(i) M is m-relaxed monotone;

(ii) (A+ ρM)(X) = X, where ρ > 0 is a positive real number.

Definition 11. The resolvent operator JMρ,A : X → X is defined by JMρ,A(u) = (A +

ρM)−1(u) ∀u ∈ X.

Definition 12. Let H : X → X be an r-strongly monotone operator. The map M : X →
2X is said to be H-monotone if

(i) M is monotone;

(ii) (H + ρM)(X) = X, where ρ is a positive real number.

Definition 13. The resolvent operator JMρ,H : X → X is defined by JMρ,H(u) = (H +

ρM)−1(u) ∀u ∈ X.

Graph convergence plays a crucial role in variational problems, optimization problems
and approximation theory. For details on graph convergence one may refer to Aubin and
Frankowska [2], Rockafellar and Wets [21] and Verma [26].

Definition 14 [28]. Let A : X → X be an r-strongly monotone and s-Lipschitz continuous
operator. Let {Mn},Mn : X → 2X be a sequence of A-monotone set-valued mappings for

n = 0, 1, 2, · · · . The sequence {Mn} is graph convergent to M , denoted by Mn AG−→ M , if
for every (x, y) ∈ graph (M), there exists a sequence {(xn, yn)} ∈ graph(Mn) such that
xn → x and yn → y as n→∞.

Lemma 15 [28]. Let A : X → X be s-Lipschitz continuous and r-strongly monotone
operator. Let {Mn}, Mn : X → 2X be a sequence of A-monotone set-valued mappings.

Then the sequence Mn AG−→M if and only if JM
n

ρ,A (u)→ JMρ,A(u) ∀u ∈ X and ρ > 0, where

JMρ,A = (A+ ρM)−1.

Definition 16. Let H : X → X be an r-strongly monotone and s-Lipschitz continuous
operator. Let {Mn},Mn : X → 2X be a sequence of H-monotone set-valued mappings for

n = 0, 1, 2, · · · . The sequence {Mn} is graph convergent to M , denoted by Mn HG−→ M , if
for every (x, y) ∈ graph (M), there exists a sequence {(xn, yn)} ∈ graph(Mn) such that
xn → x and yn → y as n→∞.

Lemma 17 [22]. Let H : X → X be s-Lipschitz continuous and r-strongly monotone.
Let {Mn}, Mn : X → 2X be a sequence of H-monotone set-valued maps. Then the
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sequence Mn HG−→ M if and only if JM
n

ρ,H (u) → JMρ,H(u) ∀u ∈ X and ρ > 0, where

JMρ,H = (H + ρM)−1.

Lemma 18 [17]. Let {ξn}, {βn} and {γn} be sequences of non-negative real numbers that
satisfy: there exists a positive integer n0 such that for n ≥ n0,

ξn+1 ≤ (1− λn)ξn + βnλn + γn,

where λn ∈ [0, 1],
∞∑
n=0

λn = +∞, lim
n→∞

βn = 0 and
∞∑
n=0

γn <∞. Then
∞∑
n=0

ξn = 0.

Definition 19. The Hausdorff metric H(·, ·) on CB(X), is defined by

H(A,B) = max

{
sup
u∈A

inf
v∈B

d(u, v), sup
v∈B

inf
u∈A

d(u, v)

}
, A,B ∈ CB(X),

where d(·, ·) is the induced metric on X and CB(X) denotes the family of all nonempty
closed and bounded subsets of X.

Definition 20 [3]. A set-valued mapping T : X → CB(X) is said to be γ-H-Lipschitz
continuous, if there exists a constant γ > 0 such that

H(T (x), T (y)) ≤ γ‖x− y‖, ∀x, y ∈ X.

Theorem 21 (Nadler [20]). Let T : X → CB(X) be a set-valued mapping on X and
(X, d) be a complete metric space. Then:

(i) For any given ξ > 0 and for any given u, v ∈ X and x ∈ T (u), there exists y ∈ T (v)
such that

d(x, y) ≤ (1 + ξ)H(T (u), T (v));

(ii) If T : X → C(X), then (i) holds for ξ = 0, (where C(X) denotes the family of all
nonempty compact subsets of X).

The following lemmas play crucial role in for the proof of main results.

Lemma 22. If H : X → X is r-strongly monotone and M : X → 2X is H-monotone,

then the resolvent operator JMρ,H is
1

r
-Lipschitz continuous.

Proof. For any x, y ∈ X, we have

JMρ,H(x) = (H + ρM)−1(x),

JMρ,H(y) = (H + ρM)−1(y).

This implies that
1

ρ

(
x−H(JMρ,H(x))

)
∈M(JMρ,H(x)),
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1

ρ

(
y −H(JMρ,H(y))

)
∈M(JMρ,H(y)).

Since H is r-strongly monotone and M is H-monotone, we have

||x− y|| ||JMρ,H(x)− JMρ,H(y)|| ≥ [x− y, JMρ,H(x)− JMρ,H(y)]

= [x− y − (HJMρ,H(x)−HJMρ,H(y)), JMρ,H(x)− JMρ,H(y)]

+ [HJMρ,H(x)−HJMρ,H(y), JMρ,H(x)− JMρ,H(y)]

≥ 0 + [HJMρ,H(x)−HJMρ,H(y), JMρ,H(x)− JMρ,H(y)]

≥ r||JMρ,H(x)− JMρ,H(y)||2.

This implies that

||JMρ,H(x)− JMρ,H(y)|| ≤ 1

r
||x− y||.

Lemma 23. If A : X → X be r-strongly monotone and M : X → 2X be A-monotone.

Then the resolvent operator JMρ,A : X → X is
1

r − ρm
-Lipschitz continuous for 0 < ρ <

r

m
,

where r, ρ and m are positive constants.

Proof. For any x, y ∈ X, we have

JMρ,A(x) = (A+ ρM)−1(x),

JMρ,A(y) = (A+ ρM)−1(y).

This implies that
1

ρ

(
x−A(JMρ,A(x))

)
∈M(JMρ,A(x)),

1

ρ

(
y −A(JMρ,A(y))

)
∈M(JMρ,A(y)).

M is A-monotone, implies, M is m-relaxed monotone. Hence we have

1

ρ
[(x−A(JMρ,A(x)))− (y −A(JMρ,A(y))), JMρ,A(x)− JMρ,A(y)]

=
1

ρ
[x− y − (AJMρ,A(x)−AJMρ,A(y)), JMρ,A(x)− JMρ,A(y)]

≥ (−m)||JMρ,A(x)− JMρ,A(y)||2.

Now we have

||x− y|| ||JMρ,A(x)− JMρ,A(y)|| ≥ [x− y, JMρ,A(x)− JMρ,A(y)]
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= [x− y − (AJMρ,A(x)−AJMρ,A(y)), JMρ,A(x)− JMρ,A(y)]

+ [AJMρ,A(x)−AJMρ,A(y), JMρ,A(x)− JMρ,A(y)]

≥ −ρm||JMρ,A(x)− JMρ,A(y)||2 + r||JMρ,A(x)− JMρ,A(y)||2

= (r − ρm)||JMρ,A(x)− JMρ,A(y)||2.

This implies that

||x− y|| ≥ (r − ρm)||JMρ,A(x)− JMρ,A(y)||,

or,

||JMρ,A(x)− JMρ,A(y)|| ≤ 1

r − ρm
||x− y||, 0 < ρ <

r

m
.

Taking A = I, the identity operator, we immediately have the following corollary:

Corollary 24. Let M : X → 2X be m-relaxed monotone. Then the resolvent operator

JMρ,I = (I + ρM)−1 : X → X is
1

1− ρm
-Lipschitz continuous for 0 < ρ <

1

m
, where ρ and

m are positive constants and I is the identity mapping.

For each i = 1, 2, 3, let X be a real 2-uniformly smooth Banach space and Mi : X →
2X be a set-valued mapping. Let Ni : X ×X → X be any single-valued mapping. Let gi :
X → X be any mapping such that Range(gi) ∩Dom(Mi) 6= ∅. Let Bi, Ci : X → C(X) be
multi-valued mappings. We consider the following system of nonlinear implicit variational
inclusion problem (in short, SNVIP):
Given θi ∈ X, find (x1, x2, x3, u1, u2, u3, v1, v2, v3) where xi ∈ X,ui ∈ Bi(xi), vi ∈ Ci(xi)
such that

θ1 ∈ N1(u1, v1) +M1(g1(x1)),

θ2 ∈ N2(u2, v2) +M2(g2(x2)), (3)

θ3 ∈ N3(u3, v3) +M3(g3(x3)).

Some Special Cases:
I. For θ3 = 0, N3(u3, v3) ≡ 0,M3(g3(x3)) ≡ 0, ∀x3 ∈ X. Then above problem (3) reduces
to the following problem:

θ1 ∈ N1(u1, v1) +M1(g1(x1)),

θ2 ∈ N2(u2, v2) +M2(g2(x2)). (4)

Problem (4) is the set-valued generalization of the variational inclusion problem considered
and studied by Fang et al [7].

II. For θ1 = θ2 = θ3 = θ, ∀θ ∈ X, N1(u1, v1) = N2(u2, v2) = N3(u3, v3) = S(u) −
T (u), ∀u ∈ X and M1(g1(x1)) = M2(g2(x2)) = M3(g3(x3)) = M(g(u)), ∀u ∈ X where
M : X → 2X is a set-valued mapping, S, T : X → X are single-valued mappings and
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g : X → X is any mapping such that Range(g) ∩ Dom(M) is nonempty. Then problem
(3) reduces to the following problem:
For a given element θ ∈ X, find an element u ∈ X such that

θ ∈ S(u)− T (u) +M(g(u)). (5)

Problem (5) has been considered and studied by Sahu et al. [23].

We remark that for suitable choices of different mappings Mi, Ni, gi, Bi, Ci and the
underlying space X, we obtain different classes of known and new classes f variational
inequalities/inclusions from SNVIP(3), see for example [5,9,14] and the related references
cited therein.

3. Existence of Solution

We give the following theorem which guarantees the existence of solution of SNVIP
(3).

Theorem 25. Let X be a real 2-uniformly smooth Banach space. Suppose for each
i = 1, 2, 3, Ai : X → X be ri-strongly monotone and Mi : X → 2X be Ai-monotone. Let
Ni : X × X → X and gi : X → X be any mapping such that Dom(Mi) ∩ Range(gi) 6=
∅. Then (x1, x2, x3, u1, u2, u3, v1, v2, v3) is a solution of SNVIP (3) where xi ∈ X,ui ∈
Bi(xi), vi ∈ Ci(xi) if and only if it satisfies

gi(xi) = JMi
ρi,Ai

(
Ai(gi(xi))− ρiNi(ui, vi) + ρiθi

)
,

where ρi is a positive real constant.

Proof. Suppose that for each i = 1, 2, 3, (xi, ui, vi) is a solution of SNVIP (3). Then we
have

θi ∈ Ni(ui, vi) +Mi(gi(xi)).

This implies that

ρiθi − ρiNi(ui, vi) ∈ ρiMi(gi(xi)),

⇒ Ai(gi(xi)) + ρiθi − ρiNi(ui, vi) ∈ Ai(gi(xi)) + ρiMi(gi(xi)),

⇒ JMi
ρi,Ai

(
Ai(gi(xi)) + ρiθi − ρiNi(ui, vi)

)
= JMi

ρi,Ai
(Ai + ρiMi)(gi(xi)),

⇒ gi(xi) = JMi
ρi,Ai

(
Ai(gi(xi)) + ρiθi − ρiNi(ui, vi)

)
.

Conversely, assume that

gi(xi) = JMi
ρi,Ai

(
Ai(gi(xi)) + ρiθi − ρiNi(ui, vi)

)
,

⇒ Ai(gi(xi)) + ρiθi − ρiNi(ui, vi) ∈ (Ai + ρiMi)(gi(xi)),

⇒ ρiθi − ρiNi(ui, vi) ∈ ρiMi(gi(xi)),
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⇒ θi ∈ Ni(ui, vi) +Mi(gi(xi)).

Theorem 26. Let X be a real 2-uniformly smooth Banach space. Suppose for each
i = 1, 2, 3, Ai : X → X be ri-strongly monotone map and Mi : X → 2X be Ai-monotone
set-valued map. Let gi : X → X be a map such that Dom(Mi) ∩ Range(gi) 6= ∅ and gi be
βi-Lipschitz continuous and qi-strongly monotone. Suppose that Ni : X × X → X is ξi-
Lipschitz continuous in the first argument, γi-Lipschitz continuous in the second argument
and δi-strongly monotone w.r.t Ai(gi) in the first argument and that Ai(gi) be σi-Lipschitz
continuous. Let Bi, Ci : X → C(X) be such that Bi is LBi −H-Lipschitz continuous, Ci
is LCi − H-Lipschitz continuous. In addition if ri − ρimi > 0, 1 − 2qi + kβ2i > 0 and

0 <
√

1− 2qi + kβ2i +
1

µi(ri − ρimi)
< 1, where ρi is a positive real constant and k is the

constant of smoothness of the Banach space X. Then SNVIP (3) has a solution.

Proof. Define the mapping Fi : X → X by

Fi(xi) = xi − gi(xi) + JMi
ρi,Ai

(
Ai(gi(xi))− ρiNi(ui, vi) + ρiθi

)
. (6)

Then for any elements xi, x
′
i ∈ X, we have

||Fi(xi)−Fi(x′i)||

= ||{xi − gi(xi) + JMi
ρi,Ai

(Ai(gi(xi))− ρiNi(ui, vi) + ρiθi)}

−{x′i − gi(x′i) + JMi
ρi,Ai

(Ai(gi(x
′
i))− ρiNi(u

′
i, v
′
i) + ρiθi)}||

= ||(xi − x′i)− (gi(xi)− gi(x′i)) + JMi
ρi,Ai

(Ai(gi(xi))− ρiNi(ui, vi) + ρiθi)

−JMi
ρi,Ai

(Ai(gi(x
′
i))− ρiNi(u

′
i, v
′
i) + ρiθi)||

≤ ||(xi − x′i)− (gi(xi)− gi(x′i))||+ ||J
Mi
ρi,Ai

(Ai(gi(xi))− ρiNi(ui, vi) + ρiθi)

−JMi
ρi,Ai

(Ai(gi(x
′
i))− ρiNi(u

′
i, v
′
i) + ρiθi)||.

(7)

Since X is 2-uniformly smooth Banach space, we have

||(xi − x′i)− (gi(xi)− gi(x′i))||2

≤ ||xi − x′i||2 − 2[gi(xi)− gi(x′i), xi − x′i]

+k||gi(xi)− gi(x′i)||2

≤ ||xi − x′i||2 − 2qi||xi − x′i||2 + kβ2i ||xi − x′i||2

= (1− 2qi + kβ2i )||xi − x′i||2
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⇒ ||(xi − x′i)− (gi(xi)− gi(x′i))|| ≤
√

1− 2qi + kβ2i ||xi − x
′
i||. (8)

Since the resolvent operator JMi
ρi,Ai

is
1

(ri − ρimi)
-Lipschitz continuous, we have

||JMi
ρi,Ai

(Ai(gi(xi))− ρiNi(ui, vi) + ρiθi)− JMi
ρi,Ai

(Ai(gi(x
′
i))− ρiNi(u

′
i, v
′
i) + ρiθi)||

≤ 1

(ri − ρimi)
||(Ai(gi(xi))− ρiNi(ui, vi) + ρiθi)

−(Ai(gi(x
′
i))− ρiNi(u

′
i, v
′
i) + ρiθi)||

− 1

(ri − ρimi)
||(Ai(gi(xi))− ρiNi(ui, vi)) + ρi(Ni(u

′
i, vi)−Ni(u

′
i, vi))

−(Ai(gi(x
′
i))− ρiNi(u

′
i, v
′
i))||

=
1

(ri − ρimi)

{
||(Ai(gi(xi))−Ai(gi(x′i)))− ρi(Ni(ui, vi)−Ni(u

′
i, vi))||

+ρi||Ni(u
′
i, vi)−Ni(u

′
i, v
′
i)||
}
.

(9)
Again, since Ai(gi) is σi-Lipschitz continuous, Ni(., .) is δi-strongly monotone w.r.t Ai(gi)
in the first argument and ξi-Lipschitz continuous in the first argument, we have

||(Ai(gi(xi))−Ai(gi(x′i)))− ρi(Ni(ui, vi)−Ni(u
′
i, vi))||2

≤ ||(Ai(gi(xi))−Ai(gi(x′i)))||2
−2ρi[Ni(ui, vi)−Ni(u

′
i, vi), Ai(gi(xi))−Ai(gi(x′i))]

+k||ρi(Ni(ui, vi)−Ni(u
′
i, vi))||2

≤ σ2i ||xi − x′i||2 − 2ρiδi||xi − x′i||2 + kρ2i ξ
2
i ||ui − u′i||2

≤ σ2i ||xi − x′i||2 − 2ρiδi||xi − x′i||2 + kρ2i ξ
2
i (H(Bi(xi), Bi(x

′
i)))

2

≤ σ2i ||xi − x′i||2 − 2ρiδi||xi − x′i||2 + kρ2i ξ
2
i L

2
Bi
||xi − x′i||2

= (σ2i − 2ρiδi + kρ2i ξ
2
i L

2
Bi

)||xi − x′i||2

⇒ ||(Ai(gi(xi))−Ai(gi(x′i)))− ρi(Ni(ui, vi)−Ni(u
′
i, vi))||

≤
√
σ2i − 2ρiδi + kρ2i ξ

2
i L

2
Bi
||xi − x′i||

≤ 1

λi
||xi − x′i||,

(10)

where λi =
(√

σ2i − 2ρiδi + kρ2i ξ
2
i L

2
Bi

)−1
.
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Now, since Ni(., .) is γi-Lipschitz continuous w.r.t second argument and Ci is LCi-H-
Lipschitz continuous, we have

||Ni(u
′
i, vi)−Ni(u

′
i, v
′
i)|| ≤ γi||vi − v′i||

≤ γiH(Ci(xi), Ci(x
′
i))

≤ γiLCi ||xi − x′i||.
(11)

Combining (9), (10) and (11), we get

||JMi
ρi,Ai

(Ai(gi(xi))− ρiNi(ui, vi) + ρiθi)

−JMi
ρi,Ai

(Ai(gi(x
′
i))− ρiNi(u

′
i, v
′
i) + ρiθi)||

≤ 1

(ri − ρimi)

(
1

λi
+ ρiγiLCi

)
||xi − x′i||

≤ 1

µi(ri − ρimi)
||xi − x′i||, (12)

where µi =
( 1

λi
+ ρiγiLCi

)−1
.

Using (8) and (12) in (7), we get

||Fi(xi)− Fi(x′i)|| ≤
√

1− 2qi + kβ2i ||xi − x
′
i||+

1

µi(ri − ρimi)
||xi − x′i||

≤
{√

1− 2qi + kβ2i +
1

µi(ri − ρimi)

}
||xi − x′i||.

Since ri − ρimi > 0, 1 − 2qi + kβ2i > 0 and 0 <
√

1− 2qi + kβ2i +
1

µi(ri − ρimi)
< 1.

Hence the map Fi : X → X (defined by (6)) is a contraction and thus has a fixed point
say xi ∈ X. Hence we have gi(xi) = JMi

ρi,Ai
(Ai(gi(xi))− ρiNi(ui, vi) + ρiθi). As a result of

Theorem 25, SNVIP (3) has a solution.

When X = Lp(R), 2 ≤ p <∞, we have the following corollary:

Corollary 27. Let for each i = 1, 2, 3, Ai : Lp → Lp be an ri-strongly monotone map and
Mi : Lp → 2L

p
be Ai-monotone set-valued map. Suppose that gi : Lp → Lp is a map such

that Dom(Mi)∩Range(gi) 6= ∅ and gi is βi-Lipschitz continuous and qi-strongly monotone.
Suppose that Ni : Lp × Lp → Lp is ξi-Lipschitz continuous in the first argument, γi-
Lipschitz continuous in the second argument and δi-strongly monotone w.r.t Ai(gi) in the
first argument and that Ai(gi) be σi-Lipschitz continuous. Let Bi, Ci : Lp → C(Lp) be such
that Bi is LBi −H-Lipschitz continuous, Ci is LCi −H-Lipschitz continuous. In addition

if ri−ρimi > 0, 1−2qi+(p−1)β2i > 0 and 0 <
√

1− 2qi + (p− 1)β2i +
1

µi(ri − ρimi)
< 1,

where ρi is a positive real constant and (p−1) is the constant of smoothness of the function
space Lp, then SNVIP (3) has a solution.
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When the set-valued map Mi : X → 2X is Hi-monotone. Then we have the
following corollary, the proof is similar to the proof of Theorem 26 but here we have to
use Lemma 22 instead of Lemma 23.

Corollary 28. Let X be a real 2-uniformly smooth Banach space. Suppose for each
i = 1, 2, 3, Hi : X → X be ri-strongly monotone map and Mi : X → 2X be Hi-monotone
set-valued map. Let gi : X → X be a map such that Dom(Mi) ∩ Range(gi) 6= ∅ and gi
be βi-Lipschitz continuous and qi-strongly monotone. Suppose that Ni : X × X → X
is ξi-Lipschitz continuous in the first argument, γi-Lipschitz continuous in the second ar-
gument and δi-strongly monotone w.r.t Hi(gi) in the first argument and that Hi(gi) be
σi-Lipschitz continuous. Let Bi, Ci : X → C(X) be such that Bi is LBi − H-Lipschitz
continuous, Ci is LCi − H-Lipschitz continuous. In addition if 1 − 2qi + kβ2i > 0 and

0 <
√

1− 2qi + kβ2i +
1

µiri
< 1, where k is the constant of smoothness of the Banach

space X, then SNVIP (3) has a solution.

4. Iterative Algorithm and Convergence Analysis

Based on Theorems 25 and 21, we give an iterative method for finding an approxi-
mate solution of SNVIP (3).

Iterative Algorithm 29. For each i = 1, 2, 3, given (x0i , u
0
i , v

0
i ), where x0i ∈ X,u0i ∈

Bi(x
0
i ) and v0i ∈ Ci(x0i ) such that Bi, Ci : X → C(X), compute the sequences {xni }, {uni }, {vni }

defined by the iterative schemes:

xn+1
i = (1− αn)xni + αn{xni − gi(xni ) + J

Mn
i

ρi,Ai
(Ai(gi(x

n
i ))− ρiNi(u

n
i , v

n
i ) + ρiθi)}

uni ∈ Bi(xni ) : ||un+1
i − uni || ≤ H(Bi(x

n+1
i ), Bi(x

n
i ))

vni ∈ Ci(xni ) : ||vn+1
i − vni || ≤ H(Ci(x

n+1
i ), Ci(x

n
i ))

where Mn
i : X → 2X are Ai-monotone set-valued mappings for n = 0, 1, 2, ..., J

Mn
i

ρi,Ai
=

(Ai+ρiM
n
i )−1 and αn be a sequence of real numbers such that αn ∈ [0, 1] and

∞∑
n=0

αn = +∞.

Now, we give the convergence analysis of the sequences generated by the Iterative
Algorithm 29.

Theorem 30. Let X be a real 2-uniformly smooth Banach space. Suppose for each
i = 1, 2, 3, Ai : X → X be ri-strongly monotone map and si-Lipschitz continuous. Let

Mn
i : X → 2X be a sequence of Ai-monotone set-valued maps such that Mn

i
AG→ Mi as

n→∞. Suppose that gi : X → X is qi-strongly monotone and βi-Lipschitz continuous and
Ni : X ×X → X is ξi-Lipschitz continuous in the first argument, γi-Lipschitz continuous
in the second argument and δi-strongly monotone w.r.t Ai(gi) in the first argument and
that Ai(gi) be σi-Lipschitz continuous. Let Bi, Ci : X → C(X) be such that Bi is LBi−H-
Lipschitz continuous, Ci is LCi − H-Lipschitz continuous. In addition if ri − ρimi > 0,
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1 − 2qi + kβ2i > 0 and 0 <
√

1− 2qi + kβ2i +
1

µi(ri − ρimi)
< 1, where ρi is a positive

real constant and k is the constant of smoothness of the Banach space X. Then for each
i = 1, 2, 3, the sequences {xni }, {uni }, {vni } generated by Iterative Algorithm 29 converges
strongly to xi, ui, vi, where (x1, x2, x3, u1, u2, u3, v1, v2, v3) is a solution of SNVIP (3).

Proof. Let xi be a solution of SNVIP (3). Then by Iterative Algorithm 29, we have

||xn+1
i − xi|| = ||(1− αn)xni + αn{xni − gi(xni ) + J

Mn
i

ρi,Ai
(Ai(gi(x

n
i ))

−ρiNi(u
n
i , v

n
i ) + ρiθi)} − (1− αn)xi − αnxi||

= ||(1− αn)xni + αn{xni − gi(xni ) + J
Mn

i
ρi,Ai

(Ai(gi(x
n
i ))

−ρiNi(u
n
i , v

n
i ) + ρiθi)} − (1− αn)xi − αn{xi − gi(xi)

+JMi
ρi,Ai

(Ai(gi(xi))− ρiNi(ui, vi) + ρiθi)}||

≤ (1− αn)||xni − xi||+ αn||xni − xi − (gi(x
n
i )− gi(xi))||

+αn||JM
n
i

ρi,Ai
(Ai(gi(x

n
i ))− ρiNi(u

n
i , v

n
i ) + ρiθi)

−JMi
ρi,Ai

(Ai(gi(xi))− ρiNi(ui, vi) + ρiθi)||

≤ (1− αn)||xni − xi||+ αn||xni − xi − (gi(x
n
i )− gi(xi))||

+αn||JM
n
i

ρi,Ai
(Ai(gi(x

n
i ))− ρiNi(u

n
i , v

n
i ) + ρiθi)

−JM
n
i

ρi,Ai
(Ai(gi(xi))− ρiNi(ui, vi) + ρiθi)||

+αn||JM
n
i

ρi,Ai
(Ai(gi(xi))− ρiNi(ui, vi) + ρiθi)

−JMi
ρi,Ai

(Ai(gi(xi))− ρiNi(ui, vi) + ρiθi)||. (13)

Using Lemma 23, σi-Lipschitz continuity of Ai(gi), δi-Strongly monotonocity of Ni(., .)
w.r.t Ai(gi) in the first argument, ξi-Lipschitz continuity of Ni(., .) in the first argument
and γi-Lipschitz continuity of Ni(., .) in the second argument, we have

||JM
n
i

ρi,Ai
(Ai(gi(x

n
i ))− ρiNi(u

n
i , v

n
i ) + ρiθi)− J

Mn
i

ρi,Ai
(Ai(gi(xi))− ρiNi(ui, vi) + ρiθi)||

≤ 1

ri − ρimi
||(Ai(gi(xni ))− ρiNi(u

n
i , v

n
i ) + ρiθi)− (Ai(gi(xi))− ρiNi(ui, vi) + ρiθi)||

≤ 1

µi(ri − ρimi)
||xni − xi||.

(14)

Combining (13) and (14), we get

||xn+1
i − xi|| ≤ (1− αn)||xni − xi||+ αn||xni − xi − (gi(x

n
i )− gi(xi))||
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+
αn

µi(ri − ρimi)
||xni − xi||+ αn||JM

n
i

ρi,Ai
(Ai(gi(xi))− ρiNi(ui, vi) + ρiθi)

−JMi
ρi,Ai

(Ai(gi(xi))− ρiNi(ui, vi) + ρiθi)||

= (1− αn)||xni − xi||+ αn||xni − xi − (gi(x
n
i )− gi(xi))||

+
αn

µi(ri − ρimi)
||xni − xi||+ αnfni ,

(15)
where

fni = ||JM
n
i

ρi,Ai
(Ai(gi(xi))− ρiNi(ui, vi) + ρiθi)− JMi

ρi,Ai
(Ai(gi(xi))− ρiNi(ui, vi) + ρiθi)||,

and fni → 0 as n→∞.

Again, since gi is qi-strongly monotone and βi-Lipschitz continuous, we have

||xni − xi − (gi(x
n
i )− gi(xi))|| ≤

√
1− 2qi + kβ2i ||x

n
i − xi||. (16)

Using (16) in (15), we get

||xn+1
i − xi|| ≤ (1− αn)||xni − xi||+ αn

√
1− 2qi + kβ2i ||x

n
i − xi||

+
αn

µi(ri − ρimi)
||xni − xi||+ αnfni

=

(
1− αn

{
1−

√
1− 2qi + kβ2i −

1

µi(ri − ρimi)

})
||xni − xi||+ αnfni

= (1− αn(1− hi))||xni − xi||+ αnfni , )

(17)

where hi :=
√

1− 2qi + kβ2i +
1

µi(ri − ρimi)
and hi < 1 by assumption. Hence

||xn+1
i − xi|| ≤ (1− αn(1− hi))||xni − xi||+ αn(1− hi)

fni
(1− hi)

. (18)

If mn
i = ||xni − xi||, nni =

fni
(1− hi)

and tni = αn(1− hi), then we have

mn+1
i ≤ (1− tni )mn

i + tni n
n
i .

Using Lemma 18, we have mn
i → 0 as n → ∞ and thus xni → xi as n → ∞. Hence {xni }

converges strongly to a solution of SNVIP (3).
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Since Bi is LBi −H-Lipschitz continuous, it follows from Iterative Algorithm 29 that

||uni − ui|| ≤ H(Bi(x
n
i ), Bi(xi))

≤ LBi ||xni − xi||.

This implies uni → ui as n→∞.
Further, we claim that ui ∈ Bi(xi)

d(ui, Bi(xi)) ≤ ||ui − uni ||+ d(uni , Bi(xi))

≤ ||ui − uni ||+H(Bi(x
n
i ), Bi(xi))

≤ ||ui − uni ||+ LBi ||xni − xi||

→ 0 as n→∞.

Since, Bi(xi) is compact, we have ui ∈ Bi(xi). Similarly, we can prove that vi ∈ Ci(xi).
Thus the approximate solution (xni , u

n
i , v

n
i ) generated by Iterative Algorithm 29 converges

strongly to (xi, ui, vi) a solution of SNVIP (3). This completes the proof.

Similar results can be obtained for Hi-monotone operators. For the sake of com-
pleteness, we state the following result for Hi-monotone operators.

Corollary 31. Let X be a real 2-uniformly smooth Banach space. Suppose for each
i = 1, 2, 3, Hi : X → X be ri-strongly monotone map and si-Lipschitz continuous. Let

Mn
i : X → 2X is a sequence of Hi-monotone set-valued maps such that Mn

i
HG→ Mi as

n→∞. Suppose that gi : X → X is qi-strongly monotone and βi-Lipschitz continuous and
Ni : X ×X → X is ξi-Lipschitz continuous in the first argument, γi-Lipschitz continuous
in the second argument and δi-strongly monotone w.r.t Hi(gi) in the first argument and
that Hi(gi) be σi-Lipschitz continuous. Let Bi, Ci : X → C(X) be such that Bi is LBi−H-
Lipschitz continuous, Ci is LCi −H-Lipschitz continuous. In addition if 1− 2qi + kβ2i > 0

and 0 <
√

1− 2qi + kβ2i +
1

µiri
< 1, where k is the constant of smoothness of the Banach

space X. Then for each i = 1, 2, 3, the sequences {xni }, {uni }, {vni } generated by Iterative
algorithm 29 converges strongly to xi, ui, vi where (x1, x2, x3, u1, u2, u3, v1, v2, v3) is a so-
lution of SNVIP (3).
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