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On an Elementary Operator with Class wA(s, t) Operator
Entries

M.H.M. Rashid

Abstract. Given H a Hilbert space and L (H ) the algebra of bounded linear operator in H .
For s > 0 and t > 0, a Hilbert space operator T belongs to class wA(s, t), T ∈ wA (s, t), if

|T̃ (s, t)|
2t

s+t ≥ |T |2t and |T |2s ≥ |T̃ ∗|
2s
s+t , where T̃ (s, t) = |T |sU |T |t is the generalized Aluthge

transformation of T = U |T |. Let dAB = δAB or ∆AB , where δAB ∈ L (L (H )) is the generalized
derivation δAB(X) = AX − XB and ∆AB ∈ L (L (H )) is the elementary operator ∆AB(X) =
AXB − X. It is proved that if A,B∗ ∈ wA (s, t) such that s + t = 1, then, for all complex λ,
(dAB − λ)−1(0) ⊆ (dA∗B∗ − λ̄)−1(0), the ascent of asc (dAB − λ) ≤ 1. Furthermore, isolated points
of σ(dAB) are poles of the resolvent of dAB . Also, it is proved that generalized Weyl’s theorem
holds for f(dAB), generalized a-Weyl’s theorem and property (gw) hold for f(d∗AB) for every
f ∈ H(σ(dAB)) and f is not constant on each connected component of the open set U containing
σ(dAB), where H(σ(dAB)) denotes the set of all analytic in a neighborhood of σ(dAB).

Key Words and Phrases: Class wA(s, t) operators, generalized derivation, elementary operators,
SVEP, Weyl type theorems.
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1. Introduction

Let L (H ) denote the algebra of all bounded operators on a complex infinite di-
mensional Hilbert space H . For A,B ∈ L (H ), let δAB : L (H ) → L (H ) and
∆AB : L (H ) → L (H ) denote the generalized derivation δAB = AX − XB and the
elementary operator ∆AB = AXB − X. Let dAB = δAB or ∆AB. The following impli-
cations hold for a general bounded linear operator T on a normed linear space X , in
particular

(dAB)−1(0) ⊥ <(dAB)⇒ (dAB)−1(0) ∩ cl(<(dAB)) = {0}
⇒ (dAB)−1(0) ∩ <(dAB) = {0} ⇔ asc(dAB) ≤ 1,

[11, Page 25]. Here asc(dAB) denotes the ascent of dAB, cl(<(dAB)) denote the closure of
the range of dAB and (dAB)−1(0) ⊥ <(dAB) denotes that the kernel of dAB is orthogonal
to the range of dAB in the sense of G. Birkhoff. Recall that if M ,N are linear subspaces
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of a normed linear space X , then M ⊥ N in the sense of Birkhoff if ‖m‖ ≤ ‖m+ n‖ for
all m ∈ M and n ∈ N . This concept of orthogonality is not symmetric, i.e., M ⊥ N
does not imply N ⊥ M , but the concept does agree with the usual concept of orthog-
onality in the case in which X = H . The range-kernel orthogonality of dAB has been
considered by a number of authors, see [5, 11, 14, 24, 36, 37]. A sufficient condition guar-
anteeing (dAB)−1(0) ⊥ <(dAB) is that (dAB)−1(0) ⊆ (dA∗B∗)

−1(0) [14]. The inclusion
(dAB)−1(0) ⊆ (dA∗B∗)

−1(0), known in the literature as the Putnam-Fuglede commutativ-
ity theorem.
An operator T ∈ L (H ) is p-hyponormal, 0 < p ≤ 1, if |T |2p ≥ |T ∗|2p (a 1-hyponormal
is hyponormal), and an invertible operator T ∈ L (H ) is log-hyponormal if log |T |2 ≥
log |T ∗|2.

Definition 1.1. A pair (T, S) is said to have the Fuglede-Putnam property if T ∗X = XS∗

whenever TX = XS for every X ∈ L (K ,H ).

Lemma 1.2. ([35]) Let T ∈ L (H ) and S ∈ L (K ). Then the following assertions
equivalent:

(a) The pair (T, S) satisfies Fuglede-Putnam theorem;

(b) if TX = XS for some X ∈ B(K ,H ), then <(X) reduces T , ker(X)⊥ reduces S
and T |<(X)

and S|ker(X)⊥ are normal operators.

Lemma 1.3. ([23]) Let T ∈ L (H ) and S∗ ∈ L (H ) be either log-hyponormal or p-
hyponormal operators. Then the pair (T, S) has the Fuglede-Putnam property.

If A,B∗ ∈ L (H ) are hyponormal operators, then dAB satisfies the asymmetric
Putnam-Fuglede commutativity property d−1

AB(0) ⊆ d−1
A∗B∗(0). Hence d−1

A∗B∗(0) ⊥ <(dAB)
[15, Lemma 4] and asc(dAB) ≤ 1 [16, Proposition 2.3], where asc(dAB) denotes the ascent
of dAB. The class of hyponormal operators is closed under translation and multiplication
by scalars; hence, since δAB − λ = δ(A−λ)B and ∆AB − λ = (1 + λ)∆( 1

1+λ
A)B for all

−1 6= λ ∈ C (=the set of complex numbers), (δAB − λ)−1(0) ⊆ (δA∗B∗ − λ̄)−1(0) for all
λ ∈ C and (∆AB − λ)−1(0) ⊆ (∆A∗B∗ − λ̄)−1(0) for all −1 6= λ ∈ C. If we let LA and
RA denote the operators of left multiplication and right multiplication by A, respectively,
then for λ = −1, (∆AB − λ)−1(0) = (LARB)−1(0) ⊆ (L∗AR

∗
B)−1(0) for hyponormal A,B∗;

hence (dAB −λ)−1(0) ⊆ (dA∗B∗ −λ)−1(0) for all λ ∈ C. This paper considers the operator
dAB with entries A and B∗ are wA(s, t) operators. Since the class wA(s, t) operators is not
closed under translation by scalars, it is of interest to find out if dAB−λ has properties, in
particular those related to kernel-range orthogonality, in common with the case in which
the entries A and B∗ are hyponormal. It is proved for wA (s, t) entries A and B∗ that
(δAB−λ)−1(0) ⊆ (δA∗B∗− λ̄)−1(0), asc(dAB−λ) ≤ 1 and (δAB−λ)−1(0) ⊥ <(dAB−λ) for
all λ ∈ C. Furthermore, if λ is isolated in the spectrum of dAB, λ ∈ isoσ(dAB), then the
quasinilpotent part H0(dAB − λ) of dAB − λ coincides with (dAB − λ)−1(0); consequently,
λ is a simple pole of the resolvent of dAB. Also, we prove that the operator f(dAB), for
A,B∗ ∈ wA (s, t), satisfies generalized Weyl’s theorem, generalized a-Weyl’s theorem and
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property (gw) hold for f(d∗AB) for every f ∈ H(σ(dAB)) and f is not constant on each
connected component of the open set U containing σ(dAB), where H(σ(dAB)) denotes the
set of all analytic in a neighborhood of σ(dAB).

2. Complementary results

Let A ∈ L (H ) have the polar decomposition A = U |A|. If A belongs to class wA(s, t)
for s, t > 0, then A belongs to class wA(r, r), where r = max{s, t}. Hence, the first
generalized Aluthge transform Ã = |A|rU |A|r of A is semi-hyponormal, and if Ã(r, r)
has the polar decomposition Ã(r, r) = V |Ã(r, r)|, then the second generalized Aluthge˜̃
A(r, r) = |Ã(r, r)|rV |Ã(r, r)|r of A is hyponormal [33]. It is known that A, Ã(s, t) and˜̃
A(s, t) have the same point spectrum, the same approximate point spectrum and the same

spectrum. Furthermore,
˜̃̃
A(s, t) has a normal part if and only if A has a normal part.

Hyponormal operators are closed under translations by (λI); class wA(s, t) operators are
not closed under translation.

Definition 2.1. Let s > 0 and t > 0 and T = U |T | be the polar decomposition of T .

(i) T belongs to class A(s, t) ⇔ (|T ∗|t|T |2s|T ∗|t)
t
t+s ≥ |T ∗|2t [19].

(ii) T belongs to class wA(s, t) (in symbol, T ∈ wA (s, t))

⇔ (|T ∗|t|T |2s|T ∗|t)
t
t+s ≥ |T ∗|2t and |T |2s ≥ (|T |s|T ∗|2t|T |s)

s
s+t .

⇔ |T̃s,t|
2t
s+t ≥ |T |2t and |T |2s ≥ |T̃ ∗s,t|,

where T̃s,t = |T |sU |T |t is the generalized Aluthge transformation [20].

Lemma 2.2. Let T ∈ L (H ). If T is an invertible class wA(s, t), then so is T−1.

Proof. Let r = max{s, t}. Then T ∈ wA (r, r) [20]. Since |T−1| = |T ∗|−1, |T−1∗ | =
|T |−1 and T ≥ I ⇐⇒ T−1 ≤ I. Applying (ii) of Definition 2.1, we have

(|T ∗|r|T |2r|T ∗|r)
1
2 ≥ |T ∗|2r

⇐⇒ |T ∗|−r(|T ∗|r|T |2r|T ∗|r)
1
2 |T ∗|−r ≥ I

⇐⇒
(
|T ∗|−r(|T ∗|r|T |2r|T ∗|r)

1
2 |T ∗|−r

)−1
≤ I

⇐⇒ |T ∗|r(|T ∗|r|T |2r|T ∗|r)−
1
2 |T ∗|r ≤ I ⇐⇒ (|T ∗|−r|T |−2r|T ∗|−r)

1
2 ≤ |T ∗|−2r

⇐⇒ (|T−1|r|T ∗−1 |2r|T−1|r)
1
2 ≤ |T−1|2r.

Similarly

|T |2r ≥ (|T |r|T ∗|2r|T |r)
1
2 ⇐⇒
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(|T |r|T ∗|2r|T |r)−
1
4 |T |2r(|T |

1
2 |T ∗|2r|T |r)−

1
4 ≥ I

⇐⇒ (|T |r|T ∗||T |r)
−1
4 |T |−2r(|T |r|T ∗|2r|T |r)

−1
4 ≤ I ⇐⇒ |T ∗−1 |2r ≤ (|T |r|T ∗||T |r)−

1
2

⇐⇒ |T ∗−1 |2r ≤ (|T |−r|T ∗|−2r|T |−r)
1
2

⇐⇒ |T ∗−1 |2r ≤ (|T ∗−1 |r|T−1|2r|T ∗−1 |r)
1
2 .

That is, T−1 is wA (r, r) operator.

Lemma 2.3. ([12]) If [A,B] = [A∗, B] = 0 for some operators A,B ∈ L (H ), then

(i) [|A|, B] = [A, |B|] = [|A∗|, B] = [A, |B∗|] = [|A|, |B|] = [|A∗|, |B|] = [|A|, |B∗|] =
[|A∗|, |B∗|] = 0;

(ii) [||A∗|
1
2 |A|

1
2 |, ||B∗|

1
2 |B|

1
2 |] = [||A|

1
2 |A∗|

1
2 |, ||B|

1
2 |B∗|

1
2 |] = 0.

Lemma 2.4. If A,B ∈ wA (s, t) are such that s + t = 1 and [A,B] = [A∗, B] = 0, then
AB ∈ wA (s, t).

Proof. Let r = max{s, t}. Then T ∈ wA (r, r) [20]. Since |AB| = |A||B| = |B||A|
(etc.) we have:

(|AB|r|(AB)∗|2r|AB|r)
1
2 =

(
|A|r|B|r|B∗|2r|A∗|2r|B|r|A|r

) 1
2

=
(
(|B|r|B∗|2r|B|r)(|A|r|A∗|2r|A|r)

) 1
2

=
(
||B∗|r|B|r|2 ||A∗|r|A|r|2

) 1
2

=
(
||A∗|r|A|r|2 . ||B∗|r|B|r|2

) 1
2

= ||A∗|r|A|r| ||B∗|r|B|r|

= ||B∗|r|B|r|
1
2
(
|A|r|A∗|2r|A|r

) 1
2 ||B∗|r|B|r|

1
2

≤ ||B∗|r|B|r|
1
2 |A|2r ||B∗|r|B|r|

1
2

= |A|r
(
|B|r|B∗|2r|B|r

) 1
2 |A|r

≤ |A|r|B|2r|A|r = |A|2r|B|2r = |AB|2r

and by a similar argument

(|(AB)∗|r|AB|2r|(AB)∗|r)
1
2 = ||A|r|A∗|r| ||B|r|B∗|r|

≥ |A∗|r
(
|B∗|r|B|2r|B∗|r

) 1
2 |A∗|r

≥ |A∗|2r|B∗|2r = |(AB)∗|2r.

The proof of the lemma is achieved.
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Lemma 2.5. If A,B∗ ∈ wA (s, t) are such that s+t = 1, A−1(0) ⊆ A∗−1
(0) and B−1(0) ⊆

B∗
−1

(0), then dAB(X) = 0 implies dA∗B∗(X) = 0.

Proof. We consider only the case dAB = δAB (the proof of the other case is simi-
lar). Let <(X) and X−1(0)⊥ be the closure of <(X) and the orthogonal complement
of X−1(0), respectively. Let A1 = A|<(X)

, B∗1 = B∗|X−1(0), and define the quasiaffinity

X1 : X−1(0)⊥ → <(X) by setting X1x = Xx for all x ∈ X−1(0)⊥. Then δA1B1(X1) = 0,
where A1 and B∗1 are wA (s, t) operators. Since X1 is a quasiaffinity, A1 and B∗1 have
the polar decompositions A1 = U1|A1| and B∗1 = V1|B∗1 |. Since X1 is a quasiaffin-
ity, A1 has dense range and B1 is injective. The hypotheses A−1(0) ⊆ A∗

−1
(0) and

B−1(0) ⊆ B∗
−1

(0) imply that A1 and B1 are quasiaffinities. (Indeed, if Ax = 0 for some
non-trivial x, then A−1(0) ⊆ A∗

−1
(0) implies A∗(x ⊕ 0) = 0, which is a contradiction

since A∗1x = 0 implies x=0.) Hence both |A1| and |B∗1 | are quasiaffinities (and U1 and
V1 are unitaries). Set Y1 = |A1|sX1|B∗1 |t; then Y1 is a quasiaffinity. The first general-

ized Aluthge transforms Ã1(s, t) = |A1|sU1|A1|t and B̃∗(s, t) = |B∗1 |sU1|B∗1 |t of A1 and

B∗1 are min{s,t}
s+t -hyponormal ([20]) which satisfy δ

Ã∗1(s,t)B̃∗1 (s,t)
(Y1) = 0. Let Ã1(s, t) and

B̃∗1(s, t) have the polar decompositions Ã1(s, t) = U2|Ã1(s, t)| and B̃∗1(s, t) = V2|B̃∗1(s, t)|,
and let C =

˜̃
A1 = |Ã1(s, t)|sU2|Ã1(s, t)|t and D∗ =

˜̃
B
∗
1 = |B̃∗1(s, t)|sU2|B̃∗1(s, t)|t denote

the second generalized Aluthge transforms of A1 and B∗1 , respectively. Then C and D∗

are hyponormal ([33]) which satisfy δCD(Y ) = 0, where Y is the quasiaffinity defined by
Y = |Ã1(s, t)|sY1|B̃∗1(s, t)|t. Apparently, D∗

−1
exists as a closed densely defined (possibly

unbounded) hyponormal operator (with non-empty resolvent). Then δCD(Y ) = 0 implies
Y D−1 ⊂ CY and Y has dense range, σ(C) ⊂ σ(D−1) [28, Theorem 3.3]. Hence, since
the resolvent set of D is not empty, there is a λ in the resolvent sets C and D−1 such that
C − λ and D−1 − λ are bounded invertible and satisfy (C − λ)−1Y = Y (D−1 − λ)−1 [22,
Lemma 1]. Applying the asymmetric Putnam-Fuglede theorem for bounded hyponormal
operators it follows that (C − λ)∗

−1
Y = Y (D−1 − λ)∗

−1
, and hence that (C − λ)∗

−1
and

(D−1 − λ)∗
−1

are unitarily equivalent normal operators. Consequently, C and D are nor-
mal operators, and this by [33, Lemma 2.7] implies that A1 and B1 are normal operators.
From this we conclude that if E,F ∗ ∈ wA (s, t), E−1(0) ⊆ E∗−1

and F ∗
−1 ⊆ F−1(0), and

E or F ∗ is pure (i.e., completely non-normal), then δEF (X) = 0 implies X = 0.
Now decompose A and B∗ into their normal and pure parts by A = A1 ⊕ A2 and

B∗ = B∗1 ⊕B∗2 and let X have the corresponding representation X = [Xij ]
2
i,j=1. Then

δAB(X) =

(
δA1B1(X11 δA1B2(X12

δA2B1(X21 δA2B2(X22

)
= 0.

In the view of the observation above, we have Xij = 0, except X11. Recall from [34,
Theorem 5] that if ∆n and ∆∗n ∈ L (L (H )) are the operators ∆n(X) =

∑n
i AiXBi

and ∆∗n =
∑n

i=1A
∗
iXB

∗
i , where {Ai}ni=1 and {Bi}ni=1 are commuting families of normal

operators in L (H ), then ∆
−(n−1)
n (0) = ∆∗

−(n−1)

n (0). Choosing n = 2, B1 = I, A2 = −I
and B2 = B1, it follows that A1X−XB1 = 0 implies A∗1X−XB∗1 = 0. Hence δAB(X) = 0
implies δA∗B∗(X) = 0.
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Lemma 2.6. Let A,B ∈ L (H ). If A,B∗ ∈ wA are such that s + t = 1, A−1(0) ⊆
A∗
−1

(0) and B−1(0) ⊆ B∗
−1

(0), all combinations are allowed, then (δAB − λ)−1(0) ⊆
(δA∗B∗ − λ)−1(0) for all λ ∈ C, where λ denote the complex conjugate of λ.

Proof. We consider the cases dAB = δAB and dAB = ∆AB separately.
Case I. dAB = δAB. Decompose A and B into their normal and pure (=completely non-
normal) parts, with respect to some decompositions H = H0 ⊕ (H 	H0) and H =
H1 ⊕ (H 	 H1), by A = An ⊕ Ap and B = Bn ⊕ Bp, let X ∈ (δAB − λ)−1(0), X :
H1 ⊕ (H 	 H1) −→ H0 ⊕ (H 	 H0) have the corresponding matrix representation
X = [Xij ]

2
i,j=1. Then

(δAB − λ)−1(0) =

(
(δAnBn − λ)X11 (δAnBp − λ)X12

(δApBn − λ)X21 (δApBp − λ)X22

)
= 0.

Since the operator An − λ (resp., Bn − λ) is normal and the pure parts B∗p ∈ wA (s, t)
(resp., the pure operator Ap ∈ wA (s, t)), it follows from application of the Putnam-
Fuglede property to (δAnBp − λ)X12 = (δApBn − λ)X21 = 0 that X12 = X21 = 0. Define

the second generalized Aluthge transforms
˜̃
A(s, t) and

˜̃
B
∗
(s, t) as above. Then

(δApBp − λ)X22 = 0⇐⇒ (δApTp − λ)Y = 0,

where we have set (
˜̃
B
∗
p)
∗ = Tp and Y = |Ãp(s, t)|s|Ap|sX22|B∗p |t|B̃∗p(s, t)|t. The opera-

tors
˜̃
A(s, t) and T ∗p being pure hyponormal operators, the Putnam-Fuglede theorem for

hyponormal operators implies that Y = 0. Recall that the eigenvalues of operators in
wA (s, t) are normal ([38]) (i.e., the eigenspaces are reducing); in particular, the pure part
of an operator in wA (s, t) is injective. Hence |Ap|s, |Ã|s, |B∗p |t and |B̃∗p |t are quasiaffinities,
which implies that X22 = 0 and X = X11⊕0. Since (δAnBn−λ)−1(0) ⊆ (δA∗nB∗n−λ)−1(0)
we have (δAB − λ)−1(0) ⊆ (δA∗nB∗n − λ)−1(0).
Case II. dAB = ∆AB. Here we divide the proof into the cases λ = −1 and λ 6= −1. If
λ = −1, then (∆AB−λ)X = 0 if and only if AXB = 0. If A,B∗ ∈ wA (s, t), then AXB = 0
if and only if X = 0 : trivially, A∗XB∗ = (∆A∗B∗ − λ)X = 0. If A,B∗ ∈ wA (s, t), then
AXB = 0 ⇔ XB = 0 ⇒ XB∗ = 0 ⇒ A∗XB∗ = 0 ⇒ (∆A∗B∗ − λ)X = 0. Decompose
A and B into their normal and pure parts and letting X have the matrix representation
X = [Xij ]

2
i,j=1 as in the case I, it is seen that

0 = AnX11Bn = X11Bn.0⇒ A∗nX11Bn = 0 = A∗nX11.0⇒ A∗nX11B
∗
n = 0;

AnX12Bp = 0⇒ A∗nX12B
∗
p = 0;ApX12Bn = 0⇒ A∗pX21B

∗
n = 0

and since Ap is injective and Bp has dense range

ApX22Bp = 0⇔ X22 = 0.

Therefore, (∆A∗B∗−λ)X = 0. Now let λ 6= −1. Then (∆AB−λ)X = 0⇔ ∆( 1
1+λ

A)BX = 0.

Since 1
1+λA ∈ pw −H and since ∆( 1

1+λ̄
A∗)B∗X = 0 ⇔ (∆A∗B∗−λ̄)X = 0, it would suffice
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to prove that ∆ABX = 0⇒ ∆A∗B∗X = 0. If A,B∗ ∈ wA (s, t) and A−1(0) ⊆ A∗−1
(0) and

B−1(0) ⊆ B∗−1
(0), then the implication follows from an application of [33, Theorem 3.3]

followed by an application of [15, Theorem 2].

The ascent of a Banach space operator T ∈ L (X ), asc (T ), is the least non-negative
integer k such that T−k(0) = T−(k+1)(0). The following corollary is a consequence of
Lemma 2.6 and [16, Proposition 2.3].

Corollary 2.7. Let A,B ∈ L (H ). If A,B∗ ∈ wA (s, t) are such that s+t = 1, A−1(0) ⊆
A∗
−1

(0) and B−1(0) ⊆ B∗
−1

(0), all combinations are allowed, then asc (dAB − λ) ≤ 1 for
all λ ∈ C.

If A,B ∈ wA (s, t) are such that [A,B] = [A∗, B] = 0, B is invertible and A−1(0) ⊆
A∗
−1

, then AB−1 ∈ wA (s, t) and (AB−1)−1(0) ⊆ (B∗
−1
A∗)−1(0). To see this, we recall

from Lemma 2.4 and Lemma 2.5 that AB−1 ∈ wA (s, t). Also, if x ∈ (AB−1)−1(0), then
B−1x ∈ A−1(0) implies B−1x ∈ A∗−1

(0), i.e., A∗B−1x = 0 and A∗x = 0, which implies
that B∗

−1
A∗x = 0.

Corollary 2.8. Let Ψ ∈ L (L (H )) be the elementary operator Ψ(X) = AXB − CXD.
Suppose that A and C, and B∗ and D∗ are doubly commuting wA (s, t) operators. If either

(i) B and C are invertible, A−1(0) ⊆ A∗−1
and D∗

−1 ⊆ D−1(0) or

(ii) C and D are invertible, A−1(0) ⊆ A∗−1
and B∗

−1 ⊆ B−1(0),

then Ψ(X) = 0 implies A∗XB∗ − C∗XD∗ = 0.

Proof. Apply Lemma 2.5 to δ(C−1A)(D−1B)(X) = 0.

3. The operator dAB and Weyl’s theorem

Let X be a complex Banach space. A Banach space operator T ∈ L (X ) has the
single-valued extension property, or SVEP, at a point λ ∈ σ(T ) if for every open disc D
centered at λ the only analytic function f : D −→ X satisfying (T − µ)f(µ) = 0 is the
function f ≡ 0; T has SVEP if it has SVEP at every λ ∈ σ(T ).
Let us denote by α(T ) the dimension of the kernel and by β(T ) the codimension of the
range. Recall that the operator T ∈ L (X ) is said to be upper semi-Fredholm, T ∈
SF+(X ), if the range of T ∈ L (X ) is closed and α(T ) <∞, while T ∈ L (X ) is said to
be lower semi-Fredholm, T ∈ SF−(X ), if β(T ) < ∞. An operator T ∈ B(X ) is said to
be semi-Fredholm if T ∈ SF+(X ) ∪ SF−(X ) and Fredholm if T ∈ SF+(X ) ∩ SF−(X ).
If T is semi-Fredholm then the index of T is defined by ind (T ) = α(T )−β(T ). A bounded
linear operator T acting on a Banach space X is Weyl if it is Fredholm of index zero and
Browder if T is Fredholm of finite ascent and descent. The Weyl spectrum σw(T ) and
Browder spectrum σb(T ) of T are defined by σw(T ) = {λ ∈ C : T − λI is not Weyl} and
σb(T ) = {λ ∈ C : T−λI is not Browder}. Let E0(T ) = {λ ∈ isoσ(T ) : 0 < α(T−λ) <∞}
and let π0(T ) := σ(T ) \ σb(T ) all Riesz points of T . According to Coburn [13], Weyl’s
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theorem holds for T if σ(T ) \ σw(T ) = E0(T ), and that Browder’s theorem holds for T if
σ(T )\σw(T ) = π0(T ). Let SF−+ (X ) = {T ∈ SF+ : ind (T ) ≤ 0}. The upper semi Weyl
spectrum is defined by σSF−+

(T ) = {λ ∈ C : T − λ /∈ SF−+ (X )}. According to Rakočević

[30], an operator T ∈ B(X ) is said to satisfy a-Weyl’s theorem if σa(T )\σSF−+ (T ) = E0
a(T ),

where E0
a(T ) = {λ ∈ isoσa(T ) : 0 < α(T − λI) < ∞}. It is known [30] that an operator

satisfying a-Weyl’s theorem satisfies Weyl’s theorem, but the converse does not hold in
general.

In the following we prove that if A,B ∈ pw −H , then dAB has SVEP and satisfies
the property that its quasinilpotent part H0(dAB − λ),

H0(dAB − λ) = {X ∈ L (H ) : lim
n→∞

‖(dAB − λ)nX‖ = 0}

equals (dAB − λ)−1(0) for all λ ∈ isoσ(dAB). This implies that dAB satisfies Weyl’s
theorem, d∗AB satisfies a-Weyl’s theorem, and that if Ψ is the operator of Corollary 2.8
with 0 ∈ isoσ(Ψ), then 0 is a pole of the resolvent of Ψ.

Bishop’s property (β), implies (Dunford’s) condition (C); also T satisfies property (β)
if and only if T ∗ ∈ L (X ∗) satisfies (the decomposition) property (δ) [25, Theorem 2.5.5].
Since we have no more than a passing interest in properties (β), (δ) and condition (C),
we refer the interested reader to pages 11, 22 and 32 of [25] for the definitions of these
properties.

Let LT and RT , T ∈ L (X ), denote the operators of left and right multiplication
(respectively) by T.

Lemma 3.1. If A,B∗ ∈ wA (s, t) are such that s+ t = 1, then dAB has SVEP.

Proof. Since A,B∗ ∈ wA (s, t), A satisfies property (β) [32, Corollary 2.13] and B∗

satisfies property (δ). Hence both LA and RB satisfy condition (C) [25, Corollary 3.6.11].
Apparently, LA and RB commute. By Theorem 3.6.3 and Note 3.6.19 on page 283 of [25],
LA −RB and LARB have SVEP, which implies that dAB has SVEP.

Remark 3.2. Recall from [18] that σ(δAB) = {λ ∈ σ(A) − σ(B) : λ = α − β, α ∈
σ(A) and β ∈ σ(B)} and σ(∆AB) = {λ ∈ σ(A)σ(B)−1 : λ = αβ−1, α ∈ σ(A), β ∈ σ(B)}.
If λ ∈ isoσ(dAB), then we have one of the following two cases:

(i) λ 6= −1 if dAB = ∆AB. Then there exist finite sequence {αi}mi=1 and {βi}mi=1 of
isolated points in σ(A) and σ(B), respectively, such that λ = αi−βi if λ ∈ isoσ(δAB)
and λ = αiβi − 1 if λ ∈ isoσ(∆AB), for all 1 ≤ i ≤ m.

(ii) dAB = ∆AB and λ = −1. Then either 0 ∈ isoσ(A) and 0 ∈ isoσ(B), or, 0 ∈ isoσ(A)
and 0 /∈ σ(B), or, 0 ∈ isoσ(B) and 0 /∈ σ(A).

Remark 3.3. Let T ∈ wA (s, t) be such that s + t = 1. If an α ∈ isoσ(T ), then H =
(T−α)−1(0)⊕(T−α)H , σ(T11) = σ(T |(T−α)−1(0)) = {α}, T11−α = T11−αI|(T−α)−1(0) = 0
and σ(T |(T−α)H ) = σ(T ) \ {α}, see [32, 33].
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Lemma 3.4. If A,B∗ ∈ wA (s, t) are such that s + t = 1, then H0(dAB − λ) = (dAB −
λ)−1(0) for all λ ∈ isoσ(dAB).

Proof. We start by considering Case (i) above. Evidently, the non-zero points αi
(resp.,β), 1 ≤ i ≤ m, are normal eigenvalues of A (resp., B∗). Let M1i = (A − αi)−1(0),
N1i = (B − Bi)

−1(0) (= (B − βi)
∗−1

), M1 =
⊕m

i=1M1i, N1 =
⊕m

i=1,M2 = M⊥1 and
N2 = N⊥1 ; let A = A1 ⊕ A2 ∈ L (M1 ⊕M2) and B = B1 ⊕ B2 ∈ L (N1 ⊕ N2). Then
σ(A2) = σ(A) \ {α1, · · · , αm} and σ(B2) = σ(B) \ {β1, · · · , βm} λ /∈ σ(dAkBt) for all
1 ≤ k, t ≤ 2 other than k = t = 1.

Let X ∈ H0(dAB − λ), and let X ∈ L (N1 ⊕ N2,M1 ⊕M2) have the representation
X = [Xij ]

2
i,j=1. Then

(dAB − λ)nX =

(
∗ ∗
∗ (dA2B2 − λ)nX22

)
(for some, as yet, non specified entries ∗). Since lim

n→∞
‖(dAB − λ)nX‖

1
n = 0 implies

lim
n→∞

‖(dA2B2 − λ)nX22‖
1
n = 0, and since dA2B2 − λ is invertible, we have X22 = 0, and

then

(dAB − λ)nX =

(
∗ (dA1B2 − λ)nX12

(dA2B1 − λ)nX21 0

)
(for some, as yet, non specified entry ∗). Again, lim

n→∞
‖(dAB − λ)nX‖

1
n = 0 implies

lim
n→∞

‖(dA1B2 − λ)nX12‖
1
n = lim

n→∞
‖(dA2B1 − λ)nX21‖

1
n = 0, and since dA1B2−λ and dA2B1−

λ are invertible, we have X12 = 0 = X21. Hence, (dAB − λ)nX = (dA1B1 − λ)nX11. Let
X11 = [Yij ]1≤i,j≤m ∈ L (

⊕m
i=1N1i,

⊕m
i=1M1i). Then, for 1 ≤ i, j ≤ m,

(δA1B1 − λ)n(X11) = ((LA1−αi −RB1−βj ) + (αi − βj − λ))n[Yij ]1≤i,j≤m

=

(
n∑
k=0

(
n
k

)
(LA1−αi −RB1−βj )

k(αi − βj − λ)n−k

)
[Yij ]1≤i,j≤m

and

(∆A1B1 − λ)n(X11) = (T + αiβj − 1− λ)n[Yij ]1≤i,j≤m

=

(
n∑
k=0

(
n
k

)
T k(αiβj − 1− λ)n−k

)
[Yij ]1≤i,j≤m,

where we have set LA1−αiRB1 + αiRB1−βj = T. Since (A− αi)|M1i = 0 = (B1 − βi)|N1i , it
follows that

(δA1B1 − λ)n(X11) = (αi − βj − λ))n[Yij ]1≤i,j≤m

and

(∆A1B1 − λ)n(X11) = (αiβj − 1− λ)n[Yij ]1≤i,j≤m.
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Recall, lim
n→∞

‖(dA1B1 − λ)nX11‖
1
n = 0; hence lim

n→∞
|αi − βj − λ| ‖Yij‖

1
n = 0 in the case in

which d = δ and lim
n→∞

|αiβj − 1− λ| ‖Yij‖
1
n = 0 in the case in which d = ∆. Thus Yij = 0

for all i, j such that i 6= j. This implies that X = X11 =
⊕m

i=1 Yij ∈ (dAB − λ)−1(0).
Hence H0(dAB−λ) ⊂ (dAB−λ)−1(0). Since the reverse inclusion holds for every operator,
we must have H0(dAB − λ) = (dAB − λ)−1(0).

To complete the proof, we now consider Case (ii). If 0 is both in isoσ(A) and isoσ(B),
then, upon letting M1 = A−1(0), N1 = B∗

−1
(0), M2 = H 	M1 and N2 = H 	 N1,

it is seen that A =

(
0 C1

0 A2

)
∈ L (M1 ⊕M2) and B =

(
0 0
C2 B2

)
∈ L (N1 ⊕ N2)

for some operators C1 and C2. Here both A2 and B2 are invertible (which implies that
∆A2B2 − λ = LA2RB2 is invertible). Letting X = [Xkl]

2
k,l=1 as above, it follows that

X22 = 0. Hence LARB(X) = 0 for every X ∈ H0(LARB) = H0(∆AB − λ). Conse-
quently, H0(∆AB − λ) = (∆AB − λ)−1(0). The proof of the other two (remaining cases)
is similar: we consider 0 ∈ isoσ(A) and 0 /∈ σ(B). If 0 /∈ σ(B) and X ∈ H0(LARB),

then lim
n→∞

‖LnAX‖
1
n ≤

∥∥B−1
∥∥ lim
n→∞

‖(LARB)nX‖
1
n = 0. Again, if LA ∈ H0(LA), then

lim
n→∞

‖(LARB)nX‖
1
n ≤ ‖B‖ lim

n→∞
‖LnAX‖

1
n = 0. Hence H0(∆AB − λ) = H0(LARB) =

(LA)−1(0) = (∆AB − λ)−1(0) = 0.

For an operator T ∈ L (X ), the analytic core K(T − λ) of T − λ is defined by

K(T − λ) = {x ∈X : there exists a sequence {xn} ⊂X and δ > 0

for which x = x0, (T − λ)xn+1 = xn and ‖xn‖ ≤ δn ‖x‖ for all n = 1, 2, · · · }.

We note that H0(T − λ) and K(T − λ) are generally non-closed hyperinvariant subspaces
of T −λ such that (T −λ)−q(0) ⊆ H0(T −λ) for all q = 0, 1, 2, · · · and (T −λ)K(T −λ) =
K(T −λ) [26]. Recall from [26] that if 0 ∈ isoσ(T ), then H0(T ) and K(T ) are closed and
X = H0(T )⊕ K(T ). An operator T ∈ L (X ) is said to be isoloid if every isolated point
of σ(T ) is an eigenvalue of T and polaroid if every isolated point of σ(T ) is a pole of the
resolvent of T . In general, if T is polaroid then it is isoloid.

Lemma 3.5. If A,B∗ ∈ wA (s, t) are such that s + t = 1, then dAB is polaroid, in
particular, dAB is isoloid.

Proof. Let λ ∈ isoσ(dAB). Then by Lemma 3.4, H0(dAB−λ) = (dAB−λ)−1(0) implies

L (H ) = H0(dAB − λ)⊕K(dAB − λ) = (dAB − λ)−1(0)⊕K(dAB − λ).

Hence
<(dAB − λ) = 0⊕ (dAB − λ)(K(dAB − λ)) = K(dAB − λ),

and
L (H ) = (dAB − λ)−1(0)⊕<(dAB − λ).

Thus, isolated points of σ(dAB) are simple poles of the resolvent of dAB. Hence, dAB is
polaroid. Since polaroid operators are always isoloid, we have that dAB is isoloid.
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For T ∈ L (X ) and a non negative integer n define T[n] to be the restriction T to
<(Tn) viewed as a map from <(Tn) to <(Tn)(in particular T[0] = T ). If for some inte-
ger n the range space <(Tn) is closed and T[n] is an upper ( resp., lower) semi-Fredholm
operator, then T is called upper ( resp., lower) semi-B-Fredholm operator. In this case
index of T is defined as the index of semi-B-Fredholm operator T[n]. A semi-B-Fredholm
operator is an upper or lower semi-Fredholm operator [10]. Moreover, if T[n] is a Fredholm
operator then T is called a B-Fredholm operator [6]. An operator T is called a B-Weyl
operator if it is a B-Fredholm operator of index zero. The B-Weyl spectrum σBW (T ) is
defined by σBW (T ) = {λ ∈ C : T −λ is not B-Weyl operator } [7]. Let E(T ) be the set of
all eigenvalues of T which are isolated in σ(T ). According to [8], an operator T ∈ L (X )
is said to satisfy generalized Weyl’s theorem, if σ(T ) \ σBW (T ) = E(T ). In general, gener-
alized Weyl’s theorem implies Weyl’s theorem but the converse is not true [9].

Let SBF−+ (X ) denote the class of all is upper B-Fredholm operators such that ind (T) ≤
0. The upper B-Weyl spectrum σSBF−+

(T ) of T is defined by

σSBF−+
(T ) = {λ ∈ C : T − λ /∈ SBF−+ (X )}.

Following [9], we say that generalized a-Weyl’s theorem holds for T ∈ L (X ) if
σa(T ) \ σSBF−+ (T ) = Ea(T ), where Ea(T ) = {λ ∈ isoσa(T ) : α(T − λ) > 0} is the set of

all eigenvalues of T which are isolated in σa(T ). It is known from [9, Theorem 3.11] that
an operator satisfying generalized a-Weyl’s theorem satisfies a-Weyl’s theorem.

Let H(σ(T )) denote the set of all analytic functions defined on an open neighborhood
of σ(T ) define, by the classical functional calculus, f(T ) for every f ∈ H(σ(T )).

Theorem 3.6. Let A,B∗ ∈ wA (s, t) be such that s + t = 1. Then generalized Weyl’s
theorem holds for f(T ) for every f ∈ H(σ(T )).

Proof. By Lemma 3.1 and Lemma 3.5, we have that dAB has SVEP and dab is
polaroid. So, we have that generalized Weyl’s theorem holds for dAB by Theorem 3.10 (ii)
of [3]. Since dAB has SVEP and dAB is isoloid, we have that generalized Weyl’s theorem
holds for f(dAB) for every f ∈ H(σ(dAB)) by [40, Theorem 2.2].

Corollary 3.7. Let A,B∗ ∈ wA (s, t) be such that s+ t = 1. Then Weyl’s theorem holds
for f(T ) for every f ∈ H(σ(T )).

A bounded operator T ∈ L (X ) is called a-polaroid if every isolated point of σa(T )
is a pole of the resolvent of T and that T ∈ L (X ) is a-isoloid if every isolated point of
σa(T ) is an eigenvalue of T . In general, if T is a-polaroid, then it is a-isoloid.

Lemma 3.8. If A,B∗ ∈ wA (s, t) are such that s + t = 1, then d∗AB is a-polaroid, in
particular, d∗AB is a-isoloid.

Proof. Let λ ∈ σa(d
∗
AB). By Lemma 3.1 and Lemma 3.5, we have that dAB has

SVEP and d∗AB is polaroid (A Banach space operator T is polaroid if and only if T ∗ is
polaroid). Hence σa(d

∗
AB) = σ(d∗AB) by [17, Corollary 7]. We have that λ is an isolated

point of σ(d∗AB). Since d∗AB is isoloid, we have that λ is a pole of the resolvent of d∗AB.
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Hence d∗AB is a-polaroid. Since a-polaroid operators are always a-isoloid, we have that
d∗AB is a-isoloid.

Following [29], we say that T ∈ B(X) possesses property (w) if ∆a(T ) = σa(T ) \
σSF−+

(T ) = E0(T ). The property (w) has been studied in [1, 2, 29]. In Theorem 2.8 of

[2], it is shown that property (w) implies Weyl’s theorem, but the converse is not true in
general. We say that T ∈ B(X) possesses property (gw) if ∆g

a(T ) = σa(T ) \ σSBF−+ (T ) =

E(T ). Property (gw) has been introduced and studied in [4]. Property (gw) extends
property (w) to the context of B-Fredholm theory, and it is proved in [4] that an operator
possessing property (gw) possesses property (w) but the converse is not true in general.

Theorem 3.9. Let A,B∗ ∈ wA (s, t) be such that s+ t = 1. Suppose that f ∈ H(σ(T )) is
not constant on each of the components of its domain. Then a-Weyl’s theorem, property
(w), property (gw) and generalized a-Weyl’s theorem hold for f(d∗AB).

Proof. By Lemma 3.1 and Lemma 3.5, we have that dAB has SVEP and d∗AB is
polaroid. The result follows now by Theorem 3.12 of [3].
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