Caspian Journal of Applied Mathematics, Ecology and Economics V. 4, No 2, 2016, December ISSN 1560-4055

On an Elementary Operator with Class wA(s,t) Operator Entries

M.H.M. Rashid

Abstract. Given \mathscr{H} a Hilbert space and $\mathscr{L}(\mathscr{H})$ the algebra of bounded linear operator in \mathscr{H} . For s > 0 and t > 0, a Hilbert space operator T belongs to class wA(s,t), $T \in w\mathscr{A}(s,t)$, if $|\widetilde{T}(s,t)|^{\frac{2t}{s+t}} \ge |T|^{2t}$ and $|T|^{2s} \ge |\widetilde{T}^*|^{\frac{2s}{s+t}}$, where $\widetilde{T}(s,t) = |T|^s U|T|^t$ is the generalized Aluthge transformation of T = U|T|. Let $d_{AB} = \delta_{AB}$ or Δ_{AB} , where $\delta_{AB} \in \mathscr{L}(\mathscr{L}(\mathscr{H}))$ is the generalized derivation $\delta_{AB}(X) = AX - XB$ and $\Delta_{AB} \in \mathscr{L}(\mathscr{L}(\mathscr{H}))$ is the elementary operator $\Delta_{AB}(X) = AXB - X$. It is proved that if $A, B^* \in w\mathscr{A}(s,t)$ such that s + t = 1, then, for all complex λ , $(d_{AB} - \lambda)^{-1}(0) \subseteq (d_{A^*B^*} - \overline{\lambda})^{-1}(0)$, the ascent of $\operatorname{asc}(d_{AB} - \lambda) \leq 1$. Furthermore, isolated points of $\sigma(d_{AB})$ are poles of the resolvent of d_{AB} . Also, it is proved that generalized Weyl's theorem holds for $f(d_{AB})$, generalized a-Weyl's theorem and property (gw) hold for $f(d_{AB}^*)$ for every $f \in H(\sigma(d_{AB}))$ and f is not constant on each connected component of the open set U containing $\sigma(d_{AB})$, where $H(\sigma(d_{AB}))$ denotes the set of all analytic in a neighborhood of $\sigma(d_{AB})$.

Key Words and Phrases: Class wA(s,t) operators, generalized derivation, elementary operators, SVEP, Weyl type theorems.

2010 Mathematics Subject Classifications: 47A10, 47A12, 47B20

1. Introduction

Let $\mathscr{L}(\mathscr{H})$ denote the algebra of all bounded operators on a complex infinite dimensional Hilbert space \mathscr{H} . For $A, B \in \mathscr{L}(\mathscr{H})$, let $\delta_{AB} : \mathscr{L}(\mathscr{H}) \to \mathscr{L}(\mathscr{H})$ and $\Delta_{AB} : \mathscr{L}(\mathscr{H}) \to \mathscr{L}(\mathscr{H})$ denote the generalized derivation $\delta_{AB} = AX - XB$ and the elementary operator $\Delta_{AB} = AXB - X$. Let $d_{AB} = \delta_{AB}$ or Δ_{AB} . The following implications hold for a general bounded linear operator T on a normed linear space \mathscr{K} , in particular

$$(d_{AB})^{-1}(0) \perp \Re(d_{AB}) \Rightarrow (d_{AB})^{-1}(0) \cap cl(\Re(d_{AB})) = \{0\}$$
$$\Rightarrow (d_{AB})^{-1}(0) \cap \Re(d_{AB}) = \{0\} \Leftrightarrow \operatorname{asc}(d_{AB}) \leq 1,$$

[11, Page 25]. Here $\operatorname{asc}(d_{AB})$ denotes the *ascent* of d_{AB} , $cl(\Re(d_{AB}))$ denote the closure of the range of d_{AB} and $(d_{AB})^{-1}(0) \perp \Re(d_{AB})$ denotes that the kernel of d_{AB} is orthogonal to the range of d_{AB} in the sense of G. Birkhoff. Recall that if \mathscr{M}, \mathscr{N} are linear subspaces

http://www.cjamee.org

© 2013 CJAMEE All rights reserved.

of a normed linear space \mathscr{X} , then $\mathscr{M} \perp \mathscr{N}$ in the sense of Birkhoff if $||m|| \leq ||m+n||$ for all $m \in \mathscr{M}$ and $n \in \mathscr{N}$. This concept of orthogonality is not symmetric, i.e., $\mathscr{M} \perp \mathscr{N}$ does not imply $\mathscr{N} \perp \mathscr{M}$, but the concept does agree with the usual concept of orthogonality in the case in which $\mathscr{X} = \mathscr{H}$. The range-kernel orthogonality of d_{AB} has been considered by a number of authors, see [5, 11, 14, 24, 36, 37]. A sufficient condition guaranteeing $(d_{AB})^{-1}(0) \perp \Re(d_{AB})$ is that $(d_{AB})^{-1}(0) \subseteq (d_{A^*B^*})^{-1}(0)$ [14]. The inclusion $(d_{AB})^{-1}(0) \subseteq (d_{A^*B^*})^{-1}(0)$, known in the literature as the Putnam-Fuglede commutativity theorem.

An operator $T \in \mathscr{L}(\mathscr{H})$ is *p*-hyponormal, $0 , if <math>|T|^{2p} \geq |T^*|^{2p}$ (a 1-hyponormal is hyponormal), and an invertible operator $T \in \mathscr{L}(\mathscr{H})$ is log-hyponormal if $\log |T|^2 \geq \log |T^*|^2$.

Definition 1.1. A pair (T, S) is said to have the Fuglede-Putnam property if $T^*X = XS^*$ whenever TX = XS for every $X \in \mathscr{L}(\mathscr{K}, \mathscr{H})$.

Lemma 1.2. ([35]) Let $T \in \mathscr{L}(\mathscr{H})$ and $S \in \mathscr{L}(\mathscr{K})$. Then the following assertions equivalent:

- (a) The pair (T, S) satisfies Fuglede-Putnam theorem;
- (b) if TX = XS for some $X \in \mathscr{B}(\mathscr{K}, \mathscr{H})$, then $\overline{\Re(X)}$ reduces T, $\ker(X)^{\perp}$ reduces S and $T|_{\overline{\Re(X)}}$ and $S|_{\ker(X)^{\perp}}$ are normal operators.

Lemma 1.3. ([23]) Let $T \in \mathscr{L}(\mathscr{H})$ and $S^* \in \mathscr{L}(\mathscr{H})$ be either log-hyponormal or *p*-hyponormal operators. Then the pair (T, S) has the Fuglede-Putnam property.

If $A, B^* \in \mathscr{L}(\mathscr{H})$ are hyponormal operators, then d_{AB} satisfies the asymmetric Putnam-Fuglede commutativity property $d_{AB}^{-1}(0) \subseteq d_{A^*B^*}^{-1}(0)$. Hence $d_{A^*B^*}^{-1}(0) \perp \Re(d_{AB})$ [15, Lemma 4] and $\operatorname{asc}(d_{AB}) \leq 1$ [16, Proposition 2.3], where $\operatorname{asc}(d_{AB})$ denotes the ascent of d_{AB} . The class of hyponormal operators is closed under translation and multiplication by scalars; hence, since $\delta_{AB} - \lambda = \delta_{(A-\lambda)B}$ and $\Delta_{AB} - \lambda = (1+\lambda)\Delta_{(\frac{1}{1+\lambda}A)B}$ for all $-1 \neq \lambda \in \mathbb{C}$ (=the set of complex numbers), $(\delta_{AB} - \lambda)^{-1}(0) \subseteq (\delta_{A^*B^*} - \overline{\lambda})^{-1}(0)$ for all $\lambda \in \mathbb{C}$ and $(\Delta_{AB} - \lambda)^{-1}(0) \subseteq (\Delta_{A^*B^*} - \overline{\lambda})^{-1}(0)$ for all $-1 \neq \lambda \in \mathbb{C}$. If we let L_A and R_A denote the operators of left multiplication and right multiplication by A, respectively, then for $\lambda = -1$, $(\Delta_{AB} - \lambda)^{-1}(0) = (L_A R_B)^{-1}(0) \subseteq (L_A^* R_B^*)^{-1}(0)$ for hyponormal A, B^* ; hence $(d_{AB} - \lambda)^{-1}(0) \subseteq (d_{A^*B^*} - \lambda)^{-1}(0)$ for all $\lambda \in \mathbb{C}$. This paper considers the operator d_{AB} with entries A and B^* are wA(s,t) operators. Since the class wA(s,t) operators is not closed under translation by scalars, it is of interest to find out if $d_{AB} - \lambda$ has properties, in particular those related to kernel-range orthogonality, in common with the case in which the entries A and B^* are hyponormal. It is proved for $w\mathscr{A}(s,t)$ entries A and B^* that $(\delta_{AB} - \lambda)^{-1}(0) \subseteq (\delta_{A^*B^*} - \overline{\lambda})^{-1}(0), \operatorname{asc}(d_{AB} - \lambda) \leq 1 \text{ and } (\delta_{AB} - \lambda)^{-1}(0) \perp \Re(d_{AB} - \lambda) \text{ for}$ all $\lambda \in \mathbb{C}$. Furthermore, if λ is isolated in the spectrum of d_{AB} , $\lambda \in iso \sigma(d_{AB})$, then the quasinilation part $H_0(d_{AB} - \lambda)$ of $d_{AB} - \lambda$ coincides with $(d_{AB} - \lambda)^{-1}(0)$; consequently, λ is a simple pole of the resolvent of d_{AB} . Also, we prove that the operator $f(d_{AB})$, for $A, B^* \in w \mathscr{A}(s, t)$, satisfies generalized Weyl's theorem, generalized a-Weyl's theorem and property (gw) hold for $f(d_{AB}^*)$ for every $f \in H(\sigma(d_{AB}))$ and f is not constant on each connected component of the open set U containing $\sigma(d_{AB})$, where $H(\sigma(d_{AB}))$ denotes the set of all analytic in a neighborhood of $\sigma(d_{AB})$.

2. Complementary results

Let $A \in \mathscr{L}(\mathscr{H})$ have the polar decomposition A = U|A|. If A belongs to class wA(s,t) for s,t > 0, then A belongs to class wA(r,r), where $r = \max\{s,t\}$. Hence, the first generalized Aluthge transform $\widetilde{A} = |A|^r U|A|^r$ of A is semi-hyponormal, and if $\widetilde{A}(r,r)$ has the polar decomposition $\widetilde{A}(r,r) = V|\widetilde{A}(r,r)|$, then the second generalized Aluthge $\widetilde{\widetilde{A}}(r,r) = |\widetilde{A}(r,r)|^r V|\widetilde{A}(r,r)|^r$ of A is hyponormal [33]. It is known that $A, \widetilde{A}(s,t)$ and $\widetilde{\widetilde{A}}(s,t)$ have the same point spectrum, the same approximate point spectrum and the same spectrum. Furthermore, $\widetilde{\widetilde{A}}(s,t)$ has a normal part if and only if A has a normal part. Hyponormal operators are closed under translations by (λI) ; class wA(s,t) operators are not closed under translation.

Definition 2.1. Let s > 0 and t > 0 and T = U|T| be the polar decomposition of T.

- (i) T belongs to class $A(s,t) \Leftrightarrow (|T^*|^t |T|^{2s} |T^*|^t)^{\frac{t}{t+s}} \ge |T^*|^{2t}$ [19].
- (ii) T belongs to class wA(s,t) (in symbol, $T\in w\mathscr{A}(s,t))$

$$\Leftrightarrow (|T^*|^t |T|^{2s} |T^*|^t)^{\frac{t}{t+s}} \ge |T^*|^{2t} \text{ and } |T|^{2s} \ge (|T|^s |T^*|^{2t} |T|^s)^{\frac{s}{s+t}}.$$

$$\Leftrightarrow |\widetilde{T}_{s,t}|^{\frac{2t}{s+t}} \ge |T|^{2t} \text{ and } |T|^{2s} \ge |\widetilde{T}_{s,t}^*|,$$

where $\widetilde{T}_{s,t} = |T|^s U |T|^t$ is the generalized Aluthge transformation [20].

Lemma 2.2. Let $T \in \mathscr{L}(\mathscr{H})$. If T is an invertible class wA(s,t), then so is T^{-1} .

Proof. Let $r = \max\{s, t\}$. Then $T \in w\mathscr{A}(r, r)$ [20]. Since $|T^{-1}| = |T^*|^{-1}$, $|T^{-1^*}| = |T|^{-1}$ and $T \ge I \iff T^{-1} \le I$. Applying (ii) of Definition 2.1, we have

$$(|T^*|^r|T|^{2r}|T^*|^r)^{\frac{1}{2}} \ge |T^*|^{2r}$$

$$\iff |T^*|^{-r}(|T^*|^r|T|^{2r}|T^*|^r)^{\frac{1}{2}}|T^*|^{-r} \ge I$$

$$\iff \left(|T^*|^{-r}(|T^*|^r|T|^{2r}|T^*|^r)^{\frac{1}{2}}|T^*|^{-r}\right)^{-1} \le I$$

$$\iff |T^*|^r(|T^*|^r|T|^{2r}|T^*|^r)^{-\frac{1}{2}}|T^*|^r \le I \iff (|T^*|^{-r}|T|^{-2r}|T^*|^{-r})^{\frac{1}{2}} \le |T^*|^{-2r}$$

$$\iff (|T^{-1}|^r|T^{*^{-1}}|^{2r}|T^{-1}|^r)^{\frac{1}{2}} \le |T^{-1}|^{2r}.$$

Similarly

$$|T|^{2r} \ge (|T|^r |T^*|^{2r} |T|^r)^{\frac{1}{2}} \iff$$

$$(|T|^{r}|T^{*}|^{2r}|T|^{r})^{-\frac{1}{4}}|T|^{2r}(|T|^{\frac{1}{2}}|T^{*}|^{2r}|T|^{r})^{-\frac{1}{4}} \ge I$$

$$\iff (|T|^{r}|T^{*}||T|^{r})^{-\frac{1}{4}}|T|^{-2r}(|T|^{r}|T^{*}|^{2r}|T|^{r})^{-\frac{1}{4}} \le I \iff |T^{*^{-1}}|^{2r} \le (|T|^{r}|T^{*}||T|^{r})^{-\frac{1}{2}}$$

$$\iff |T^{*^{-1}}|^{2r} \le (|T|^{-r}|T^{*}|^{-2r}|T|^{-r})^{\frac{1}{2}}$$

$$\iff |T^{*^{-1}}|^{2r} \le (|T^{*^{-1}}|^{r}|T^{-1}|^{2r}|T^{*^{-1}}|^{r})^{\frac{1}{2}}.$$

That is, T^{-1} is $w\mathscr{A}(r,r)$ operator.

Lemma 2.3. ([12]) If $[A, B] = [A^*, B] = 0$ for some operators $A, B \in \mathscr{L}(\mathscr{H})$, then

- $\begin{array}{l} (i) \ [|A|,B] = [A,|B|] = [|A^*|,B] = [A,|B^*|] = [|A|,|B|] = [|A^*|,|B|] = [|A|,|B^*|] = [|A|,|B^*|] = [|A^*|,|B^*|] = 0; \end{array}$
- $(ii) \ [||A^*|^{\frac{1}{2}}|A|^{\frac{1}{2}}|, ||B^*|^{\frac{1}{2}}|B|^{\frac{1}{2}}|] = [||A|^{\frac{1}{2}}|A^*|^{\frac{1}{2}}|, ||B|^{\frac{1}{2}}|B^*|^{\frac{1}{2}}|] = 0.$

Lemma 2.4. If $A, B \in w\mathscr{A}(s, t)$ are such that s + t = 1 and $[A, B] = [A^*, B] = 0$, then $AB \in w\mathscr{A}(s, t)$.

Proof. Let $r = \max\{s, t\}$. Then $T \in w \mathscr{A}(r, r)$ [20]. Since |AB| = |A||B| = |B||A| (etc.) we have:

$$(|AB|^{r}|(AB)^{*}|^{2r}|AB|^{r})^{\frac{1}{2}} = (|A|^{r}|B|^{r}|B^{*}|^{2r}|A^{*}|^{2r}|B|^{r}|A|^{r})^{\frac{1}{2}}$$
$$= ((|B|^{r}|B^{*}|^{2r}|B|^{r})(|A|^{r}|A^{*}|^{2r}|A|^{r}))^{\frac{1}{2}}$$

$$= \left(||B^*|^r |B|^r|^2 ||A^*|^r |A|^r|^2 \right)^{\frac{1}{2}}$$

$$= \left(||A^*|^r |A|^r|^2 \cdot ||B^*|^r |B|^r|^2 \right)^{\frac{1}{2}}$$

$$= ||A^*|^r |A|^r ||B^*|^r |B|^r|$$

$$= ||B^*|^r |B|^r|^{\frac{1}{2}} \left(|A|^r |A^*|^{2r} |A|^r \right)^{\frac{1}{2}} ||B^*|^r |B|^r|^{\frac{1}{2}}$$

$$\leq ||B^*|^r |B|^r|^{\frac{1}{2}} |A|^{2r} ||B^*|^r |B|^r|^{\frac{1}{2}}$$

$$= |A|^r \left(|B|^r |B^*|^{2r} |B|^r \right)^{\frac{1}{2}} |A|^r$$

$$\leq |A|^r |B|^{2r} |A|^r = |A|^{2r} |B|^{2r} = |AB|^{2r}$$

and by a similar argument

$$(|(AB)^*|^r |AB|^{2r} |(AB)^*|^r)^{\frac{1}{2}} = ||A|^r |A^*|^r | ||B|^r |B^*|^r |$$

$$\geq |A^*|^r (|B^*|^r |B|^{2r} |B^*|^r)^{\frac{1}{2}} |A^*|^r |$$

$$\geq |A^*|^{2r} |B^*|^{2r} = |(AB)^*|^{2r}.$$

The proof of the lemma is achieved.

Lemma 2.5. If $A, B^* \in w \mathscr{A}(s, t)$ are such that $s+t = 1, A^{-1}(0) \subseteq A^{*^{-1}}(0)$ and $B^{-1}(0) \subseteq B^{*^{-1}}(0)$, then $d_{AB}(X) = 0$ implies $d_{A^*B^*}(X) = 0$.

Proof. We consider only the case $d_{AB} = \delta_{AB}$ (the proof of the other case is similar). Let $\Re(X)$ and $X^{-1}(0)^{\perp}$ be the closure of $\Re(X)$ and the orthogonal complement of $X^{-1}(0)$, respectively. Let $A_1 = A|_{\overline{\mathfrak{R}(X)}}, B_1^* = B^*|_{X^{-1}(0)}$, and define the quasiaffinity $X_1: X^{-1}(0)^{\perp} \to \overline{\Re(X)}$ by setting $X_1 x = X x$ for all $x \in X^{-1}(0)^{\perp}$. Then $\delta_{A_1 B_1}(X_1) = 0$, where A_1 and B_1^* are $w\mathscr{A}(s,t)$ operators. Since X_1 is a quasiaffinity, A_1 and B_1^* have the polar decompositions $A_1 = U_1|A_1|$ and $B_1^* = V_1|B_1^*|$. Since X_1 is a quasiaffinity, A_1 has dense range and B_1 is injective. The hypotheses $A^{-1}(0) \subseteq A^{*^{-1}}(0)$ and $B^{-1}(0) \subseteq B^{*^{-1}}(0)$ imply that A_1 and B_1 are quasiaffinities. (Indeed, if Ax = 0 for some non-trivial x, then $A^{-1}(0) \subseteq A^{*^{-1}}(0)$ implies $A^*(x \oplus 0) = 0$, which is a contradiction since $A_1^*x = 0$ implies x=0.) Hence both $|A_1|$ and $|B_1^*|$ are quasiaffinities (and U_1 and V_1 are unitaries). Set $Y_1 = |A_1|^s X_1 |B_1^*|^t$; then Y_1 is a quasiaffinity. The first generalized Aluthge transforms $\widetilde{A}_1(s,t) = |A_1|^s U_1 |A_1|^t$ and $\widetilde{B}^*(s,t) = |B_1^*|^s U_1 |B_1^*|^t$ of A_1 and B_1^* are $\frac{\min\{s,t\}}{s+t}$ -hyponormal ([20]) which satisfy $\delta_{\widetilde{A}_1^*(s,t)}\widetilde{B}_1^*(s,t)(Y_1) = 0$. Let $\widetilde{A}_1(s,t)$ and $\widetilde{B}_1^*(s,t)$ have the polar decompositions $\widetilde{A}_1(s,t) = U_2|\widetilde{A}_1(s,t)|$ and $\widetilde{B}_1^*(s,t) = V_2|\widetilde{B}_1^*(s,t)|$, and let $C = \tilde{A}_1 = |\tilde{A}_1(s,t)|^s U_2 |\tilde{A}_1(s,t)|^t$ and $D^* = \tilde{B}_1^* = |\tilde{B}_1^*(s,t)|^s U_2 |\tilde{B}_1^*(s,t)|^t$ denote the second generalized Aluthge transforms of A_1 and B_1^* , respectively. Then C and D^* are hyponormal ([33]) which satisfy $\delta_{CD}(Y) = 0$, where Y is the quasiaffinity defined by $Y = |\tilde{A}_1(s,t)|^s Y_1 |\tilde{B}_1^*(s,t)|^t$. Apparently, $D^{*^{-1}}$ exists as a closed densely defined (possibly unbounded) hyponormal operator (with non-empty resolvent). Then $\delta_{CD}(Y) = 0$ implies $YD^{-1} \subset CY$ and Y has dense range, $\sigma(C) \subset \sigma(D^{-1})$ [28, Theorem 3.3]. Hence, since the resolvent set of D is not empty, there is a λ in the resolvent sets C and D^{-1} such that $C - \lambda$ and $D^{-1} - \lambda$ are bounded invertible and satisfy $(C - \lambda)^{-1}Y = Y(D^{-1} - \lambda)^{-1}$ [22, Lemma 1]. Applying the asymmetric Putnam-Fuglede theorem for bounded hyponormal operators it follows that $(C - \lambda)^{*^{-1}} Y = Y(D^{-1} - \lambda)^{*^{-1}}$, and hence that $(C - \lambda)^{*^{-1}}$ and $(D^{-1} - \lambda)^{*^{-1}}$ are unitarily equivalent normal operators. Consequently, C and D are normal operators, and this by [33, Lemma 2.7] implies that A_1 and B_1 are normal operators. From this we conclude that if $E, F^* \in w\mathscr{A}(s,t), E^{-1}(0) \subseteq E^{*^{-1}}$ and $F^{*^{-1}} \subseteq F^{-1}(0)$, and E or F^* is pure (i.e., completely non-normal), then $\delta_{EF}(X) = 0$ implies X = 0.

Now decompose A and B^* into their normal and pure parts by $A = A_1 \oplus A_2$ and $B^* = B_1^* \oplus B_2^*$ and let X have the corresponding representation $X = [X_{ij}]_{i,j=1}^2$. Then

$$\delta_{AB}(X) = \begin{pmatrix} \delta_{A_1B_1}(X_{11} & \delta_{A_1B_2}(X_{12}) \\ \delta_{A_2B_1}(X_{21} & \delta_{A_2B_2}(X_{22}) \end{pmatrix} = 0.$$

In the view of the observation above, we have $X_{ij} = 0$, except X_{11} . Recall from [34, Theorem 5] that if Δ_n and $\Delta_n^* \in \mathscr{L}(\mathscr{L}(\mathscr{H}))$ are the operators $\Delta_n(X) = \sum_i^n A_i X B_i$ and $\Delta_n^* = \sum_{i=1}^n A_i^* X B_i^*$, where $\{A_i\}_{i=1}^n$ and $\{B_i\}_{i=1}^n$ are commuting families of normal operators in $\mathscr{L}(\mathscr{H})$, then $\Delta_n^{-(n-1)}(0) = \Delta_n^{*^{-(n-1)}}(0)$. Choosing $n = 2, B_1 = I, A_2 = -I$ and $B_2 = B_1$, it follows that $A_1 X - X B_1 = 0$ implies $A_1^* X - X B_1^* = 0$. Hence $\delta_{AB}(X) = 0$ implies $\delta_{A^*B^*}(X) = 0$. **Lemma 2.6.** Let $A, B \in \mathscr{L}(\mathscr{H})$. If $A, B^* \in \mathscr{wA}$ are such that s + t = 1, $A^{-1}(0) \subseteq A^{*^{-1}}(0)$ and $B^{-1}(0) \subseteq B^{*^{-1}}(0)$, all combinations are allowed, then $(\delta_{AB} - \lambda)^{-1}(0) \subseteq (\delta_{A^*B^*} - \overline{\lambda})^{-1}(0)$ for all $\lambda \in \mathbb{C}$, where $\overline{\lambda}$ denote the complex conjugate of λ .

Proof. We consider the cases $d_{AB} = \delta_{AB}$ and $d_{AB} = \Delta_{AB}$ separately.

Case I. $d_{AB} = \delta_{AB}$. Decompose A and B into their normal and pure (=completely nonnormal) parts, with respect to some decompositions $\mathscr{H} = \mathscr{H}_0 \oplus (\mathscr{H} \ominus \mathscr{H}_0)$ and $\mathscr{H} = \mathscr{H}_1 \oplus (\mathscr{H} \ominus \mathscr{H}_1)$, by $A = A_n \oplus A_p$ and $B = B_n \oplus B_p$, let $X \in (\delta_{AB} - \lambda)^{-1}(0), X :$ $\mathscr{H}_1 \oplus (\mathscr{H} \ominus \mathscr{H}_1) \longrightarrow \mathscr{H}_0 \oplus (\mathscr{H} \ominus \mathscr{H}_0)$ have the corresponding matrix representation $X = [X_{ij}]_{i,j=1}^2$. Then

$$(\delta_{AB} - \lambda)^{-1}(0) = \begin{pmatrix} (\delta_{A_n B_n} - \lambda) X_{11} & (\delta_{A_n B_p} - \lambda) X_{12} \\ (\delta_{A_p B_n} - \lambda) X_{21} & (\delta_{A_p B_p} - \lambda) X_{22} \end{pmatrix} = 0.$$

Since the operator $A_n - \lambda$ (resp., $B_n - \lambda$) is normal and the pure parts $B_p^* \in w\mathscr{A}(s,t)$ (resp., the pure operator $A_p \in w\mathscr{A}(s,t)$), it follows from application of the Putnam-Fuglede property to $(\delta_{A_nB_p} - \lambda)X_{12} = (\delta_{A_pB_n} - \lambda)X_{21} = 0$ that $X_{12} = X_{21} = 0$. Define the second generalized Aluthge transforms $\widetilde{\widetilde{A}}(s,t)$ and $\widetilde{\widetilde{B}}^*(s,t)$ as above. Then

$$(\delta_{A_pB_p} - \lambda)X_{22} = 0 \iff (\delta_{A_pT_p} - \lambda)Y = 0,$$

where we have set $(\widetilde{\widetilde{B}}_p^*)^* = T_p$ and $Y = |\widetilde{A}_p(s,t)|^s |A_p|^s X_{22} |B_p^*|^t |\widetilde{B}_p^*(s,t)|^t$. The operators $\widetilde{\widetilde{A}}(s,t)$ and T_p^* being pure hyponormal operators, the Putnam-Fuglede theorem for

hyponormal operators implies that Y = 0. Recall that the eigenvalues of operators in $w\mathscr{A}(s,t)$ are normal ([38]) (i.e., the eigenspaces are reducing); in particular, the pure part of an operator in $w\mathscr{A}(s,t)$ is injective. Hence $|A_p|^s$, $|\widetilde{A}|^s$, $|B_p^*|^t$ and $|\widetilde{B}_p^*|^t$ are quasiaffinities, which implies that $X_{22} = 0$ and $X = X_{11} \oplus 0$. Since $(\delta A_n B_n - \lambda)^{-1}(0) \subseteq (\delta_{A_n^* B_n^*} - \lambda)^{-1}(0)$ we have $(\delta_{AB} - \lambda)^{-1}(0) \subseteq (\delta_{A_n^* B_n^*} - \lambda)^{-1}(0)$.

Case II. $d_{AB} = \Delta_{AB}$. Here we divide the proof into the cases $\lambda = -1$ and $\lambda \neq -1$. If $\lambda = -1$, then $(\Delta_{AB} - \lambda)X = 0$ if and only if AXB = 0. If $A, B^* \in w\mathscr{A}(s,t)$, then AXB = 0 if and only if X = 0: trivially, $A^*XB^* = (\Delta_{A^*B^*} - \overline{\lambda})X = 0$. If $A, B^* \in w\mathscr{A}(s,t)$, then $AXB = 0 \Leftrightarrow XB = 0 \Rightarrow XB^* = 0 \Rightarrow A^*XB^* = 0 \Rightarrow (\Delta_{A^*B^*} - \overline{\lambda})X = 0$. Decompose A and B into their normal and pure parts and letting X have the matrix representation $X = [X_{ij}]_{i,j=1}^2$ as in the case I, it is seen that

$$0 = A_n X_{11} B_n = X_{11} B_n . 0 \Rightarrow A_n^* X_{11} B_n = 0 = A_n^* X_{11} . 0 \Rightarrow A_n^* X_{11} B_n^* = 0;$$

$$A_n X_{12} B_p = 0 \Rightarrow A_n^* X_{12} B_p^* = 0; A_p X_{12} B_n = 0 \Rightarrow A_p^* X_{21} B_n^* = 0$$

and since A_p is injective and B_p has dense range

$$A_p X_{22} B_p = 0 \Leftrightarrow X_{22} = 0.$$

Therefore, $(\Delta_{A^*B^*} - \overline{\lambda})X = 0$. Now let $\lambda \neq -1$. Then $(\Delta_{AB} - \lambda)X = 0 \Leftrightarrow \Delta_{(\frac{1}{1+\lambda}A)B}X = 0$. Since $\frac{1}{1+\lambda}A \in pw - \mathscr{H}$ and since $\Delta_{(\frac{1}{1+\lambda}A^*)B^*}X = 0 \Leftrightarrow (\Delta_{A^*B^* - \overline{\lambda}})X = 0$, it would suffice to prove that $\Delta_{AB}X = 0 \Rightarrow \Delta_{A^*B^*}X = 0$. If $A, B^* \in w\mathscr{A}(s,t)$ and $A^{-1}(0) \subseteq A^{*^{-1}}(0)$ and $B^{-1}(0) \subseteq B^{*^{-1}}(0)$, then the implication follows from an application of [33, Theorem 3.3] followed by an application of [15, Theorem 2].

The ascent of a Banach space operator $T \in \mathscr{L}(\mathscr{X})$, asc (T), is the least non-negative integer k such that $T^{-k}(0) = T^{-(k+1)}(0)$. The following corollary is a consequence of Lemma 2.6 and [16, Proposition 2.3].

Corollary 2.7. Let $A, B \in \mathscr{L}(\mathscr{H})$. If $A, B^* \in w\mathscr{A}(s,t)$ are such that s+t = 1, $A^{-1}(0) \subseteq A^{*^{-1}}(0)$ and $B^{-1}(0) \subseteq B^{*^{-1}}(0)$, all combinations are allowed, then $asc(d_{AB} - \lambda) \leq 1$ for all $\lambda \in \mathbb{C}$.

If $A, B \in w\mathscr{A}(s, t)$ are such that $[A, B] = [A^*, B] = 0$, B is invertible and $A^{-1}(0) \subseteq A^{*^{-1}}$, then $AB^{-1} \in w\mathscr{A}(s, t)$ and $(AB^{-1})^{-1}(0) \subseteq (B^{*^{-1}}A^*)^{-1}(0)$. To see this, we recall from Lemma 2.4 and Lemma 2.5 that $AB^{-1} \in w\mathscr{A}(s, t)$. Also, if $x \in (AB^{-1})^{-1}(0)$, then $B^{-1}x \in A^{-1}(0)$ implies $B^{-1}x \in A^{*^{-1}}(0)$, i.e., $A^*B^{-1}x = 0$ and $A^*x = 0$, which implies that $B^{*^{-1}}A^*x = 0$.

Corollary 2.8. Let $\Psi \in \mathscr{L}(\mathscr{L}(\mathscr{H}))$ be the elementary operator $\Psi(X) = AXB - CXD$. Suppose that A and C, and B^{*} and D^{*} are doubly commuting $w\mathscr{A}(s,t)$ operators. If either

(i) B and C are invertible, $A^{-1}(0) \subseteq A^{*^{-1}}$ and $D^{*^{-1}} \subseteq D^{-1}(0)$ or

(ii) C and D are invertible, $A^{-1}(0) \subseteq A^{*^{-1}}$ and $B^{*^{-1}} \subseteq B^{-1}(0)$,

then $\Psi(X) = 0$ implies $A^*XB^* - C^*XD^* = 0$.

Proof. Apply Lemma 2.5 to $\delta_{(C^{-1}A)(D^{-1}B)}(X) = 0.$

3. The operator d_{AB} and Weyl's theorem

Let \mathscr{X} be a complex Banach space. A Banach space operator $T \in \mathscr{L}(\mathscr{X})$ has the single-valued extension property, or SVEP, at a point $\lambda \in \sigma(T)$ if for every open disc \mathcal{D} centered at λ the only analytic function $f : \mathcal{D} \longrightarrow \mathscr{X}$ satisfying $(T - \mu)f(\mu) = 0$ is the function $f \equiv 0$; T has SVEP if it has SVEP at every $\lambda \in \sigma(T)$.

Let us denote by $\alpha(T)$ the dimension of the kernel and by $\beta(T)$ the codimension of the range. Recall that the operator $T \in \mathscr{L}(\mathscr{X})$ is said to be *upper semi-Fredholm*, $T \in SF_+(\mathscr{X})$, if the range of $T \in \mathscr{L}(\mathscr{X})$ is closed and $\alpha(T) < \infty$, while $T \in \mathscr{L}(\mathscr{X})$ is said to be *lower semi-Fredholm*, $T \in SF_-(\mathscr{X})$, if $\beta(T) < \infty$. An operator $T \in B(\mathscr{X})$ is said to be *semi-Fredholm* if $T \in SF_+(\mathscr{X}) \cup SF_-(\mathscr{X})$ and Fredholm if $T \in SF_+(\mathscr{X}) \cap SF_-(\mathscr{X})$. If T is semi-Fredholm then the *index* of T is defined by $\operatorname{ind}(T) = \alpha(T) - \beta(T)$. A bounded linear operator T acting on a Banach space \mathscr{X} is Weyl if it is Fredholm of index zero and Browder if T is Fredholm of finite ascent and descent. The Weyl spectrum $\sigma_w(T)$ and $Browder spectrum \sigma_b(T)$ of T are defined by $\sigma_w(T) = \{\lambda \in \mathbb{C} : T - \lambda I \text{ is not Weyl}\}$ and $\sigma_b(T) = \{\lambda \in \mathbb{C} : T - \lambda I \text{ is not Browder}\}$. Let $E^0(T) = \{\lambda \in \operatorname{iso} \sigma(T) : 0 < \alpha(T-\lambda) < \infty\}$ and let $\pi_0(T) := \sigma(T) \setminus \sigma_b(T)$ all *Riesz points* of T. According to Coburn [13], Weyl's

theorem holds for T if $\sigma(T) \setminus \sigma_w(T) = E^0(T)$, and that Browder's theorem holds for T if $\sigma(T) \setminus \sigma_w(T) = \pi^0(T)$. Let $SF_+^-(\mathscr{X}) = \{T \in SF_+ : \operatorname{ind}(T) \leq 0\}$. The upper semi Weyl spectrum is defined by $\sigma_{SF_+^-}(T) = \{\lambda \in \mathbb{C} : T - \lambda \notin SF_+^-(\mathscr{X})\}$. According to Rakočević [30], an operator $T \in B(\mathscr{X})$ is said to satisfy a-Weyl's theorem if $\sigma_a(T) \setminus \sigma_{SF_+^-}(T) = E_a^0(T)$, where $E_a^0(T) = \{\lambda \in \operatorname{iso} \sigma_a(T) : 0 < \alpha(T - \lambda I) < \infty\}$. It is known [30] that an operator satisfying a-Weyl's theorem satisfies Weyl's theorem, but the converse does not hold in general.

In the following we prove that if $A, B \in pw - \mathcal{H}$, then d_{AB} has SVEP and satisfies the property that its quasinilpotent part $H_0(d_{AB} - \lambda)$,

$$H_0(d_{AB} - \lambda) = \{ X \in \mathscr{L}(\mathscr{H}) : \lim_{n \to \infty} \| (d_{AB} - \lambda)^n X \| = 0 \}$$

equals $(d_{AB} - \lambda)^{-1}(0)$ for all $\lambda \in iso \sigma(d_{AB})$. This implies that d_{AB} satisfies Weyl's theorem, d_{AB}^* satisfies *a*-Weyl's theorem, and that if Ψ is the operator of Corollary 2.8 with $0 \in iso \sigma(\Psi)$, then 0 is a pole of the resolvent of Ψ .

Bishop's property (β) , implies (Dunford's) condition (C); also T satisfies property (β) if and only if $T^* \in \mathscr{L}(\mathscr{X}^*)$ satisfies (the decomposition) property (δ) [25, Theorem 2.5.5]. Since we have no more than a passing interest in properties (β) , (δ) and condition (C), we refer the interested reader to pages 11, 22 and 32 of [25] for the definitions of these properties.

Let L_T and R_T , $T \in \mathscr{L}(\mathscr{X})$, denote the operators of left and right multiplication (respectively) by T.

Lemma 3.1. If $A, B^* \in w \mathscr{A}(s, t)$ are such that s + t = 1, then d_{AB} has SVEP.

Proof. Since $A, B^* \in w\mathscr{A}(s, t)$, A satisfies property (β) [32, Corollary 2.13] and B^* satisfies property (δ). Hence both L_A and R_B satisfy condition (C) [25, Corollary 3.6.11]. Apparently, L_A and R_B commute. By Theorem 3.6.3 and Note 3.6.19 on page 283 of [25], $L_A - R_B$ and $L_A R_B$ have SVEP, which implies that d_{AB} has SVEP.

Remark 3.2. Recall from [18] that $\sigma(\delta_{AB}) = \{\lambda \in \sigma(A) - \sigma(B) : \lambda = \alpha - \beta, \alpha \in \sigma(A) \text{ and } \beta \in \sigma(B)\}$ and $\sigma(\Delta_{AB}) = \{\lambda \in \sigma(A)\sigma(B) - 1 : \lambda = \alpha\beta - 1, \alpha \in \sigma(A), \beta \in \sigma(B)\}$. If $\lambda \in \text{iso } \sigma(d_{AB})$, then we have one of the following two cases:

- (i) $\lambda \neq -1$ if $d_{AB} = \Delta_{AB}$. Then there exist finite sequence $\{\alpha_i\}_{i=1}^m$ and $\{\beta_i\}_{i=1}^m$ of isolated points in $\sigma(A)$ and $\sigma(B)$, respectively, such that $\lambda = \alpha_i \beta_i$ if $\lambda \in iso \sigma(\delta_{AB})$ and $\lambda = \alpha_i \beta_i 1$ if $\lambda \in iso \sigma(\Delta_{AB})$, for all $1 \leq i \leq m$.
- (ii) $d_{AB} = \Delta_{AB}$ and $\lambda = -1$. Then either $0 \in iso \sigma(A)$ and $0 \in iso \sigma(B)$, or, $0 \in iso \sigma(A)$ and $0 \notin \sigma(B)$, or, $0 \in iso \sigma(B)$ and $0 \notin \sigma(A)$.

Remark 3.3. Let $T \in w\mathscr{A}(s,t)$ be such that s+t=1. If an $\alpha \in iso \sigma(T)$, then $\mathscr{H} = (T-\alpha)^{-1}(0)\oplus(T-\alpha)\mathscr{H}, \sigma(T_{11}) = \sigma(T|_{(T-\alpha)^{-1}(0)}) = \{\alpha\}, T_{11}-\alpha = T_{11}-\alpha I|_{(T-\alpha)^{-1}(0)} = 0$ and $\sigma(T|_{(T-\alpha)\mathscr{H}}) = \sigma(T) \setminus \{\alpha\}$, see [32, 33].

Lemma 3.4. If $A, B^* \in w \mathscr{A}(s, t)$ are such that s + t = 1, then $H_0(d_{AB} - \lambda) = (d_{AB} - \lambda)^{-1}(0)$ for all $\lambda \in iso \sigma(d_{AB})$.

Proof. We start by considering Case (i) above. Evidently, the non-zero points α_i (resp., $\overline{\beta}$), $1 \leq i \leq m$, are normal eigenvalues of A (resp., B^*). Let $M_{1i} = (A - \alpha_i)^{-1}(0)$, $N_{1i} = (B - \mathscr{B}_i)^{-1}(0) (= (B - \beta_i)^{*^{-1}})$, $M_1 = \bigoplus_{i=1}^m M_{1i}, N_1 = \bigoplus_{i=1}^m M_2 = M_1^{\perp}$ and $N_2 = N_1^{\perp}$; let $A = A_1 \oplus A_2 \in \mathscr{L}(M_1 \oplus M_2)$ and $B = B_1 \oplus B_2 \in \mathscr{L}(N_1 \oplus N_2)$. Then $\sigma(A_2) = \sigma(A) \setminus \{\alpha_1, \cdots, \alpha_m\}$ and $\sigma(B_2) = \sigma(B) \setminus \{\beta_1, \cdots, \beta_m\} \lambda \notin \sigma(d_{A_k B_t})$ for all $1 \leq k, t \leq 2$ other than k = t = 1.

Let $X \in H_0(d_{AB} - \lambda)$, and let $X \in \mathscr{L}(N_1 \oplus N_2, M_1 \oplus M_2)$ have the representation $X = [X_{ij}]_{i,j=1}^2$. Then

$$(d_{AB} - \lambda)^n X = \begin{pmatrix} * & * \\ * & (d_{A_2B_2} - \lambda)^n X_{22} \end{pmatrix}$$

(for some, as yet, non specified entries *). Since $\lim_{n\to\infty} ||(d_{AB} - \lambda)^n X||^{\frac{1}{n}} = 0$ implies

 $\lim_{n \to \infty} \| (d_{A_2B_2} - \lambda)^n X_{22} \|^{\frac{1}{n}} = 0, \text{ and since } d_{A_2B_2} - \lambda \text{ is invertible, we have } X_{22} = 0, \text{ and then}$

$$(d_{AB} - \lambda)^n X = \begin{pmatrix} * & (d_{A_1B_2} - \lambda)^n X_{12} \\ (d_{A_2B_1} - \lambda)^n X_{21} & 0 \end{pmatrix}$$

(for some, as yet, non specified entry *). Again, $\lim_{n\to\infty} \|(d_{AB}-\lambda)^n X\|^{\frac{1}{n}} = 0$ implies $\lim_{n\to\infty} \|(d_{A_1B_2}-\lambda)^n X_{12}\|^{\frac{1}{n}} = \lim_{n\to\infty} \|(d_{A_2B_1}-\lambda)^n X_{21}\|^{\frac{1}{n}} = 0$, and since $d_{A_1B_2}-\lambda$ and $d_{A_2B_1}-\lambda$ are invertible, we have $X_{12} = 0 = X_{21}$. Hence, $(d_{AB}-\lambda)^n X = (d_{A_1B_1}-\lambda)^n X_{11}$. Let $X_{11} = [Y_{ij}]_{1\leq i,j\leq m} \in \mathscr{L}(\bigoplus_{i=1}^m N_{1i}, \bigoplus_{i=1}^m M_{1i})$. Then, for $1 \leq i,j \leq m$,

$$(\delta_{A_1B_1} - \lambda)^n (X_{11}) = ((L_{A_1 - \alpha_i} - R_{B_1 - \beta_j}) + (\alpha_i - \beta_j - \lambda))^n [Y_{ij}]_{1 \le i,j \le m}$$
$$= \left(\sum_{k=0}^n \binom{n}{k} (L_{A_1 - \alpha_i} - R_{B_1 - \beta_j})^k (\alpha_i - \beta_j - \lambda)^{n-k}\right) [Y_{ij}]_{1 \le i,j \le m}$$

and

$$(\Delta_{A_1B_1} - \lambda)^n (X_{11}) = (T + \alpha_i \beta_j - 1 - \lambda)^n [Y_{ij}]_{1 \le i,j \le m}$$
$$= \left(\sum_{k=0}^n \binom{n}{k} T^k (\alpha_i \beta_j - 1 - \lambda)^{n-k}\right) [Y_{ij}]_{1 \le i,j \le m},$$

where we have set $L_{A_1-\alpha_i}R_{B_1} + \alpha_i R_{B_1-\beta_j} = T$. Since $(A - \alpha_i)|_{M_{1i}} = 0 = (B_1 - \beta_i)|_{N_{1i}}$, it follows that

$$(\delta_{A_1B_1} - \lambda)^n (X_{11}) = (\alpha_i - \beta_j - \lambda))^n [Y_{ij}]_{1 \le i,j \le m}$$

and

$$(\Delta_{A_1B_1} - \lambda)^n(X_{11}) = (\alpha_i\beta_j - 1 - \lambda)^n[Y_{ij}]_{1 \le i,j \le m}$$

Recall, $\lim_{n\to\infty} \|(d_{A_1B_1}-\lambda)^n X_{11}\|^{\frac{1}{n}} = 0$; hence $\lim_{n\to\infty} |\alpha_i - \beta_j - \lambda| \|Y_{ij}\|^{\frac{1}{n}} = 0$ in the case in which $d = \delta$ and $\lim_{n\to\infty} |\alpha_i\beta_j - 1 - \lambda| \|Y_{ij}\|^{\frac{1}{n}} = 0$ in the case in which $d = \Delta$. Thus $Y_{ij} = 0$ for all i, j such that $i \neq j$. This implies that $X = X_{11} = \bigoplus_{i=1}^m Y_{ij} \in (d_{AB} - \lambda)^{-1}(0)$. Hence $H_0(d_{AB} - \lambda) \subset (d_{AB} - \lambda)^{-1}(0)$. Since the reverse inclusion holds for every operator, we must have $H_0(d_{AB} - \lambda) = (d_{AB} - \lambda)^{-1}(0)$.

To complete the proof, we now consider Case (ii). If 0 is both in iso $\sigma(A)$ and iso $\sigma(B)$, then, upon letting $M_1 = A^{-1}(0)$, $N_1 = B^{*^{-1}}(0)$, $M_2 = \mathscr{H} \ominus M_1$ and $N_2 = \mathscr{H} \ominus N_1$, it is seen that $A = \begin{pmatrix} 0 & C_1 \\ 0 & A_2 \end{pmatrix} \in \mathscr{L}(M_1 \oplus M_2)$ and $B = \begin{pmatrix} 0 & 0 \\ C_2 & B_2 \end{pmatrix} \in \mathscr{L}(N_1 \oplus N_2)$ for some operators C_1 and C_2 . Here both A_2 and B_2 are invertible (which implies that $\Delta_{A_2B_2} - \lambda = L_{A_2}R_{B_2}$ is invertible). Letting $X = [X_{kl}]_{k,l=1}^2$ as above, it follows that $X_{22} = 0$. Hence $L_A R_B(X) = 0$ for every $X \in H_0(L_A R_B) = H_0(\Delta_{AB} - \lambda)$. Consequently, $H_0(\Delta_{AB} - \lambda) = (\Delta_{AB} - \lambda)^{-1}(0)$. The proof of the other two (remaining cases) is similar: we consider $0 \in iso \sigma(A)$ and $0 \notin \sigma(B)$. If $0 \notin \sigma(B)$ and $X \in H_0(L_A R_B)$, then $\lim_{n \to \infty} \|L_A^n X\|^{\frac{1}{n}} \le \|B^{-1}\| \lim_{n \to \infty} \|(L_A R_B)^n X\|^{\frac{1}{n}} = 0$. Again, if $L_A \in H_0(L_A)$, then $\lim_{n \to \infty} \|(L_A R_B)^n X\|^{\frac{1}{n}} \le \|B\| \lim_{n \to \infty} \|L_A^n X\|^{\frac{1}{n}} = 0$. Hence $H_0(\Delta_{AB} - \lambda) = H_0(L_A R_B) = (L_A)^{-1}(0) = (\Delta_{AB} - \lambda)^{-1}(0) = 0$.

For an operator $T \in \mathscr{L}(\mathscr{X})$, the analytic core $\mathcal{K}(T-\lambda)$ of $T-\lambda$ is defined by

$$\mathcal{K}(T-\lambda) = \{x \in \mathscr{X} : \text{there exists a sequence } \{x_n\} \subset \mathscr{X} \text{ and } \delta > 0$$

for which $x = x_0, (T-\lambda)x_{n+1} = x_n$ and $||x_n|| \le \delta^n ||x||$ for all $n = 1, 2, \dots \}$.

We note that $H_0(T-\lambda)$ and $\mathcal{K}(T-\lambda)$ are generally non-closed hyperinvariant subspaces of $T-\lambda$ such that $(T-\lambda)^{-q}(0) \subseteq H_0(T-\lambda)$ for all $q = 0, 1, 2, \cdots$ and $(T-\lambda)\mathcal{K}(T-\lambda) =$ $\mathcal{K}(T-\lambda)$ [26]. Recall from [26] that if $0 \in iso \sigma(T)$, then $H_0(T)$ and $\mathcal{K}(T)$ are closed and $\mathscr{X} = H_0(T) \oplus \mathcal{K}(T)$. An operator $T \in \mathscr{L}(\mathscr{X})$ is said to be isoloid if every isolated point of $\sigma(T)$ is an eigenvalue of T and polaroid if every isolated point of $\sigma(T)$ is a pole of the resolvent of T. In general, if T is polaroid then it is isoloid.

Lemma 3.5. If $A, B^* \in w \mathscr{A}(s,t)$ are such that s + t = 1, then d_{AB} is polaroid, in particular, d_{AB} is isoloid.

Proof. Let $\lambda \in iso \sigma(d_{AB})$. Then by Lemma 3.4, $H_0(d_{AB} - \lambda) = (d_{AB} - \lambda)^{-1}(0)$ implies

$$\mathscr{L}(\mathscr{H}) = H_0(d_{AB} - \lambda) \oplus \mathcal{K}(d_{AB} - \lambda) = (d_{AB} - \lambda)^{-1}(0) \oplus \mathcal{K}(d_{AB} - \lambda)$$

Hence

$$\Re(d_{AB} - \lambda) = 0 \oplus (d_{AB} - \lambda)(\mathcal{K}(d_{AB} - \lambda)) = \mathcal{K}(d_{AB} - \lambda),$$

and

$$\mathscr{L}(\mathscr{H}) = (d_{AB} - \lambda)^{-1}(0) \oplus \Re(d_{AB} - \lambda).$$

Thus, isolated points of $\sigma(d_{AB})$ are simple poles of the resolvent of d_{AB} . Hence, d_{AB} is polaroid. Since polaroid operators are always isoloid, we have that d_{AB} is isoloid.

For $T \in \mathscr{L}(\mathscr{X})$ and a non negative integer n define $T_{[n]}$ to be the restriction T to $\Re(T^n)$ viewed as a map from $\Re(T^n)$ to $\Re(T^n)$ (in particular $T_{[0]} = T$). If for some integer n the range space $\Re(T^n)$ is closed and $T_{[n]}$ is an upper (resp., lower) semi-Fredholm operator, then T is called upper (resp., lower) semi-B-Fredholm operator. In this case index of T is defined as the index of semi-B-Fredholm operator $T_{[n]}$. A semi-B-Fredholm operator is an upper or lower semi-Fredholm operator [10]. Moreover, if $T_{[n]}$ is a Fredholm operator then T is called a B-Fredholm operator [6]. An operator T is called a B-Weyl operator if it is a B-Fredholm operator of index zero. The B-Weyl spectrum $\sigma_{BW}(T)$ is defined by $\sigma_{BW}(T) = \{\lambda \in \mathbb{C} : T - \lambda \text{ is not } B$ -Weyl operator $\}$ [7]. Let E(T) be the set of all eigenvalues of T which are isolated in $\sigma(T)$. According to [8], an operator $T \in \mathscr{L}(\mathscr{X})$ is said to satisfy generalized Weyl's theorem, if $\sigma(T) \setminus \sigma_{BW}(T) = E(T)$. In general, generalized Weyl's theorem implies Weyl's theorem but the converse is not true [9].

Let $SBF_{+}^{-}(\mathscr{X})$ denote the class of all is *upper B-Fredholm* operators such that ind (T) \leq 0. The *upper B-Weyl spectrum* $\sigma_{SBF_{+}^{-}}(T)$ of T is defined by

$$\sigma_{SBF_{+}^{-}}(T) = \{\lambda \in \mathbb{C} : T - \lambda \notin SBF_{+}^{-}(\mathscr{X})\}.$$

Following [9], we say that generalized a-Weyl's theorem holds for $T \in \mathscr{L}(\mathscr{X})$ if $\sigma_a(T) \setminus \sigma_{SBF^+_+}(T) = E_a(T)$, where $E_a(T) = \{\lambda \in iso\sigma_a(T) : \alpha(T-\lambda) > 0\}$ is the set of all eigenvalues of T which are isolated in $\sigma_a(T)$. It is known from [9, Theorem 3.11] that an operator satisfying generalized a-Weyl's theorem satisfies a-Weyl's theorem.

Let $H(\sigma(T))$ denote the set of all analytic functions defined on an open neighborhood of $\sigma(T)$ define, by the classical functional calculus, f(T) for every $f \in H(\sigma(T))$.

Theorem 3.6. Let $A, B^* \in w \mathscr{A}(s,t)$ be such that s + t = 1. Then generalized Weyl's theorem holds for f(T) for every $f \in H(\sigma(T))$.

Proof. By Lemma 3.1 and Lemma 3.5, we have that d_{AB} has SVEP and dab is polaroid. So, we have that generalized Weyl's theorem holds for d_{AB} by Theorem 3.10 (ii) of [3]. Since d_{AB} has SVEP and d_{AB} is isoloid, we have that generalized Weyl's theorem holds for $f(d_{AB})$ for every $f \in H(\sigma(d_{AB}))$ by [40, Theorem 2.2].

Corollary 3.7. Let $A, B^* \in w \mathscr{A}(s,t)$ be such that s + t = 1. Then Weyl's theorem holds for f(T) for every $f \in H(\sigma(T))$.

A bounded operator $T \in \mathscr{L}(\mathscr{X})$ is called *a*-polaroid if every isolated point of $\sigma_a(T)$ is a pole of the resolvent of T and that $T \in \mathscr{L}(\mathscr{X})$ is *a*-isoloid if every isolated point of $\sigma_a(T)$ is an eigenvalue of T. In general, if T is *a*-polaroid, then it is *a*-isoloid.

Lemma 3.8. If $A, B^* \in w \mathscr{A}(s,t)$ are such that s + t = 1, then d^*_{AB} is a-polaroid, in particular, d^*_{AB} is a-isoloid.

Proof. Let $\lambda \in \sigma_a(d_{AB}^*)$. By Lemma 3.1 and Lemma 3.5, we have that d_{AB} has SVEP and d_{AB}^* is polaroid (A Banach space operator T is polaroid if and only if T^* is polaroid). Hence $\sigma_a(d_{AB}^*) = \sigma(d_{AB}^*)$ by [17, Corollary 7]. We have that λ is an isolated point of $\sigma(d_{AB}^*)$. Since d_{AB}^* is isoloid, we have that λ is a pole of the resolvent of d_{AB}^* .

Hence d_{AB}^* is *a*-polaroid. Since *a*-polaroid operators are always *a*-isoloid, we have that d_{AB}^* is *a*-isoloid.

Following [29], we say that $T \in B(X)$ possesses property (w) if $\Delta_a(T) = \sigma_a(T) \setminus \sigma_{SF^+_+}(T) = E^0(T)$. The property (w) has been studied in [1, 2, 29]. In Theorem 2.8 of [2], it is shown that property (w) implies Weyl's theorem, but the converse is not true in general. We say that $T \in B(X)$ possesses property (gw) if $\Delta_a^g(T) = \sigma_a(T) \setminus \sigma_{SBF^+_+}(T) = E(T)$. Property (gw) has been introduced and studied in [4]. Property (gw) extends property (w) to the context of B-Fredholm theory, and it is proved in [4] that an operator possessing property (gw) possesses property (w) but the converse is not true in general.

Theorem 3.9. Let $A, B^* \in w \mathscr{A}(s,t)$ be such that s + t = 1. Suppose that $f \in H(\sigma(T))$ is not constant on each of the components of its domain. Then a-Weyl's theorem, property (w), property (gw) and generalized a-Weyl's theorem hold for $f(d_{AB}^*)$.

Proof. By Lemma 3.1 and Lemma 3.5, we have that d_{AB} has SVEP and d_{AB}^* is polaroid. The result follows now by Theorem 3.12 of [3].

References

- [1] P. Aiena, Fredholm and Local Spectral Theory, with Applications to Multipliers, Kluwer Academic Publishers, 2004.
- [2] P. Aiena, P. Peña, Variations of Weyl's theorem, J. Math. Anal. Appl., 324, 2006, 566–579.
- [3] P. Aiena, E. Aponte, E. Bazan, Weyl type theorems for left and right polaroid operators, Integral Equation Operator Theory, 66, 2010, 1–20.
- [4] M. Amouch, M. Berkani, On property (gw), Mediterr. J. Math., 5, 2008, 371–378.
- [5] J. Anderso, On normal derivations, Proc. Amer. Math. Soc., 38, 1973, 136–140.
- [6] M. Berkani, On a class of quasi-Fredholm operators, Integral Equations and Operator Theory, 34(2), 1999, 244–249.
- [7] M. Berkani, B-Weyl spectrum and poles of the resolvent, J. Math. Anal. Appl., 272, 2002, 596–603.
- [8] M. Berkani, Index of B-Fredholm operators and generalization of a Weyl theorem, Proc. Amer. Math. Soc., 130, 2002, 1717–1723.
- M. Berkani, J.J Koliha, Weyl type theorems for bounded linear operators, Acta Sci. Math. (Szeged), 69, 2002, 359–376.
- [10] M. Berkani, M. Sarih, On semi B-Fredholm operators, Glasgow Math. J., 43, 2001, 457–465.

- [11] F.F. Bonsall, J. Duncan, Numerical ranges II, Lond. Math. Soc. Lecture Notes series, 10, 1973.
- [12] M. Ch0, S.V. Djordjević, B.P. Duggal, T. Yamazaki, On an elementary operator with w-hyponormal operator entries, Linear Algebra Appl., 433, 2001, 2070–2079.
- [13] L.A. Coburn, Weyl's theorem for non-normal operators. Michigan, Math. J., 13, 1966, 285–288.
- [14] B.P. Duggal. Range-Kernel orthogonality of Derivations, Linear Alg. Appl., 304, 2000, 103–108.
- [15] B. P. Duggal, A remark on generalised Putnam-Fuglede theorems, Proc. Amer. Math. Soc., 129, 2000, 83-87.
- [16] B. P. Duggal, Weyl's theorem for a generalized derivation and an elementary operator, Mat. Vesnik, 54, 2000, 71–81.
- [17] B. P. Duggal, Polaroid operators satisfying Weyls theorem, Linear Algebra Appl., 414, 2006, 271–277.
- [18] M.R. Embry, M. Rosenblum, Spectra, tensor products, and linear operator equations, Pacific J. Math., 53, 1974, 95-107.
- [19] M. Fujii, D. Jung, S.-H. Lee, M.-Y. Lee, R. Nakamoto, Some classes of operators related to paranormal and log-hyponormal operators, Math. Japon., 51(3), 2000, 395–402.
- [20] M. Ito, Some classes of operators associated with generalized Aluthge transformation, Sut J. Math., 35(1), 1999, 149–165.
- [21] I. H. Jeon, B.P.Duggal, *p-hyponormal operators and quasisimilarity*, Integral Equation Operator Theory, 49, 2004, 397-403.
- [22] Kyung Hee Jin, On unbounded subnormal operators, Bull. Korean Math. Soc., 30, 1993, 65–70.
- [23] I. H. Jeon, J.I. Lee, A. Uchiyama, On quasisimilarity for log-hyponormal operator, Glasgow Math. J., 46, 2004, 169–176.
- [24] D. Kečkić, Orthogonality of the range and the kernel of some elementary operators, Proc. Amer. Math. Soc., 128, 2000, 3369–3377.
- [25] K.B. Laursen, M.M.Neumann, An introduction to local spectral theory, Lond. Math. Soc.Monographs (NS), Oxford University Press, 2000.
- [26] M. Mbekhta, Généralisation de la décomposition de Kato aux opérateurs paranormaux et spectraux, Glasgow Math. J., 29, 1987, 159-175.

- [27] M. O. Otieno, On intertwining and w-hyponormal operators, Opuscula Math., 25(2), 2005, 275–285.
- [28] S. Ota, K. Schmudgen, On some classes of unbounded operators, Integral Equations Operator theory, 12, 1989, 211-226.
- [29] V. Rakočević, On a class of operators, Math. Vesnik., **37**, 1985, 423-426.
- [30] V. Rakočević, Operators obeying a-Weyl's theorem, Rev. Roumaine Math. Pures Appl., 10, 1986, 915–919.
- [31] M. Radjabalipour, An extension of Putnam-Fuglede theorem for hyponormal operators, Math. Z., 194, 1987, 117-120.
- [32] M.H.M. Rashid, H. Zguitti, Weyl type theorems and class A(s,t) operators, Math. Ineq. Appl., 14(3), 2011, 581-594.
- [33] M.H.M. Rashid, Class wA(s,t) operators and quasisimilarity, Port. Math., **69(4)**, 2012, 305–320.
- [34] V.S. Shul'man, On linear equations with normal coefficients, Soviet Math. Dokl., 27, 1981, 726–729.
- [35] K. Takahashi, On the converse of Putnam-Fuglede theorem, Acta Sci. Math.(Szeged), 43, 1981, 123–125.
- [36] A. Turnšek, Generalized Anderson's inequality, J. Math. An. Appl., 263, 2001, 121– 134.
- [37] A. Turnšek, Orthogonality in C_p classes, Mh. Math., 132, 2001, 349–354.
- [38] A. Uchiyama, K. Tanahashi, J. I. Lee, Spectrum of class A(s,t) operators, Acta Sci. Math.(Szeged), 70, 2004, 279–287.
- [39] L. R. Williams, Quasi-similarity and hyponormal operators, Integral Equation Operator Theory, 5, 1981, 678-686.
- [40] H. Zguitti, A note on generalized Weyls theorem, J. Math. Anal. Appl., 316(1), 2006, 373–381.

M.H.M.Rashid Department of Mathematics & Statistics, Faculty of Science, P.O.Box 7, Mu'tah University, Al-Karak, Jordan E-mail:malik_okasha@yahoo.com

Received 12 September 2016 Accepted 25 November 2016