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A Rearrangement Estimate for the Generalized Multilin-
ear Anisotropic Fractional Integrals
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Abstract. In this paper, author studies Lp1
× Lp2

× . . . × Lpk
boundedness of the generalized

multilinear anisotropic fractional integrals. We give a new proof of the Hardy-Littlewood-Sobolev
multilinear anisotropic fractional integration theorem, based on a pointwise estimate of the rear-
rangement multilinear anisotropic fractional type integral.
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1. Introduction

Fractional maximal function and fractional integral is an important technical tool in
harmonic analysis, real analysis and partial differential equations. Multilinear fractional
maximal operator and multilinear fractional integral operator and related topics have
been areas of research of many mathematicians such as R.Coifman and L. Grafakos [5], L.
Grafakos [6, 7], L. Grafakos and N. Kalton [8], C.E. Kenig and E.M. Stein [12], Y. Ding
and S. Lu [11] and others.

The purpose of this article is to describe several results about generalized multilinear
anisotropic fractional integral operators. We study Lp1 × Lp2 × . . . × Lpk boundedness
of the generalized multilinear anisotropic fractional integrals. We give a new proof of the
Hardy-Littlewood-Sobolev multilinear anisotropic fractional integration theorem, based on
a pointwise estimate of the rearrangement generalized multilinear anisotropic fractional
integral.

2. Rearrangements of functions

Let Rn is the n-dimensional Euclidean space of points x = (x1, ..., xn) with norms |x| =(∑n
i=1 x

2
i

)1/2
, Sn−1 = {x ∈ Rn : |x| = 1}. Let λ > 0, a = (a1, . . . , an), a1 > 0, . . . , an > 0,

d = a1 + . . .+ an, δλx = (λa1x1, . . . , λ
anxn).
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Let ρ(x) be a non-isotropic norm on Rn defined as the unique positive solution of the
equation

n∑
j=1

x2
j

ρ(x)2aj
= 1.

Note that ρ(x) is equivalent to
∑n

i=1 |xi|1/ai , i.e.,

c1ρ(x) ≤
n∑
i=1

|xi|1/ai ≤ c2ρ(x)

for certain positive c1 and c2 independent of x ( see [2]).

It is immediate that ρ(δλx) = λ ρ(x) for all λ > 0, x ∈ Rn. With this norm, Rn is
a space of homogeneous type in the sense of Coifman and Weiss [4] with homogeneous
dimension d = |a|. In particular, there is a constant c0 ≥ 1 such that ρ(x+y) ≤ c0 (ρ(x)+
ρ(y)) for all x, y ∈ Rn.

One has the polar decomposition

x = δλ σ (1)

with σ ∈ Sn−1, r = ρ(x) and dx = rd−1drJ(σ)dσ, where J(σ) is a smooth and nonnegative
function of σ ∈ Sn−1 and is even in each of variables σ1, . . . , σn.

The isotropic and anisotropic balls of radius r and center x are defined

B(x, r) = {y ∈ Rn : |x− y| < r},

E(x, r) = {y ∈ Rn : ρ(x− y) < r},

respectively.

For 1 ≤ p <∞ let Lp(Rn) be the space of all measurable functions g on Rn with finite
norm

‖g‖Lp(Rn) =

(∫
Rn
|g(x)|pdx

)1/p

.

Let g be a measurable function on Rn. The distribution function of g is defined by the
equality

λg(t) = |{x ∈ Rn : |g(x)| > t}| , t ≥ 0.

We shall denote by L0(Rn) the class of all measurable functions g on Rn, which are
finite almost everywhere and such that λg(t) <∞ for all t > 0 (see [13]).

If a function g belongs to L0(Rn), then its non-increasing rearrangement is defined to
be the function g∗ which is non-increasing on ]0,∞[ equimeasurable with |g(x)| :

|{t > 0 : g∗(t) > s}| = λg(s)

for all s ≥ 0.
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Set

g∗∗(t) =
1

t

∫ t

0
g∗(s) ds.

Moreover, by the Hardy-Littlewood theorem (see [3], p. 44), for every f1, f2 ∈ L0(Rn),∫
Rn
|f1(x)f2(x)| dx ≤

∫ ∞
0

f∗1 (t)f∗2 (t) dt.

It is well known that if p > 1, then
(∫∞

0 (g∗∗(t))p dt
)1/p

is comparable with the Lp(Rn)
norm of g.

For 1 ≤ p <∞ the weak Lp space WLp(Rn) is the set of all locally integrable functions
g on Rn with finite norm

‖g‖WLp(Rn) = sup
t>0

t λg(t)
1/p.

Equimeasurable rearrangements of functions play an important role in various fields
of mathematics. Note some properties of the rearrangement (see, for example [3]):

1) if 0 < t < t+ s, then

(g + h)∗ (t+ s) ≤ g∗(t) + h∗(s),

2) if 0 < p <∞, then ∫
Rn

|g(x)|p dx =

∫ ∞
0

(g∗(t))p dt,

3) for any t > 0

sup
|E|=t

∫
E
|g(x)| dx =

∫ t

0
g∗(s) ds.

Let k ≥ 2 be an integer and θj (j = 1, 2, · · · , k) be a fixed, distinct and nonzero real
numbers.

Lemma 1. [9] Let f1, f2, . . . , fk ∈ L0(Rn), k ≥ 2. Then for all x ∈ Rn and nonzero real
numbers θ1, . . . , θk∫

Rn
|f1(x− θ1y)f2(x− θ2y) · · · fk(x− θky)|dy ≤ Cθ

∫ ∞
0

f∗1 (t)f∗2 (t) · · · f∗k (t)dt, (2)

where Cθ = |θ1 . . . θk|−n.

3. A rearrangement estimate for the generalized multilinear fractional
integrals

By f we denote (f1, f2, · · · , fk) and define

f∗(t) = f∗1 (t) . . . f∗k (t),
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f∗∗(t) =
1

t

∫ t

0
f∗1 (s) . . . f∗k (s) ds, t > 0.

Let k ≥ 2 be an integer and θj (j = 1, 2, · · · , k) be fixed and nonzero real numbers.
The analogy of O’Neil inequality (see, [14]) for k-linear integral operator by

(f , g) (x) =

∫
Rn
g(y)f1 (x− θ1y) · · · fk (x− θky) dy,

is correct

Lemma 2. [9] Let f1, f2, . . . , fk ∈ L0(Rn). Then for all 0 < t < ∞, the following
inequality holds

(f , g)∗∗ (t) ≤ Cθ
(
t f∗∗(t) g∗∗(t) +

∫ ∞
t

f∗(s) g∗(s) ds

)
. (3)

Lemma 3. [9] Let f1, f2, . . . , fk ∈ L0(Rn). Then for any t > 0

(f , g)∗∗ (t) ≤ Cθ
∫ ∞
t

f∗∗(t)g∗∗(t)dt. (4)

In the following we define the k-sublinear anisotropic fractional maximal operator by

MΩ,αf(x) = sup
r>0

1

rd−α

∫
E(0,r)

|Ω(y)||f1 (x− θ1y) . . . fk (x− θky) | dy,

the k-linear anisotropic fractional integral operator by

RΩ,αf(x) =

∫
Rn

Ω(y)

ρ(y)d−α
f1 (x− θ1y) . . . fk (x− θky) dy

and the generalized k-linear anisotropic fractional integral operator by

Kαf(x) =

∫
Rn
Kα(y)f1 (x− θ1y) . . . fk (x− θky) dy,

where Kα ∈WLd/(d−α)(Rn).

Note that, if Kα(x) = Ω(x)
ρ(x)d−α

, 0 < α < d, Ω ∈ Ld/(d−α)(S
n−1), then K∗α(t) =(

A
nt

)(d−α)/d
, K∗∗α (t) = d

αK
∗
α(t), whereA = ‖Ω‖d/(d−α)

Ld/(d−α)(Sn−1)
and thereforeKα ∈WLd/(d−α)(Rn).

And also, if Kα(x) = Ω(x)
ρ(x)d−α

, 0 < α < d, Ω ∈ Ld/(d−α)(S
n−1), then Kα ∈WLd/(d−α)(Rn).

The following lemma in the isotropic case was proved in [11]. In the anisotropic case
it is proved analogously.

Lemma 4. Suppose that 0 < α < d, Ω ∈ Ls(Sn−1), s ≥ 1. Then

MΩ,αf(x) ≤ R|Ω|,α(|f |)(x), (5)

where |f | = (|f1|, . . . , |fk|).
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Proof. Indeed, for all r > 0, we have

R|Ω|,α(|f |)(x) ≥
∫
E(0,r)

Ω(y)

ρ(y)d−α
f1 (x− θ1y) . . . fk (x− θky) dy

≥ 1

rd−α

∫
E(0,r)

|Ω(y)||f1 (x− θ1y) . . . fk (x− θky) | dy,

where E(0, r) is the anisotropic ball centered at the origin of radius r. Taking supremum
over all r > 0, we get (5).

For the generalized multilinear fractional integrals Kαf the following theorem is valid:

Theorem 1. Let Kα ∈WLd/(d−α)(Rn), 0 < α < d. Then

(Kαf)∗ (t) ≤ (Kαf)∗∗ (t) ≤ C1

(
t
α
d
−1

∫ t

0
f∗(s) ds+

∫ ∞
t

s
α
d
−1 f∗(s) ds

)
, (6)

where C1 =
(
d
α

)2
Cθ ‖Kα‖WLd/(d−α).

Proof. Let Kα ∈WLd/(d−α)(Rn), then

K∗α(t) ≤ ‖Kα‖WLd/(d−α) t
α
d
−1, K∗∗α (t) ≤ d

α
K∗α(t).

Taking into account inequality (3) we have (6).

Corollary 1. Suppose that 0 < α < d, Ω ∈ Ld/(d−α)(S
n−1). Then the following inequality

(RΩ,αf)∗ (t) ≤ (RΩ,αf)∗∗ (t) ≤ C2

(
t
α
d
−1

∫ t

0
f∗(s) ds+

∫ ∞
t

s
α
d
−1 f∗(s) ds

)
,

holds, where C2 =
(
d
α

)
Cθ

(
A
d

)(d−α)/d
, A = ‖Ω‖d/(d−α)

Ld/(d−α)(Sn−1)
.

From Corollary 1 and Lemma 4 we get

Corollary 2. Suppose that 0 < α < d, Ω ∈ Ld/(d−α)(S
n−1). Then the following inequality

(MΩ,αf)∗ (t) ≤ (MΩ,αf)∗∗ (t) ≤ C2

(
t
α
d
−1

∫ t

0
f∗(s) ds+

∫ ∞
t

s
α
d
−1 f∗(s) ds

)
,

holds.

Analogously we have

Theorem 2. Let Kα ∈WLd/(d−α)(Rn), 0 < α < d. Then

(Kαf)∗ (t) ≤ (Kαf)∗∗ (t) ≤ C1

∫ ∞
t

s
α
d
−1 f∗∗(s) ds. (7)
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Corollary 3. Suppose that 0 < α < d, Ω ∈ Ld/(d−α)(S
n−1). Then the following inequality

(RΩ,αf)∗ (t) ≤ (RΩ,αf)∗∗ (t) ≤ C2

∫ ∞
t

s
α
d
−1f∗∗(s) ds

holds.

Corollary 4. Suppose that 0 < α < d, Ω ∈ Ld/(d−α)(S
n−1). Then the following inequality

(MΩ,αf)∗ (t) ≤ (MΩ,αf)∗∗ (t) ≤ C2

∫ ∞
t

s
α
d
−1f∗∗(s) ds

holds.

4. Lp1 × Lp2 × · · · × Lpk boundedness of generalized multilinear fractional
integral operators

In the sequel we shall use the following Lemma, which was proved in [1].

Lemma 5. [1] Let 0 < p ≤ 1, p ≤ q < ∞ and k be a non-negative measurable functions
and u, v be weight functions on (0,∞) and

Tϕ(t) =

∫ ∞
0

k(t, τ)ϕ(τ)dτ.

Then the inequality(∫ ∞
0

(Tϕ(t))q u(t)dt

)1/q

≤ C
(∫ ∞

0
ϕ(t)pv(t)dt

)1/p

(8)

holds for all non-negative non-increasing functions ϕ if and only if

C0 = sup
r>0

(∫ ∞
0

(∫ r

0
k(t, τ)dτ

)q
u(t)dt

)1/q (∫ r

0
v(t)dt

)−1/p

<∞.

The constant C = C0 is the best constant in (8).

Corollary 5. Let 0 < p ≤ 1, p ≤ q <∞, 0 < α < d.
Then the inequality(∫ ∞

0

(∫ ∞
t

τ
α
d
−1ϕ(τ) dτ

)q
dt

)1/q

≤ C0

(∫ ∞
0

ϕ(t)p dt

)1/p

holds for all non-negative non-increasing functions ϕ if and only if

1

p
− 1

q
=
α

d
, (9)

where C0 =
(
d
α

)1+ 1
q′ B

(
d
α , q + 1

) 1
q , B(s, r) =

∫ 1
0 (1− τ)s−1τ r−1dτ is the Beta function.
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It is said that p is the harmonic mean of p1, p2, . . . , pk > 1, if 1
p = 1

p1
+ 1

p2
+ . . . + 1

pk
.

If fj ∈ Lpj (Rn), j = 1, 2, . . . , k, then we say that f ∈ Lp1 × Lp2 × · · · × Lpk(Rn).

Theorem 3. Suppose that 0 < α < d,Kα ∈ WLd/(d−α)(Rn). Let p be the harmonic

mean of p1, p2, . . . , pk > 1 and q satisfy 1
q = 1

p −
α
d . Then Kαf is bounded operator from

Lp1 × Lp2 × · · · × Lpk(Rn) to Lq(Rn) for d/(d + α) ≤ p < d/α (equivalently 1 ≤ q < ∞)
and

‖Kαf‖Lq(Rn) ≤ C
k∏
j=1

‖fj‖Lpj (Rn),

where C > 0 independent of f .

Proof. Case I. 1 < p < d
α ( equivalently d

d−α < q <∞ ). Let us first prove Theorem 3
in this case.

Taking into account equality (2) and inequality (6) we have

‖Kαf‖Lq(Rn) = ‖(Kαf)∗‖Lq(0,∞)

≤ C1

(∫ ∞
0

tq(α/d−1)

(∫ t

0
f∗(s) ds

)q
dt

)1/q

+ C1

(∫ ∞
0

(∫ ∞
t

sα/d−1f∗(s) ds

)q
dt

)1/q

,

where C > 0 independent of f .
Applying Hardy inequality we obtain, that for the validity of the following inequality(∫ ∞

0
tq(α/d−1)

(∫ t

0
f∗(s)ds

)q
dt

)1/q

≤ C3

(∫ ∞
0

f∗(s)pds

)1/p

it is necessary and sufficient that the following condition is satisfied

sup
t>0

(∫ ∞
t

sq(α/d−1)ds

)1/q (∫ t

0
ds

)1/p′

= C4 sup
t>0

t
α
d
−
(

1
p
− 1
q

)
<∞⇔ 1/p− 1/q = α/d,

where p′ = p
p−1 .

For the validity of the following inequality(∫ ∞
0

(∫ ∞
t

s
α−d
d f∗(s) ds

)q
dt

)1/q

≤ C5

(∫ ∞
0

f∗(s)pds

)1/p

it is necessary and sufficient satisfying the following condition

sup
t>0

(∫ t

0
ds

)1/q (∫ ∞
t

s(α/d−1)(1−p′)ds

)1/p′

= C6 sup
t>0

t
α
d
−
(

1
p

+ 1
q

)
<∞⇔ 1/p− 1/q = α/d.
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Consequently applying equality (2) we obtain

‖Kαf‖Lq(Rn) ≤ C1(C3 + C5) ‖f∗‖Lp(0,∞)

≤ C1(C3 + C5)

k∏
j=1

‖f∗j ‖Lpj (0,∞) = C1(C3 + C5)

k∏
j=1

‖fj‖Lpj (Rn).

Case II. d
d+α ≤ p ≤ 1 ( equivalently 1 ≤ q ≤ d

d−α). Now let’s prove Theorem 3 for this
case.

Taking into account equality (2) and inequality (7) we have

‖Kαf‖Lq(Rn) = ‖(Kαf)∗‖Lq(0,∞) ≤ ‖(Kαf)∗∗‖Lq(0,∞)

≤ C1

(∫ ∞
0

(∫ ∞
t

sα/d−1f∗∗(s)ds

)q
dt

)1/q

.

By virtue of Lemma 2 for the validity of the following inequality(∫ ∞
0

(∫ ∞
t

sα/d−1f∗∗(s)ds

)q
dt

)1/q

≤ C6

(∫ ∞
0

f∗∗(s)pds

)1/p

it is necessary and sufficient satisfying the condition (9).
Consequently applying equality (2), Hardy inequality for monotonic functions and

Holder inequality we obtain

‖Kαf‖Lq(Rn) = ‖(Kαf)∗‖Lq(0,∞)

≤ C8 ‖f∗∗‖Lp(0,∞) ≤ C9 ‖f∗‖Lp(0,∞)

≤ C9

k∏
j=1

‖f∗j ‖Lpj (0,∞) = C9

k∏
j=1

‖fj‖Lpj (Rn).

Corollary 6. Let 0 < α < d, Ω ∈ Ld/(d−α)(S
n−1), p be the harmonic mean of p1, p2, . . . , pk >

1 and q satisfy 1
q = 1

p−
α
d . Then RΩ,α f is a bounded operator from Lp1×Lp2×· · ·×Lpk(Rn)

to Lq(Rn) for d/(d+ α) ≤ p < d/α (equivalently 1 ≤ q <∞) and

‖RΩ,α f‖Lq(Rn) ≤ C
k∏
j=1

‖fj‖Lpj (Rn),

where C > 0 independent of f .

Corollary 7. Let 0 < α < n, Ω ∈ Ln/(n−α)(S
n−1), p be the harmonic mean of p1, p2, . . . , pk >

1 and q satisfy 1
q = 1

p −
α
n . Then the k-linear fractional integral operator

IΩ,αf(x) =

∫
Rn

Ω(y)

|y|n−α
f1 (x− θ1y) . . . fk (x− θky) dy
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is a bounded operator from Lp1 ×Lp2 × · · · ×Lpk(Rn) to Lq(Rn) for n/(n+ α) ≤ p < n/α
(equivalently 1 ≤ q <∞) and

‖IΩ,α f‖Lq(Rn) ≤ C
k∏
j=1

‖fj‖Lpj (Rn),

where C > 0 independent of f .

Corollary 8. Let 0 < α < d, Ω ∈ Ld/(d−α)(S
n−1), p be the harmonic mean of p1, p2, . . . , pk >

1 and q satisfy 1
q = 1

p−
α
d . ThenMΩ,α f is a bounded operator from Lp1×Lp2×· · ·×Lpk(Rn)

to Lq(Rn) for d/(d+ α) ≤ p < d/α (equivalently 1 ≤ q <∞) and

‖MΩ,α f‖Lq(Rn) ≤ C
k∏
j=1

‖fj‖Lpj (Rn),

where C > 0 independent of f .

Remark 1. Note that, Corollary 7 proved in [6], if Ω ≡ 1 and in [11], if Ω ∈ Ls(Sn−1),
s > n/(n− α) and in [9, 10], if Ω ∈ Ln/(n−α)(S

n−1).
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Abstract. In the paper, by the probability-statistical method we find explicit form of the Laplace-
Stieltjes transform of joint distribution of the first passage time of some level ”a” (a > 0) and
overshoot across this level by a complex semi-Markov walk process with a reflecting screen at zero.
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1. Introduction

In the paper [1, p. 61-63] asymptotic behavior of random walks in random medium
with a delaying screen was considered. In [2, p. 160-165] random walk was studied in a
strip. In the paper [3, p. 26-51] asymptotic expansion of distribution was found. In the
paper [4, p. 61-63], various semi-Markov processes with a delaying screen and functional
of these processes were studied. In [5, p. 77-84] the Laplace transform of distribution of
the lower boundary functional of semi-Markov walk process with a delaying screen at zero
was found. In [6, p. 49-60] the Laplace transform of ergodic distribution of semi-Markov
walk process with a negative drift, non-negative jumps and a delaying screen at zero, was
found.

In the present paper we study joint distribution of the first passage moment of some
level ”a” (a > 0) and the overshoot across this level by a complex semi-Markov walk process
with a reflecting screen at zero.

2. Mathematical statement of the problem

Let on probability space (Ω, F, P (·)) be given the sequence
{

ξ+k , η
+
k , ξ

−
k , η

−
k

}

k=1,∞
,

where

http://www.cjamee.org 89 c© 2013 CJAMEE All rights reserved.
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ξ+k , η
+
k , ξ

−
k , η

−
k are identically distributed between themselves positive random variables

are identically.
Denote

Sk =
∣

∣

∣
Sk−1 + ...+ η+

ν(τk−1)
+ η+

ν(τk)
− η−k

∣

∣

∣
, (1)

where S0 = z,

X± (t) =

ν±(t)
∑

i=1

η±i , (2)

τ±k =

k
∑

i=1

ξ±k ; k = 1, 2, ..; τ±0 = 0, (3)

where

v± (t) = min

{

k :
k+1
∑

i=1

ξ±k > t

}

. (4)

The processX(t) = Sk−1+...+η+
ν(τk−1)

+η+
ν(τk)

−η−k if τ±k−1 < t < τ±k is called a complex

semi-Markov walk process with a reflecting screen at zero. One of the realizations of the
process X (t) is of the form

Fig. v± (t) is the number of positive or negative jumps for time t.
Our goal is to find the explicit form of the Laplace-Stieltjes transform of joint distri-

bution of the first passage moment and overshoot of the level a (a > 0).
Let τa be the first passage moment of the level a (a > 0) and γ be an overshoot across

this level.
We assume that ξ+1 has exponential distribution with the parameter λ+.
Denote

K(t, γ|X(0) = z) = P{τa < t, γa > a|X(0) = z}

By total probability formula we have

K(t, γ|X(0) = z) = P{τa < t, γa > γ; ξ−1 > t|X(0) = z}+
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+

∫ t

s=0

∫ a

y=0
P{ξ−1 ∈ ds; sup

0≤u≤s−0
X(u) < a; |X(s)| ∈ dy|X(0) = z}K(t− s, γ|y) =

= P{ξ−1 > t; z +X+(t) > a+ γ}+

+

∫ t

s=0

∫ a

y=0
P{ξ−1 ∈ ds; z +X+(s− 0) < a; |z +X+(s− 0)− ζ−1 | ∈ dy}K(t− s, γ|y)

In view of {|u| < ε} = {−ε < u < ε} we have

K(t, γ|X(0) = z) = P{ξ−1 > t}P{X+(t) > a+ γ − z}+

+

∫ t

s=0

∫ a

y=0
P{ξ−1 ∈ ds; z +X+(s− 0) < a; z +X+(s− 0)−

−ζ−1 ∈ dy; z +X+(s− 0)− ζ−1 > 0}K(t− s, γ|y)+

+

∫ t

s=0

∫ a

y=0
P{ξ−1 ∈ ds; z +X+(s− 0) < a;−z −X+(s− 0)+

+ζ−1 ∈ dy; z +X+(s − 0)− ζ−1 < 0}K(t− s, γ|y)

So, we get an integral equation for K(t, γ|X(0) = z).

K(t, γ|X(0) = z) = P{ξ−1 > t}P{X+(t) > a+ γ − z}+

+

∫ t

s=0

∫ a

y=0
P{ξ−1 ∈ ds; z +X+(s− 0) < a; z +X+(s− 0)− ζ−1 ∈ dy;

z +X+(s− 0)− ζ−1 > 0}K(t− s, γ|y)+

+

∫ t

s=0

∫ a

y=0
P{ξ−1 ∈ ds; z +X+(s− 0) < a;−z −X+(s− 0) + ζ−1 ∈ dy;

z +X+(s − 0)− ζ−1 < 0}K(t− s, γ|y). (5)

Denote K̃(θ, γ|z) =
∫∞

t=0 e
−θtK(t, γ|z), θ > 0

Then (5) takes the form

K̃(θ, γ|z) =

∫ ∞

t=0
e−θtP{ξ−1 > t;X+(t) > a+ γ − z}dt+

+

∫ a

y=0
K̃(θ, γ|y)

∫ ∞

t=0
dyP{X+(t) < a− z;

z +X+(t)− ζ−1 < y; z +X+(t)− ζ−1 > 0}dP{ξ−1 < t}+

+

∫ a

y=0
K̃(θ, γ|y)

∫ ∞

t=0
dyP{X+(t) < a− z;−z −X+(t) + ζ−1 < y;

z +X+(t)− ζ−1 < 0}dP{ξ−1 < t} (6)
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Make a change of variables X+(t) = h. Then (6) takes the form

K̃(θ, γ|z) =

∫ ∞

t=0
e−θtP{ξ−1 > t}dt−

∫ ∞

t=0
e−θtP{ξ−1 > t}P{X+(t) < a+ γ − z}dt+

+

∫ a

y=0
K̃(θ, γ|y)

∫ ∞

t=0
e−θtdy

∫ a−z

h=0
P{ζ−1 > z − y + h; ζ−1 < z + h}dt×

×P{ξ−1 < t}dhP{X+(t) < h}+

∫ a

y=0
K̃(θ, γ|y)

∫ ∞

t=0
e−θtdy×

×

∫ a−z

h=0
P{ζ−1 < z + y + h; ζ−1 > z + h}dtP{ξ−1 < t}dhP{X+(t) < h} =

=

∫ ∞

t=0
e−θtP{ξ−1 > t}dt−

∫ ∞

t=0
e−θtP{ξ−1 > t}×

×

∞
∑

k=0

P{

∞
∑

i=1

ζ+i < a+ γ − z}P{ν+(t) = k}dt+

+

∫ a

y=0
K̃(θ, γ|y)

∫ ∞

t=0
e−θtdy

∫ a−z

h=0
P{z − y + h < ζ−1 < z + h}dt×

×P{ξ−1 < t}dhP{X+(t) < h}+

+

∫ a

y=0
K̃(θ, γ|y)

∫ ∞

t=0
e−θtdy

∫ a−z

h=0
P{z + h < ζ−1 < z + h+ y}dt×

×P{ξ−1 < t}dhP{X+(t) < h}.

Taking into account X+ (t) =
∑ν+(t)

i=1 η+i , from the last equation we have

K̃(θ, γ|z) =

=

∫ ∞

t=0
e−θtP{ξ−1 > t}dt−

∫ ∞

t=0
e−θtP{ξ−1 > t}

∞
∑

k=0

×

×P{
k

∑

i=1

ζ+i < a+ γ − z}P{ν+(t) = k}dt−

−

∫ a

y=0
K̃(θ, γ|y)

∫ ∞

t=0
e−θtdy

∫ a−z

h=0
P{ζ−1 < z − y + h}dtP{ξ−1 < t}dhP{X+(t) < h}+

+

∫ a

y=0
K̃(θ, γ|y)

∫ ∞

t=0
e−θtdy

∫ a−z

h=0
P{ζ−1 < z + h+ y}dtP{ξ−1 < t}dhP{X+(t) < h}

From the fact that there should be z − y + h > 0 or h > max (0, y − z), we have

K̃(θ, γ|z) =
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=

∫ ∞

t=0
e−θtP{ξ−1 > t}dt−

∫ ∞

t=0
e−θtP{ξ−1 > t}

∞
∑

k=0

P{

k
∑

i=1

ζ+i < a+ γ− z}P{ν+(t) = k}dt−

−

∫ z

y=0
K̃(θ, γ|y)

∫ a−z

h=0
dyP{ζ−1 < −y + h+ z}

∫ ∞

t=0
e−θtdh×

×
∞
∑

k=0

P{
k

∑

i=1

ζ+i < h}P{ν+(t) = k}dtP{ξ−1 < t}+

+

∫ a

y=z

K̃(θ, γ|y)

∫ a−z

h=y−z

dyP{ζ−1 < −y + h+ z}

∫ ∞

t=0
e−θtdh×

×
∞
∑

k=0

P{
k

∑

i=1

ζ+i < h}P{ν+(t) = k}dtP{ξ−1 < t}+

+

∫ a

y=0
K̃(θ, γ|y)

∫ a−z

h=0
dyP{ζ−1 < y + h+ z}

∫ ∞

t=0
e−θtdhv×

×
∞
∑

k=0

P{
k

∑

i=1

ζ+i < h}P{ν+(t) = k}dtP{ξ−1 < t}.

Simplify this equation. More exactly, taking into account

1 =

∞
∑

k=0

P{ν+(t) = k} = P{ν+(t) = 0}+ P{ν+(t) ≥ 1}

the last equation takes the following form

K̃(θ, γ|z) =

∫ ∞

t=0
e−θtP{ξ−1 > t}dt−

−

∫ ∞

t=0
e−θtP{ξ−1 > t}ε(a+ γ − z)P{ν+(t) = 0}dt−

−

∫ ∞

t=0
e−θtP{ξ−1 > t}

∞
∑

k=1

P{

k
∑

i=1

ζ+i < a+ γ − z}P{ν+(t) = k}dt−

−

∫ z

y=0
K̃(θ, γ|y)

∫ a−z

h=0
dyP{ζ−1 < −y + h+ z}

∫ ∞

t=0
e−θtdhε(h)P{ν+(t) = 0}dtP{ξ−1 < t}−

−

∫ z

y=0
K̃(θ, γ|y)

∫ a−z

h=0
dyP{ζ−1 < −y + h+ z}×

×

∫ ∞

t=0
e−θtdh

∞
∑

k=1

P{

k
∑

i=1

ζ+i < h}P{ν+(t) = k}dtP{ξ−1 < t}− (7)
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−

∫ a

y=z

K̃(θ, γ|y)

∫ a−z

h=y−z

dyP{ζ−1 < −y+h+z}

∫ ∞

t=0
e−θtdhε(h)P{ν+(t) = 0}dtP{ξ−1 < t}−

−

∫ a

y=z

K̃(θ, γ|y)

∫ a−z

h=y−z

dyP{ζ−1 < −y + h+ z}×

×

∫ ∞

t=0
e−θtdh

∞
∑

k=1

P{

k
∑

i=1

ζ+1 < h}P{ν+(t) = k}dtP{ξ−1 < t}+

+

∫ a

y=0
K̃(θ, γ|y)

∫ a−z

h=0
dyP{ζ−1 < y + h+ z}

∫ ∞

t=0
e−θtdhε(h)P{ν+(t) = 0}dtP{ξ−1 < t}+

+

∫ a

y=0
K̃(θ, γ|y)

∫ a−z

h=0
dyP{ζ−1 < y + h+ z}×

×

∫ ∞

t=0
e−θtdh

∞
∑

k=1

P{

k
∑

i=1

ζ+1 < h}P{ν+(t) = k}dtP{ξ−1 < t}

By virtue of ε(h) =

{

0, h < 0
1, h > 0

(7) takes the form

K̃(θ, γ|z) =

∫ ∞

t=0
e−θtP{ξ−1 > t}dt−

∫ ∞

t=0
e−θtP{ξ−1 > t}P{ν+(t) = 0}dtε(a + γ − z)−

−

∫ ∞

t=0
e−θtP{ξ−1 > t}

∞
∑

k=1

P{

k
∑

i=1

ζ+1 < a+ γ − z}P{ν+(t) = k}dt−

−

∫ z

y=0
K̃(θ, γ|y)dyP{ζ−1 < −y + z}

∫ ∞

t=0
e−θtP{ν+(t) = 0}dtP{ξ−1 < t}−

−

∫ z

y=o

K̃(θ, γ|y)

∫ a−z

h=0
dyP{ζ−1 < −y + h+ z}dh×

×
∞
∑

k=1

P{
k

∑

i=1

ζ+i < h}

∫ ∞

t=0
e−θtP{ν+(t) = k}dtP{ξ−1 < t}−

−

∫ a

y=z

K̃(θ, γ|y)dyP{ζ−1 < −y + z}

∫ ∞

t=0
e−θtP{ν+(t) = 0}dtP{ξ−1 < t}−

−

∫ a

y=z

K̃(θ, γ|y)

∫ a−z

h=y−z

dyP{ζ−1 < −y + h+ z}dh

∞
∑

k=1

P{

k
∑

i=1

ζ+i < h}×

×

∫ ∞

t=0
e−θtP{ν+(t) = k}dtP{ξ−1 < t}+

+

∫ a

y=0
K̃(θ, γ|y)dyP{ζ−1 < y + z}

∫ ∞

t=0
e−θtP{ν+(t) = 0}dtP{ξ−1 < t}+
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+

∫ a

y=0
K̃(θ, γ|y)

∫ a−z

h=0
dyP{ζ−1 < y + h+ z}dh

∞
∑

k=1

P{

k
∑

i=1

ζ+i < h}×

×

∫ ∞

t=0
e−θtP{ν+(t) = k}dtP{ξ−1 < t}. (8)

Thus, when ξ+1 , ξ
−
1 , ζ

+
1 , ζ−1 have exponential distribution, we get integral equation (8).

When ξ+1 has exponential distribution ξ−1 , ζ
+
1 , ζ−1 have Erlang distribution of any order,

and one can get an integral equation of type (8). Solve equation (8) in the case when ξ+1 ,
ξ−1 , ζ

+
1 , ζ−1 have Erlang distribution of first order.
Denote

˜̃
K(θ, χ|z) =

∫ ∞

γ=0
e−χγdγK̃(θ, γ|z), χ > 0.

Then (4) takes the form

˜̃
K(θ, χ|z) = −

∫ ∞

t=0
e−θtP{ξ−1 > t}P{ν+(t) = 0}dt

∫ ∞

γ=0
dγε(a+ γ − z)−

−

∫ ∞

t=0
e−θtP{ξ−1 > t}

∞
∑

k=1

P{ν+(t) = k}

∫ ∞

γ=0
e−χγdγP{

k
∑

i=1

ζ+1 < a+ γ − z}−

−

∫ z

y=0

˜̃
K(θ, γ|y)dyP{ζ−1 < −y + z}

∫ ∞

t=0
e−θtP{ν+(t) = 0}dtP{ξ−1 < t}−

−

∫ z

y=o

˜̃
K(θ, γ|y)

∫ a−z

h=0
dyP{ζ−1 < −y + h+ z}dh

∞
∑

k=1

P{
k

∑

i=1

ζ+i < h}×

×

∫ ∞

t=0
e−θtP{ν+(t) = k}dtP{ξ−1 < t}−

−

∫ a

y=z

˜̃
K(θ, γ|y)dyP{ζ−1 < −y + z}

∫ ∞

t=0
e−θtP{ν+(t) = 0}dtP{ξ−1 < t}−

−

∫ a

y=z

˜̃
K(θ, γ|y)

∫ a−z

h=y−z

dyP{ζ−1 < −y + h+ z}dh

∞
∑

k=1

P{

k
∑

i=1

ζ+i < h}×

×

∫ ∞

t=0
e−θtP{ν+(t) = k}dtP{ξ−1 < t}+

+

∫ a

y=0

˜̃
K(θ, γ|y)dyP{ζ−1 < y + z}

∫ ∞

t=0
e−θtP{ν+(t) = 0}dtP{ξ−1 < t}+

+

∫ a

y=0

˜̃
K(θ, γ|y)

∫ a−z

h=0
dyP{ζ−1 < y + h+ z}dh×

×

∞
∑

k=1

P{

k
∑

i=1

ζ+i < h}

∫ ∞

t=0
e−θtP{ν+(t) = k}dtP{ξ−1 < t}.
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Now let

P{ξ±1 < t} =

{

0, t < 0
1− e−λ±t, λ± > 0, t > 0

ζ±1 < x} =

{

0, x < 0
1− e−µ±x, x > 0, µ± > 0

Then we get

˜̃
K(θ, χ|z) = −

e(a−z)χ

λ+ + λ− + θ
+

+
λ+µ+

(λ+ + λ− + θ) (λ+µ+ − (χ+ µ+)(λ+ + λ− + θ))
e
−

µ+(λ−+θ)(a−z)

λ++λ−+θ +

+
λ−µ−

λ+ + λ− + θ
e−µ−z

∫ z

y=0

˜̃
K(θ, χ|y)eµ−ydy+

+
λ+λ−µ+µ−

(λ+ + λ− + θ) (λ+µ+ − (µ+ + µ−) (λ+ + λ− + θ))
×

×

(

e

(

λ+µ+
λ++λ−+θ

−µ+−µ−)(a−z)
)

− 1

)

e−µ−z

∫ z

y=0

˜̃
K(θ, χ|y)eµ−ydy+

+
λ−µ−

λ+ + λ− + θ
e−µ−z

∫ a

y=z

˜̃
K(θ, χ|y)eµ−ydy+

+
λ+λ−µ+µ−

(λ+ + λ− + θ) (λ+µ+ − (µ+ + µ−) (λ+ + λ− + θ))
e−µ−z×

×

∫ a

y=z

(e
(

λ+µ+
λ++λ−+θ

−µ+−µ−)(a−z)
− e

(
λ+µ+

λ++λ−+θ
−µ+−µ−)(y−z)

) ˜̃K(θ, χ|y)eµ−ydy+

+
λ−µ−

λ+ + λ− + θ
e−µ−z

∫ a

y=0

˜̃
K(θ, χ|y)e−µ−ydy+

+
λ+λ−µ+µ−

(λ+ + λ− + θ) (λ+µ+ − (µ+ + µ−) (λ+ + λ− + θ))
×

×

(

e

(

λ+µ+
λ++λ−+θ

−µ+−µ−)(a−z
)

− 1

)

e−µ−z

∫ a

y=0

˜̃
K(θ, χ|y)e−µ−ydy. (9)

Having multiplied the both sides by eµ−z and differentiated with respect to z, we get

eµ−z
[

µ−
˜̃
K(θ, χ, z) + ˜̃

K ′(θ, χ, z)
]

= −
(µ− − χ)eaχ

λ+ + λ− + θ
e(µ−−χ)z+

+
λ+µ+(µ−(λ+ + λ− + θ) + µ+(λ− + θ))

(λ+ + λ− + θ)2 (λ+µ+ − (χ+ µ+)(λ+ + λ− + θ))
e
−

µ+(λ−+θ)a

λ++λ−+θ
+
(

µ+(λ−+θ)

λ++λ−+θ
+µ−

)

z
+

+
λ−µ−

λ+ + λ− + θ

˜̃
K(θ, χ, z)eµ−z +

λ+λ−µ+µ−

(λ+ + λ− + θ) (λ+µ+ − (µ+ + µ−) (λ+ + λ− + θ))
×
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×

[

−
λ+µ+ − (µ+ + µ−) (λ+ + λ− + θ)

λ+ + λ− + θ
e
(

λ+µ+
λ++λ−+θ

−µ+−µ−)(a−z)
×

×

∫ z

y=0

˜̃
K(θ, χ|y)eµ−ydy +

(

e

(

λ+µ+
λ++λ−+θ

−µ+−µ−)(a−z
)

− 1

)

˜̃
K(θ, χ, z)eµ+z

]

+

−
λ−µ−

λ+ + λ− + θ

˜̃
K(θ, χ, z)eµ+z+

−
λ+λ−µ+µ−

(λ+ + λ− + θ) (λ+µ+ − (µ+ + µ−) (λ+ + λ− + θ))

(

e

(

λ+µ+
λ++λ−+θ

−µ+−µ−)(a−z
)

− 1

)

×

× ˜̃
K(θ, χ, z)eµ−z −

λ+λ−µ+µ−

(λ+ + λ− + θ) (λ+µ+ − (µ+ + µ−) (λ+ + λ− + θ))
×

×
λ+µ+ − (µ+ + µ−) (λ+ + λ− + θ)

λ+ + λ− + θ
e−

(

λ+µ+
λ++λ−+θ

−µ+−µ−)z

)

×

×

[
∫ a

y=z

(e

(

λ+µ+
λ++λ−+θ

−µ+−µ−)a
)

− e

(

λ+µ+
λ++λ−+θ

−µ+−µ−)y
)

) ˜̃K(θ, χ|y)eµ−ydy

]

−

−
λ+λ−µ+µ−

(λ+ + λ− + θ) (λ+µ+ − (µ+ + µ−) (λ+ + λ− + θ))

λ+µ+ − (µ+ + µ−) (λ+ + λ− + θ)

λ+ + λ− + θ
×

×e−

(

λ+µ+
λ++λ−+θ

−µ+−µ−)(a−z)

)

∫ a

y=0

˜̃
K(θ, χ|y)e−µ−ydy. (10)

We differentiate the obtained equation by z. As a result, we get a second order inhomo-
geneous equation with constant coefficients

˜̃
K ′′(θ, χ, z)+(µ−+

µ+λ+

λ+ + λ− + θ
) ˜̃K ′(θ, χ, z)+

[

λ+µ+µ−

λ+ + λ− + θ
+

λ+λ−µ+µ−

(λ+ + λ− + θ)2

]

˜̃
K(θ, χ, z) =

=
(µ− − χ)(µ+(λ− + θ) + χ(λ+ + λ− + θ))

(λ+ + λ− + θ)2
e(a−z)χ. (11)

The roots of the appropriate characteristic equation are

k1;2(θ) =

−(µ− + µ+λ+

λ++λ−+θ
)±

√

(µ− + µ+λ+

λ++λ−+θ
)2 − 4

[

λ+µ+µ−

λ++λ−+θ
+ λ+λ−µ+µ−

(λ++λ−+θ)2

]

2

The solution of equation (11) is

˜̃
K(θ, χ, z) =

(µ− − χ)((µ+(λ− + θ) + χ(λ+ + λ− + θ))

(λ+ + λ− + θ)2(χ+ k1(θ))(χ+ k2(θ))
eχ(a−z)+

+C1(θ)e
k1(θ)z + C2(θ)e

k2(θ)z , (12)

where C1(θ) and C2(θ) are constant with respect to z.
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Find C1(θ) and C2(θ).
In (9), having substituted z = a, we get an equation with respect to C1(θ) and C2(θ)

C1(θ)

[

ek1a −
λ−µ−

λ+ + λ− + θ
e−µ−a

[

1

k1(θ) + µ−

(

e(k1(θ)+µ−)a − 1
)

+

+
1

k1(θ)− µ−

(

e(k1(θ)−µ−)a − 1
)

]]

+

+C2(θ)

[

ek2a −
λ−µ−

λ+ + λ− + θ
e−µ−a

[

1

k2(θ) + µ−

(

e(k2(θ)+µ−)a − 1
)

+

+
1

k2(θ)− µ−

(

e(k21(θ)−µ−)a − 1
)

]]

=

= −
(µ− − χ)((µ+(λ− + θ) + χ(λ+ + λ− + θ))

(λ+ + λ− + θ)2(χ+ k1(θ))(χ+ k2(θ))
−

−
µ+ + χ

µ+(λ− + θ) + χ(λ+ + λ− + θ)
+

λ−µ−

λ+ + λ− + θ
×

×
(µ− − χ)(µ+(λ− + θ) + χ(λ+ + λ− + θ))

(λ+ + λ− + θ)2(χ+ k1(θ))(χ+ k2(θ))
×

×

[

1

µ− − χ
e(µ−−χ)a −

1

µ− + χ
e−(µ−+χ)a −

2χ

(µ− + χ)(µ− − χ)

]

e(χ−µ−)a.

In (10), having substituted z = a, we get an equation with respect to C1(θ) and C2(θ)

C1(θ)

[

(µ− + k1(θ))e
k1(θ)a +

λ+λ−µ+µ−

(λ+ + λ− + θ)2
e−µ−a×

×

[

1

k1(θ) + µ−

(

e(k1(θ)+µ−)a − 1
)

+
1

k1(θ)− µ−

(

e(k1(θ)−µ−)a − 1
)

]]

+

+C2(θ)

[(

µ− + k2(θ))e
k2(θ)a +

λ+λ−µ+µ−

(λ+ + λ− + θ)2
e−µ−a ×

×

[

1

k2(θ) + µ−

(

e(k2(θ)+µ−)a − 1
)

+
1

k2(θ)− µ−

(

e(k2(θ)−µ−)a − 1
)

]]

=

= −
(µ− − χ)2((µ+(λ− + θ) + χ(λ+ + λ− + θ))

(λ+ + λ− + θ)2(χ+ k1(θ))(χ+ k2(θ))
−

µ− − χ

λ+ + λ− + θ
−

−
λ+µ+(µ+(λ− + θ) + µ−(λ+ + λ− + θ))

(λ+ + λ− + θ)2((µ+(λ− + θ) + χ(λ+ + λ− + θ))
−

−
λ+λ−µ+µ−(µ− − χ)(µ+(λ− + θ) + χ(λ+ + λ− + θ))

(λ+ + λ− + θ)4(χ+ k1(θ))(χ+ k2(θ))
×

×

[

1

µ− − χ
e(µ−−χ)a −

1

µ− + χ
e−(µ−+χ)a −

2χ

(µ− + χ)(µ− − χ)

]

e(χ−µ−)a.
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Thus, we get a system of linear algebraic equations with respect to C1(θ)and C2(θ).
Denote

S1 = e−µ−a

[

1

k1(θ) + µ−

(

e(k1(θ)+µ−)a − 1
)

+
1

k1(θ)− µ−

(

e(k1(θ)−µ−)a − 1
)

]

,

S2 = e−µ−a

[

1

k2(θ) + µ−

(

e(k2(θ)+µ−)a − 1
)

+
1

k2(θ)− µ−

(

e(k2(θ)−µ−)a − 1
)

]

,

A = −
(µ− − χ)((µ+(λ− + θ) + χ(λ+ + λ− + θ))

(λ+ + λ− + θ)2(χ+ k1(θ))(χ+ k2(θ))
−

−
µ+ + χ

µ+(λ− + θ) + χ(λ+ + λ− + θ)
+

λ−µ−

λ+ + λ− + θ
×

×
(µ− − χ)(µ+(λ− + θ) + χ(λ+ + λ− + θ))

(λ+ + λ− + θ)2(χ+ k1(θ))(χ+ k2(θ))
×

×

[

1

µ− − χ
e(µ−−χ)a −

1

µ− + χ
e−(µ−+χ)a −

2χ

(µ− + χ)(µ− − χ)

]

e(χ−µ−)a,

B = −
(µ− − χ)2((µ+(λ− + θ) + χ(λ+ + λ− + θ))

(λ+ + λ− + θ)2(χ+ k1(θ))(χ+ k2(θ))
−

µ− − χ

λ+ + λ− + θ
−

−
λ+µ+(µ+(λ− + θ) + µ−(λ+ + λ− + θ))

(λ+ + λ− + θ)2((µ+(λ− + θ) + χ(λ+ + λ− + θ))
,

C1 (θ) =

=
A[(µ− + k2(θ))e

k2(θ)a + λ+λ−µ+µ−

(λ++λ−+θ)2S2]−B[ek2a − λ−µ−

λ++λ−+θ
S2]

(k2 − k1)e(k1+k2)a + λ+λ−µ+µ−

(λ++λ−+θ)2 (S2ek1a − S1ek2a) +
λ−µ−

λ++λ−+θ
(S2(µ− + k1(θ))ek1a − S1(µ− + k2(θ))ek2a)

,

C2 (θ) =

=
B[ek1a − λ−µ−

λ++λ−+θ
S1]−A[(µ− + k1(θ))e

k1(θ)a + λ+λ−µ+µ−

(λ++λ−+θ)2
S1]

(k2 − k1)e(k1+k2)a + λ+λ−µ+µ−

(λ++λ−+θ)2
(S2ek1a − S1ek2a) +

λ−µ−

λ++λ−+θ
[S2(µ− + k1(θ))ek1a − S1(µ− + k2(θ))ek2a]

Finally, we find the solution of equation (8).

References

[1] V.A. Busarov, On asymptotic behavior of random walks in random medium with a

delaying screen, Vestnik. MGU, 5, 2004, 61-63.

[2] V.I. Lotov, On random walks in a strip, Theoria veroyatnosti i ee priminenie, 31(1),
1991, 160-165.

[3] V.I. Lotov, On the asymptotic of distributions in the sited boundary problems for

random walks defined a Markov chain, Sib. Math. J., 1(3), 1991, 26-51.



100 E.M. Neymanov

[4] T.I. Nasirova, Semi Markov walk processes, Baku, Elm, 165, 1984.

[5] K.K. Omarova, Sh.B. Bakshiyev, Laplace transformation of distribution of the lower

boundary functional of semi-Markov walk process with delaying screen at zero, Av-
tomatika i vychislitelnaya tekhnika Riga, Inst. Elektroniki i vychisl. tekhniki, 4,
2010, 77-84.

[6] T.I. Nasirova, E.A. Ibayev, T.A. Aliyeva, The Laplace transform of the ergodic dis-

tribution of the process semi-markovian random walk with negative drift, nonnegative

jumps, delays and delaying screen at zero, Theory of Stochastic Processes, 15(31),
2009, 49-60.

Elburus M. Neymanov
Institute of Mathematics and Mechanics of NAS of Azerbaijan, Az1141, Baku, Azerbaijan

E-mail: eneymanov@inbox.ru

Received 23 April 2016

Accepted 27 May 2016



Caspian Journal of Applied Mathematics, Ecology and Economics
V. 4, No 1, 2016, July
ISSN 1560-4055

Interpolation Theorems for Lizorkin-Triebel-Morrey type
Spaces with Many Groups Variables

A.M. Najafov∗, R.E. Kerbalayeva

Abstract. In this paper, we introduce a new function space F l
%

p%,θ%,a,κ,τ (G, s) with the parameters
of many groups of variables of type Lizorkin-Triebel-Morrey. In view of interpolation theorems we
study some properties of functions, which are belonging to intersection of these spaces.

Key Words and Phrases: intersection of spaces Lizorkin-Triebel-Morrey type, many groups of
variables, integral representation, interpolation theorems.

1. Introduction

In this paper we study interpolation theorems for space

F lp,θ,a,κ,τ (G, s) , (1)

that is, with help of theory embedding we study some characterization of function which
are belonging to intersection of space F l

%

p%,θ%,a,κ,τ (G, s) (% = 1, 2, . . . , N), that is, the space
Lizorkin-Triebel-Morrey type with many group variables.

Let G ⊂ Rn be a domain and 1 ≤ s ≤ n; s, n be naturals, in addition en = {1, 2, ..., n} ,
n1 + ...+ ns = n. Hence we suppose the sufficient smooth function f(x), where the points
x = (x1, ..., xs) ∈ Rn have coordinates xk = (xk.1; ...;xk,nk) ∈ Rnk (k ∈ es = {1, ..., s}).
Consequently, Rn = Rn1 ×Rn2 × · · · ×Rns .

Let l = (l1, ..., ls) be a given positive vector such that, lk = (lk.1; ...; lk,nk), (k ⊂ es),
that is, lk,j > 0, (j = 1, ..., nk) for every k ∈ es and we shall denote by Q the set of vectors
i = (i1, ..., is), where ik = 1, 2, ..., nk for all k ∈ es. The number of the set Q is equal to:
|Q| =

∏s
k=1 (1 + nk) .

Therefore, to the vector i = (i1, ..., is) ∈ Q, we let correspond the vector li =
(
li11 ; ...; liss

)
,

where vectors li =
(
li11 ; ...; liss

)
are coordinates of l = (l1, ..., ls) and l0 = (0, 0, ..., 0) ,

l1k = (lk,1, 0, ..., 0) , ..., likk = (0, 0, .., lk,nk) for all k ∈ es. And the the vectors ei, we cor-

respond the vector l
i

=
(
l
i1
1 , l

i2
2 , ..., l

is
s

)
, where l

ik
k =

(
l
i1
k,1, l

i2
k,2, ..., l

ik
k,nk

)
(k ∈ es), and

∗Corresponding author.
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the largest number l
ik
k,j is less than likk,j for every likk,j >0,when likk,j=0 then we assume that

l
ik
k,j = 0 for each k ∈ es.

Let R|ei| = R|ei1 | ×R|ei2 | ×· · ·×R|eis |, where R|e
ik | = R

∣∣∣eik,1 ∣∣∣×R
∣∣∣eik,2 ∣∣∣×· · ·×R

∣∣∣eik,nk ∣∣∣
.

Further for every k ∈ es, R
|eik | = {tk = (tk,1, ..., tk,nk) ∈ Rnk , tk,j ∈ Rk,nk , tk,j =

0,∀j /∈ eik = sup pl
ik , k ∈ es}.

Definition 1. We denote by F<l>p,θ,a,κ,τ (s,G) normed Lizorkin-Triebel-Morrey space of func-
tion f on G, with many groups variables, with finite norm

‖f‖F<l>p,θ,a,κ,τ
(G, s) =

∑
i∈Q
‖f‖

L<l
i>

p,θ,a,κ,τ (G)
, (2)

‖f‖
L<l

i>
p,θ,a,κ,τ (G)

=

∥∥∥∥∥∥∥∥

∫ ti0,1

0

∫ ti0,s

0

∆2ω (t, G)Dl
i

f∏
k∈ei t

∣∣∣βikk ∣∣∣
k


θ ∏
k∈ei

dtk
tk


1/θ
∥∥∥∥∥∥∥∥
p,a,κ,τ

, (3)

and

‖f‖p,a,κ,τ : G = supx∈G


∫ ∞
0
· · ·
∫ ∞
0

∏
k∈es

[tk]1

−|κk|a
p ‖f‖p,Gtκ (x)

τ ∏
k∈es

dtk
tk


1/τ

, (4)

Further it means that, Dl
i

f = D
l
i1
1
1 · · ·D

l
is
s
s f , D

l
ik
k
s f = D

l
k
k
k,1 · · ·D

l
ik
k
k,nk

f ; Gtκ (x) = G∩Itκ (x);
Itκ (x) = Itκ1

1
(x1)× Itκ2

2
(x2)× · · · × Itκss (xs); Itκkk

(xk) ={
yk : |yk − xk| < 1

2 t
|κk|
k , k ∈ es

}
, |βk| =

∑nk
j=1 β

ik
k,j ;

dtk
tk

=
∏
j∈eik

dtk,j
tk,j

, where 0 < βikk,j =

likk,j−l
ik
k,j ≤ 1 for likk > 0, but when likk,j = 0, βikk,j = 0; t = (t1, ..., ts), tk = (tk,1, ..., tk,nk) , ω =

(ω1, ..., ωs) , ωk = (ωk, 1, ..., ωk,nk) and in addition ωk,j = 1 or ωk, j = 0, k ∈ es,

ei = sup pl
i

= sup pω, 1 < θ <∞; (1 ≤ p <∞); t0 = (t0,1, ..., t0,s) , t0,k = (t0,k,1, ..., t0,k,nk)
be a fixed vector and κ ∈ (0,∞)n, a ∈ [0, 1], τ ∈ [1, ∞], [tk]1 = min {1, tk}, k ∈ es.

When s = 1 then space (1) is equivalent to the space Lizorkin-Triebel-Morrey type
F<l>p,θ,a,κ,τ (G), which was investigated in [1, 4, 9], when s=n then the space (1) is equivalent

to the space Lizorkin-Triebel-Morrey type with mixed derivatives, S<l>p,θ,a,κ,τF (G) which
was studied in [5, 6], when a = 0,τ =∞ s = 1, N = 1, then this space is equivalent to the
space F lp,θ(G), which was developed in [2, 13, 14].

Similarly results for the Morrey spaces was investigated in [3, 12, 13].

It is clear, that V (σ) ⊂ ITσ , U− is an open set, which belonging to the domain G and
U + V ⊂ G. Here it is said that, the subdomain U ⊂ G ⊂ Rn calls domain satisfying the
condition “ σ− semi−horn′′, if the vector σ = (σ1, ..., σs) is such that, x+V (σ) ⊂ G for
all x ⊂ U . It is said that, the domain G ⊂ En satisfying the condition “σ− semi−horn′′,
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that is, G ⊂ A (T σ), if we have finite sub domains G1, ..., GN ⊂ G, satisfying the condition
“ σ − semi− horn′′ and surfacing the domain G, that is,

G =
N⋃
j=1

Gj . (5)

But we suppose G ∈ Aε (T σ) (ε > 0) , if we substitute the condition G =
⋃N
j=1Gj,ε in the

condition (5). Note that Gj,ε = {x : x ∈ Gj : ρ (x,G/Gj) > ε} .

2. Preliminaries

Let Ψi ∈ C∞0 (Rn) be such, that their carries belonging to I1 =
{
x : |xj | < 1

2 ; j = 1, .., nk
}

.
Then we put

V (σ) =
⋃

0 < tj ≤ Tj ;
j ∈ en

{
y :
( y
tσ

)
∈ S (Ψi)

}
,

where 0 < Tj ≤ 1, j ∈ en. U is an open set which belonging to the domain G. Furthermore
we assume that U + V ⊂ G, for T = (T1, ..., Ts), Tk = (Tk,1, ..., Tk,nk), 0 < Tk,j ≤ 1,

k ∈ es, j = 1, .., nk, (tσ + T σ)i = tσkk , (k ∈ ei); (tσ + T σ)i = T σ, (k ∈ es/e
i), σ =

(σ1, ..., σs) , σj > 0, j = 1, .., nk. Let G(tσ+Tσ)i (U) =
(
U + I(tσ+Tσ)i(x)

)⋂
G = Z, p% =

(p%1 , ..., p%n) , q% = (q%1 , ..., q%n) , α% ≥ 0,
∑N

%=1 α% = 1, 1
p =

∑N
%=1

α%
p%
, 1

q =
∑N

%=1
α%
q%

,
1
θ =

∑N
%=1

α%
θ%
, l =

∑N
%=1 l

%α%.

Lemma 1. Let 1 ≤ p% ≤ q% ≤ r% ≤ ∞; % = 1, 2, .., N ; 0 < |κk| < |σk| ; 0 ≤ ηk,j ≤
Tk,j ≤ 1; η = (η1, ..., ηn) , 0 < ηk,j · tk,j ≤ Tk,j ≤ 1; (k ∈ es, j = 1, 2, .., nk), 1 ≤ τ ≤
∞; v = (v1, ..., vs) , vk,j ≥ 0 are integers, 0 < ρk,j < ∞; j = 1, ..., nk; k ∈ es; and

∆2ω (t)Dl
i

f ∈ Lp%,a,κ,τ (G),

µk,ik =
N∑
%=1

l%k,ikα%σk − (vk, σk)− (|σk| − |κk| a)

(
1

p
− 1

q

)
,

(vk, σk) =

nk∑
j=1

σk,jvk,j , |σk| =
nk∑
j=1

σk,j , |κk| =
nk∑
j=1

κk,j ,

F iη (x) =
∏

k∈es/ei
T
−|σk|+σk,ik lk,ik−(vk,σk)
k

∫ ηi

0
· · ·
∫ ηi

0
ϕi (x, t, T )

×
∏
k∈ei

dtk

t
1+|σk|−σk,ik lk,ik+(vk,σk)

k

, (6)
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F iηT (x) =
∏

k∈es/ei
T
−|σk|+σkik,lk,ik−(vk,σk)
k

∫ T i

ηi
· · ·
∫ T i

ηi
ϕi (x, t, T )

×
∏
k∈ei

dtk

t
1+|σk|−σk,ik lk,ik+(vk,σk)

k

(7)

Here
∣∣β%k∣∣ =

∑nk
j=1 β

ik, %
k,j , (vk, σk) =

∑nk
j=1 σk,jvk,j , |σk| =

∑nk
j=1 σk,j , |κk| =

∑nk
j=1 κk,j ,

ϕi (x, t, T )

=

∫
R|ei|

∫
Rn

{
∆2ω (u)Dl

i

f (x+ y) Ψ
(v)
i

(
y

(tσ + T σ)i
,

u

(tσ + T σ)i

)}
dydu, (8)

where Ψi ∈ C∞ (Rn ×Rn), and Ψi (·, z) ∈ C∞0 .
Then the following inequalities hold:

supx∈U
∥∥F iη∥∥q,Uρκ (x)

≤ C1

N∏
%=1


∥∥∥∥∥∏
kεei

t
−|βk%|
k ∆

2ω
(t)Dl

i,%

f

∥∥∥∥∥
p%,a,κ,τ


α%

×
∏
k∈es

[ρk]1
|κk|a
p

∏
k∈es/ei

T
µk,ik
k

∏
kεei

t
µk,ik
k ; (µk,ik > 0) , (9)

supx∈U
∥∥F iηT∥∥q,Uρκ (x)

≤ C2

N∏
%=1

∥∥∥∥∥∏
kεei

t
−|βk%|
k ∆

2ω
(t)Dl

i,%

f

∥∥∥∥∥
p%,a, κ, τ

α%

×


∏
kεei T

µk,ik
k ; µk,ik > 0,∏

k∈ei ln
Tk
ηk

; µk,ik = 0,∏
kεei η

µk,ik
k ; µk,ik < 0,

×
∏
k∈es

[ρk]1
|κk|a
p . (10)

Where C1, and C2 are constants independent of f, ρ, η and T.
Proof. Using Minkowski’s inequality for any x ∈ U, we have:

supx∈U
∥∥F iη∥∥q,Uρκ (x)

≤ C
∏

k∈es/ei
T
−|σk|+σk,ik lk,ik−(vk,σk)
k

×
∫ ηi

0i
‖ϕi (·; t;T )‖q,Uρκ (x)

∏
k∈ei

t
−1+|σk|+σk,ik lk,ik−(vk,σk)
k dtk (11)

We must estimate ‖ϕi (·, t, T )‖q,U
ρκ(x)

from the Holder’s inequality (q ≤ r) we get:

‖ϕi (·, t, T )‖q,Uρκ (x) ≤ C1

∫
Uρκ (x)

N∏
%=1

{|ϕi (x·, t, T )|}α%qdx

1/q

.
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Using the Holder’s inequality into right part with the indication λ% =
q%
qα%

,

% = 1, 2, . . . , N,
(∑N

%=1
1
o%

= q
∑N

%=1
α%
q%

= 1
)

. Then we have

‖ϕi (·, t)‖q%,Uρκ (x) ≤ C2

N∏
%=1

{
‖ϕi (·, t, T )‖r%,Uρκ (x)

}α%
. (12)

Once again, using Holder’s inequality (q% ≤ r%) we have

‖ϕi (·, t)‖q%,Uρκ (x) ≤ ‖ϕi (·, t, T )‖r%,Uρκ (x)

×
∏
j∈es

ρ
|κj |

(
1
q%
− 1
r%

)
j . (13)

Let X be a characterization function of the set S (Ψi). Noting that, 1 ≤ p% ≤ r% ≤
∞; s% ≤ r%

(
1
s%

= 1− 1
p%

+ 1
r%

)
we get

∣∣∣∆2ωDl
i,%

fΨi

∣∣∣ =
(∣∣∣∆2ωDl

i,%

f
∣∣∣p% |Ψi|s%

) 1
r%
(∣∣∣∆2ωDl

i,%

f
∣∣∣p%X) 1

p%
− 1
r%

(|Ψi|s%)
1
r%

and using for |ϕi| Holder’s inequality
(

1
r%

+
(

1
p%
− 1

r%

)
+
(

1
s%

+ 1
r%

)
= 1
)

, then we have

‖ϕi (·, t, T )‖r%,Uρκ (x) ≤ supx∈Uρκ (x)

(∫
R|ei|

∫
Rn

∣∣∣∆2ωDl
i,%

f (x+ y)
∣∣∣p% X ( y

(tσ + T σ)i

)
dudy

) 1
p%
− 1
r%

×supx∈V

(∫
R|ei|

∫
Rn

∣∣∣∆2ω(u)Dl
i,%

f (x+ y)
∣∣∣p% dudy) 1

r%

×

(∫
R|ei|

∫
Rn

∣∣∣∣∣Ψi

(
y

(tσ + T σ)i
,

u

(tσ + T σ)i

)∣∣∣∣∣
s%

dudy

) 1
s%

. (14)

Because of U + V ⊂ Z, and Z(tσ+Tσ)i (x) ⊂ Z(tκ+Tκ)i (x) , for all x ∈ U and 0 < tj ≤
Tj ≤ 1, |κk| ≤ |σk| , k ∈ en we find:∫

Rn

∣∣∣∣∫
R|ei|

∆2ω
u (u)Dl

i,%

f (x+ y) du

∣∣∣∣p% X
(

y

(tσ + T σ)i

)
dy

≤
∫

Z(tσ+Tσ)i (x)

∣∣∣∣∫
R|ei|

∆2ω(u)Dl
i,%

f (x+ y)

∣∣∣∣p% dudy
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×

∥∥∥∥∥∥
∏
k∈ei

t
|β%k|
k ∆2ω (t)Dl

i,%

f

∥∥∥∥∥∥
p%

p%,a,κ

∏
k∈ei

t
|κk|a
k

∏
k∈es/ei

T
|κk|a
k . (15)

Next for y ∈ V ∫
Uρκ (x)

∣∣∣∣∫
R|ei|

∆2ω (u)Dl
i,%

f (x+ y) du

∣∣∣∣p%dx
≤
∫
Zρκ (x+y)

∣∣∣∣∫
R|ei|

∆2ω (u)Dl
i,%

f (x) du

∣∣∣∣p%dx
≤

∥∥∥∥∥∥
∏
k∈ei

t
−|β%k|
k ∆2ω (t)Dl

i,%

f

∥∥∥∥∥∥
p%

p%,a,κ

×
∏
k∈ei

t
|β%k|p%
k

∏
k∈es

[ρk]
|κk|a
1 , (16)

∫
R|ei|

∫
Rn

∣∣∣∣∣Ψi

(
y

(tσ + T σ)i
,

u

(tσ + T σ)i

)∣∣∣∣∣
s

dudy

=
∏
k∈ei

t
|σk|
k

∏
k∈es/ei

T
|σk|
k ‖Ψi‖s%s% . (17)

From (12)-(17) we get

‖ϕi (·, t, T )‖q,Uρκ (x) ≤ C
N∏
%=1


∥∥∥∥∥∏
kεei

t
−|βk%|
k ∆

2ω
(t)Dl

i,%

f

∥∥∥∥∥
p%,a, κ


α%

×
∏

k∈es/ei
T
|σk|−(|σk|−|κk|a)

(
1
p
− 1
q

)
k

∏
kεei

t
|σk|−(|σk|−|κk|a)

(
1
p
− 1
q

)
k

×
∏
k∈en

[ρk]1
|κk|a
r

∏
k∈en

ρ
|κk|

(
1
q
− 1
r

)
k . (18)

Taking consideration ‖·‖p,a,κ ≤ ‖·‖p,a,κ,τ for 1 ≤ τ ≤ ∞ and putting (18) into (11) for
r = q, then we get the inequality (9). Similarly, we can prove the inequality (10). J

Lemma 2. Let 1 ≤ p% ≤ q% < ∞; % = 1, 2, .., N ; 0 < |κk| ≤ |σk| ; 0 ≤ Tk ≤ 1; (k ∈ es,
j = 1, 2, .., nk) , 1 ≤ τ1 ≤ τ2 ≤ ∞; µk,ik > 0 and ∆2ω (u)Dl

i

∈ Lp%,a,κ,τ

µk,ik,0 = σk,ik

N∑
%=1

l%k,ikα%
− (vk, σk)− (|σk| − |κk| a)

1

p
.
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Then the following inequality holds for the function Bi
η(x):∥∥F iη∥∥q,b,κ,τ2;U ≤

×C1
N∏
%=1


∥∥∥∥∥∏
kεei

t
−|βk%|
k ∆

2ω
(t)Dl

i
, %f

∥∥∥∥∥
p%,a, κ,τ1


α%

, (19)

where b, is an arbitrary number satisfying the following condition:

0 ≤ b ≤ 1, ifµk,ik,0 > 0,

0 ≤ b < 1, ifµk,ik,0 = 0, (20)

0 ≤ b < 1 +
µk,ik,0q (1− a)

|σk| − |κk| a
, ifµk,ik,0 < 0.

The proof of this lemma is similarly 1.
Using these facts, we can show the general theorems, which give us the structure of

such space F l
%

p%,θ%,a,κ,τ1 (G, s) (% = 1, 2, .., N) .

3. Embedding theorems

Using these facts, we can show the general theorems, which give us the structure of
such space F l

%

p%,θ%,a,κ,τ1 (G, s) (% = 1, 2, .., N) .

Theorem 1. Let G ∈ A (T σ) be a domain , 1 ≤ p% ≤ q% ≤ ∞, (% = 1, 2, .., N); v =
(v1, . . . , vn) ; vj ≥ 0 are integers, (j=1,2,.., n) and in addition

1) vk,j ≥ l0k,j (j = 1, 2, .., nk; k ∈ es) ;

2) vk,j ≥ likk,j + 1, vk,ik < likk,ik + 1, 0 < κk < σk (k ∈ es) ; 1 ≤ τ1 ≤ τ2 ≤ ∞,
f ∈

⋂N
%=1 F

<l%>
p%,θ%,a,κ,τ1 (G, s) and let µk,ik > 0, (ik = 1, 2, ..., nk, k ∈ es).

Then following inequality holds:

‖Dvf‖q,G ≤ C
1B1 (T )

N∏
%=1

{
‖f‖F<l%>p%,θ%,a,κ,τ1

(G,s)

}α%
, (21)

‖Dvf‖p,b,κ,τ2;G ≤ C
2
N∏
%=1

{
‖f‖F<l%>p%,θ%,a,κ,τ1

(G, s)

}α%
,

(p%,j ≤ q%,j <∞, j ∈ en) . (22)

where B1 (T ) =
∑

i∈Q
∏
k∈esT

µk,ik
k .

Particular, if µk,ik,0 > 0, (ik = 1, 2, ..., nk, k ∈ es) then the function Dvf is continuous
on G and

supx∈G |Dvf | ≤ C3B1
0 (T )

N∏
%=1

{
‖f‖F<l%>p%,θ%,a,κ,τ1

(G, s)

}α%
, (23)
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where

B1
0 (T ) =

∑
i=(i1,...,is)∈Q

∏
j∈es

T
µk,ik,0
j ,

and Tk ∈ (0,min (1, T0,k)], (k ∈ es), T0 = (T0,1, ..., T0,k) is a fixed positive vector, b is an
arbitrary number satisfying condition (??), C1 and C2 C1,C3 are constants independent
of f, and C1 dependent of the vector T .

The proof of Theorem 1. Obviously, in this case for f ∈ F<l%>p%,θ%,a,κ,τ (G, s) general-

ized derivatives Dvf exit. It means that, if µk,ik > 0(k ∈ es), because of p% ≤ q%, |κk| <
|σk| (k ∈ es), a ∈ [0, 1]n, f ∈ F<l%>p%,θ%,a,κ,τ (G, s)→ F<l

%>
p%,θ%

(G, s), % = 1, 2, .., N)

It means that, for almost every point of x ∈ G, there exits generalized derivatives Dvf

with the same carries [3]:

Dvf(x) =
∑

i=(i1,...,is)∈Q

(−1)

∣∣∣li−v∣∣∣
Ci

∏
k∈es/ei

T
−|σk|+σk,ik lk,ik−(vk,σk)
k

×
∫ T i1

0
· · ·
∫ T in

0

∏
k∈ei

t
−1−|σk|+σk,ik lk,ik−(vk,σk)
k dtk

×
∫
R|ei|

∫
Rn
{∆2ω (u)Dl

i,%

f(x+ y)

×Ψ
(v)
i

(
y

(tσ + T σ)i
,

u

(tσ + T σ)i

)
} dydu. (24)

Using the Minkowski’s inequality, then we have:

‖Dvf‖q, G ≤ C1

∑
i=(i1,...,is)∈Q

∥∥F iT∥∥q;G. (25)

From (10) for U = G, η = T, %→∞ we get∥∥F iT∥∥q;G ≤
×C2

∏
k∈es

T
µk,ik
k

N∏
%=1


∥∥∥∥∥∥
∏
k∈ei

t
−|βk%|
k ∆

2ω
(t)Dl

i
,%f

∥∥∥∥∥∥
p%,a,κ


α%

.

Using it for (25), and taking consideration p% ≤ θ% and 1 < θ% <∞,
% = 1, 2, .., N, we get (21).

Using (19) we can proof (22).
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Next we suppose µk,ik0 > 0, k ∈ es. We must show that, the function Dvf is continuous
on G. From (24) and (25) for qj ≡ ∞, j ∈ en, µk,ik = µk,ik,0, k ∈ es we have:

‖Dvf −DvfTσ‖∞,G ≤
∑
i ∈ Q

∏
k∈es/ei

T
µk,ik
k

×
N∏
%=1


∥∥∥∥∥∥∥∥
∫ hi0

0
· · ·
∫ hi0n

0


∏
k∈ei

t
−|β%k|
k ∆

2ω
(·)Dl

i

f

θ% ∏
k∈ei

dtk
tk


1/θ%
∥∥∥∥∥∥∥∥
p%,a,κ,τ


α%

.

limT→0‖Dvf −DvfTσ‖∞,G = 0 . Because of DvfTσ is continuous on G, then convergence
of L∞ (G) coincides with the absolutely convergence. Consequently, it is continuous on G.
This completes the proof.

Let γ be a n dimensional vector.

Theorem 2. Let all conditions of Theorem 1 be satisfied.In addition, G ∈ A∈ (T σ). Then
for µk,ik > 0, (ik = 1, 2, ..., nk, k ∈ es) the derivative Dvf satisfies condition the Holder on
the domain G, for metric Lq with indication ε. More precisely,

‖∆ (γ,G)Dvf ‖q,G ≤ C
N∏
%=1

{
‖f‖F<l%>p%,θ%,a,κ,τ1

(G,s)

}α%
×
∏
k∈ei
|γk|εk , (26)

where ε = (ε1, ..., εs) , εk = (εk,1, ..., εk,nk), and εk is an arbitrary number satisfying the
condition:

0 < εk ≤ 1, if
µk,ik
σ0

> 1,

0 < εk < 1, if
µk,ik
σ0

= 1,

0 < εk ≤
µk,ik
σ0

, if
µk,ik
σ0

< 1. (27)

where µk = minµk,ik , σ0 = max |σk| (ik = 1, 2, . . . , nk, k ∈ es). If µk,ik,0 > 0, (ik =
1, 2, . . . , nk, k ∈ es) then

supx∈G |∆ (γ, G)Dvf (x)| ≤ C
N∏
%=1

{
‖f‖F<l%>p%,θ%,a,τ1

(G,s)

}α% ∏
k∈ei
|γk|εk

0

, (28)

where ε0k satisfies the same condition, but we must substitute µk,ik,0 into µk and C is a
constant independent of f and γ.

The proof of this theorem is similarly 1.
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Multilinear Rough Fractional Integral on Product Mor-
rey Spaces

S.Q. Hasanov

Abstract. We will study the boundedness of multilinear fractional integral operator IΩ,α,m with
rough kernels Ω ∈ Ls(Sn−1), 1 < s ≤ ∞ on product Morrey spaces. We find for the operator IΩ,α,m
necessary and sufficient conditions on the parameters of the boundedness on product Morrey spaces
Lp1,λ1(Rn)× . . .× Lpm,λm(Rn) to Morrey spaces Lq,λ(Rn).

Key Words and Phrases: product Morrey spaces, multilinear rough fractional integral.

2010 Mathematics Subject Classifications: 42B35, 45P05, 28A35

1. Introduction

The classical Morrey spaces, introduced by Morrey [9] in 1938, have been studied inten-
sively by various authors and together with weighted Lebesgue spaces play an important
role in the theory of partial differential equations. The boundedness of fractional integral
operators on the classical Morrey spaces was studied by Adams [1], Chiarenza and Frasca
et al. [2].

Let Rn be the n-dimensional Euclidean space, and let (Rn)m = Rn × . . . × Rn be the
m-fold product space (m ∈ N). For x ∈ Rn and r > 0, we denote by B(x, r) the open

ball centered at x of radius r, and by
{
B(x, r) denote its complement. Let |B(x, r)| be

the Lebesgue measure of the ball B(x, r). Also for −→x = (x1, . . . , xm) ∈ Rmn and r > 0,
we denote by B(−→x , r) the open ball centered at −→x ∈ Rmn of radius r, and B(−→x , r) We

denote by
−→
f the m-tuple (f1, f2, . . . , fm), −→y = (y1, . . . , ym) and d−→y = dy1 · · · dyn.

Definition 1. Let 1 ≤ p < ∞, 0 ≤ λ ≤ n, [t]1 = min{1, t}. We denote by Lp,λ(Rn)
the Morrey space, and by WLp,λ(Rn) the weak Morrey space, the set of locally integrable
functions f(x), x ∈ Rn, with the finite norms

‖f‖Lp,λ = sup
x∈Rn, t>0

r
−λ
p ‖f‖Lp(B(x,r)), ‖f‖WLp,λ

= sup
x∈Rn, t>0

r
−λ
p ‖f‖WLp(B(x,r))

respectively.

http://www.cjamee.org 112 c© 2013 CJAMEE All rights reserved.
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In 1999, Kenig and Stein [8] studied the following multilinear fractional integral

Iα,m(
−→
f )(x) =

∫
(Rn)m

f1(y1) . . . fm(ym)

|(x− y1, . . . , x− ym)|nm−α
dy1dy2 . . . dym,

and showed that Iα,m is bounded from product Lp1(Rn) × Lp2(Rn) × . . . × Lpm(Rn) to
Lq(Rn) with 1/q = 1/p1 + . . . + 1/pm − β/n > 0 for each pi > 1(i = 1, . . . ,m). If some
pi = 1, then Iα,m is bounded Lp1(Rn)×Lp2(Rn)× . . .×Lpm(Rn) to Lq,∞(Rn). Obviously,
the multilinear fractional integral Iα,m is a natural generalization of the classical fractional
integral Iα ≡ Iα,1.

Let 1 < s ≤ ∞, Ω ∈ Ls(Smn−1) be a homogeneous function of degree zero on Rmn.
The multi-sublinear fractional maximal operatorMα,m with rough kernels Ω is defined by

Mα,m(
−→
f )(x) = sup

r>0

1

rnm−α

∫
B(
−→
0 ,r)
|Ω(−→y )|

m∏
j=1

|fi(x− yi)|d−→y , 0 ≤ α < nm.

If m = 1, then MΩ,α ≡ MΩ,α,1 is the fractional maximal operator with rough kernel Ω.
When m = 1 and Ω ≡ 1, then Mα ≡M1,α,1 is the classical fractional maximal operator.

In [7] we proved the boundedness of the multi-sublinear fractional maximal operator
with rough kernels MΩ,α,m from product Morrey space Lp1,λ1(Rn)× . . .× Lpm,λm(Rn) to
Lq,λ(Rn), if p > s′, 1 < p1, . . . , pm < ∞, 1/q = 1/p1 + . . . + 1/pm − α/(mn − λ) and
from the space Lp1,λ1(Rn) × . . . × Lpm,λm(Rn) to the weak space WLq,λ(Rn), if p = s′,
1 ≤ p1, . . . , pm < ∞ and 1/q = 1/p1 + . . . + 1/pm − α/(n− λ) and at least one exponent
pi, 1 ≤ i ≤ m equals one.

In this work, we prove the boundedness of the multilinear fractional integral operator
with rough kernels IΩ,α,m from product Morrey space Lp1,λ1(Rn) × . . . × Lpm,λm(Rn) to
Lq,λ(Rn), if p > s′, 1 < p1, . . . , pm < ∞, 1/q = 1/p1 + . . . + 1/pm − α/(mn − λ) and
from the space Lp1,λ1(Rn) × . . . × Lpm,λm(Rn) to the weak space WLq,λ(Rn), if p = s′,
1 ≤ p1, . . . , pm < ∞ and 1/q = 1/p1 + . . . + 1/pm − α/(n− λ) and at least one exponent
pi, 1 ≤ i ≤ m equals one.

Throughout this paper, we assume the letter C always remains to denote a positive
constant that may vary at each occurrence but is independent of the essential variables.

2. Boundedness of multilinear fractional integral operator MΩ,α,m on
product Morrey spaces

In this part, we investigate the boundedness of multilinear fractional integral operator
IΩ,α,m on product Morrey spaces.

Spanne and Adams obtained two remarkable results on Morrey spaces (see Definition
1.1 of the Morrey spaces in Section 1) for Iα. Their results can be summarized as follows.

Theorem 1. [5, 10] (Spanne, but published by Peetre) Let 0 < α < n, 0 ≤ λ < n − αp,
1/q = 1/p − α/n and µ/q = λ/p. Then for p > 1, the operator Iα are bounded from
Lp,λ(Rn) to Lq,µ(Rn) and for p = 1, Iα is bounded from L1,λ(Rn) to WLq,µ(Rn).
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Theorem 2. [1, 4] Let 0 < α < n, 1 ≤ p < n/α, 0 ≤ λ < n− αp.

(i) If p > 1, then condition 1/p − 1/q = α/(n − λ) is necessary and sufficient for the
boundedness of the operator Iα from Lp,λ(Rn) to Lq,λ(Rn).

(ii) If p = 1, then condition 1 − 1/q = α/(n − λ) s necessary and sufficient for the
boundedness of the operator Iα from L1,λ(Rn) to WLq,λ(Rn).

If λ = 0, then the statement of Theorems 1 and 2 reduces to the well known Hardy-
Littlewood-Sobolev inequality.

When m ≥ 2 and Ω ∈ Ls(Smn−1), in [6] was find out MΩ,m also have the same
properties by providing the following multi-version result of the Chiarenza and Frasca [2].

Theorem 3. [6] Let 1 < s ≤ ∞, Ω ∈ Ls(Smn−1) be a homogeneous function of degree
zero on Rmn, p be the harmonic mean of p1, . . . , pm > 1 and

λ

p
=

m∑
j=1

λj
pj

for 0 ≤ λj < n. (1)

(i) If p > s′, then the operatorMΩ,m is bounded from product Morrey space Lp1,λ1(Rn)×
. . .×Lpm,λm(Rn) to Lp,λ(Rn). Moreover, there exists a positive constant C such that
for all f ∈ Lp1,λ1(Rn)× . . .× Lpm,λm(Rn)

‖MΩ,mf‖Lp,λ ≤ C
m∏
j=1

‖fj‖Lpj,λj .

(ii) If p = s′, then the operatorMΩ,m is bounded from product Morrey space Lp1,λ1(Rn)×
. . .×Lpm,λm(Rn) to weak Morrey space WLp,λ(Rn). Moreover, there exists a positive
constant C such that for all f ∈ Lp1,λ1(Rn)× . . .× Lpm,λm(Rn)

‖MΩ,mf‖WLp,λ ≤ C
m∏
j=1

‖fj‖Lpj,λj .

Lemma 1. [11] Let 0 < α < mn, 1 ≤ s′ < mn/α, Ω ∈ Ls(Smn−1) be a homogeneous
function of degree zero on Rmn and f ∈ Lp1(Rn) × . . . × Lpm(Rn). Then there exists a
constant C > 0 for any x ∈ Rn∣∣∣IΩ,α,mf (x)

∣∣∣ ≤ C[MΩ,α+ε,mf (x)
] 1

2
[
MΩ,α−ε,mf (x)

] 1
2
. (2)

Lemma 2. [7] Let 0 < α < mn, 1 ≤ s′ < mn/α, Ω ∈ Ls(Smn−1) be a homogeneous
function of degree zero on Rmn, p be the harmonic mean of p1, . . . , pm > 1 and f ∈
L1

loc(Rn)× . . .× L1
loc(Rn). Then for any x ∈ Rn

MΩ,α,mf (x) ≤ C0

m∏
j=1

[
Mαs′

m

(fs
′
j )(x)

] 1
s′ ≤ C0

m∏
j=1

[
Mαs′pj

mp

(f

s′pj
p

j )(x)
] p
s′pj , (3)

where C0 =
‖Ω‖Ls(Smn−1)

(mn)
1
s

.
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When m ≥ 2 and Ω ∈ Ls(Smn−1), we find out IΩ,α,m also have the same properties by
providing the following multi-version of the Theorem 2.

Theorem 4. Let 0 < α < mn, 1 < s ≤ ∞ and Ω ∈ Ls(Smn−1). Let also
∑m

j=1
λj
pj

= λ
p ,

1
pj
− 1

qj
= α

m(n−λj) and 0 ≤ λj < n− αpj
m , j = 1, . . . ,m.

(i) If p > s′ and
∑m

j=1
λj
qj

= λ
q , then the condition 1

p−
1
q = α

n−λ is necessary and sufficient

for the boundedness of the operator IΩ,α,m from product Morrey space Lp1,λ1(Rn) ×
. . .×Lpm,λm(Rn) to Lq,λ(Rn). Moreover, there exists a positive constant C such that
for all f ∈ Lp1,λ1(Rn)× . . .× Lpm,λm(Rn)

‖IΩ,α,mf‖Lq,λ ≤ C
m∏
j=1

‖fj‖Lpj,λj .

(ii) If p = s′ and λ
∑m

j=1
1

pjqj
=
∑m

j=1
λj
pjqj

, then the condition 1
p −

1
q = α

n−λ is necessary

and sufficient for the boundedness of the operator IΩ,α,m from product Morrey space
Lp1,λ1(Rn)× . . .×Lpm,λm(Rn) to the weak Morrey space WLq,λ(Rn). Moreover, there
exists a positive constant C such that for all f ∈ Lp1,λ1(Rn)× . . .× Lpm,λm(Rn)

‖IΩ,α,mf‖WLq,λ ≤ C
m∏
j=1

‖fj‖Lpj,λj .

Proof.

(i) Sufficiency. Following the method used in [3], we choose a small positive number ε

with 0 < ε < min{α, m(n−λj)
pj

−α, n−λp −α}. One can then see from the condition of

Theorem 4 that 1 ≤ s′ < pj <
m(n−λj)
α+ε and 1 ≤ s′ < pj <

m(n−λj)
α−ε , and we let

1

q̃1
=

1

p1
+

1

p2
+ . . .+

1

pm
− α+ ε

n− λ
=

1

p
− α+ ε

n− λ
,

and
1

q̃2
=

1

p1
+

1

p2
+ . . .+

1

pm
− α− ε
n− λ

=
1

p
− α− ε
n− λ

.

Now if each pj > s′, then from [7], Theorem 1.1(i) implies that

‖MΩ,α−ε,mf‖Lq,λ ≤ C
m∏
j=1

‖fj‖Lpj,λj , ‖MΩ,α+ε,mf‖Lq,λ ≤ C
m∏
j=1

‖fj‖Lpj,λj .

A simple calculation yields q
2q̃1

+ q
2q̃2

= 1. Hence, using Lemma 1, the Holder
inequality and the above inequalities, we have

‖IΩ,α,mf‖Lq,λ = sup
x∈Rn,t>0

( 1

tλ

∫
B(x,t)

|IΩ,α,mf(y)|qdy
)1/q
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≤ C sup
x∈Rn,t>0

( 1

tλ

∫
B(x,t)

[
MΩ,α+ε,mf(y)

] q
2
[
MΩ,α−ε,mf(y)

] q
2
dy
) 1
q

≤ C sup
x∈Rn,t>0

( 1

tλ

∫
B(x,t)

[
MΩ,α+ε,mf(y)

]q̃1
dy
) 1

2q̃1 sup
x∈Rn,t>0

( 1

tλ

[
MΩ,α−ε,mf(y)

]q̃2
dy
) 1

2q̃1

≤ C‖MΩ,α+ε,mf‖1/2
Lq̃1,λ

‖MΩ,α−ε,mf‖1/2
Lq̃2,λ

= C
m∏
j=1

‖fj‖Lpj,λj ,

Necessity. Suppose that IΩ,α,m is bounded from Lp1,λ1(Rn) × . . . × Lpm,λm(Rn) to
Lq,λ(Rn). Define fε(x) =

(
f1(εx), . . . , fm(εx)) for ε > 0. Then it is easy to show

that

IΩ,α,mfε(y) = ε−αIΩ,α,mf(εy). (4)

Thus

‖IΩ,α,mfε‖Lq,λ = ε−α sup
x∈Rn,t>0

( 1

tλ

∫
B(x,t)

|IΩ,α,mf(εy)|qdy
)1/q

= ε−α−n/q sup
x∈Rn,t>0

( 1

tλ

∫
B(εx,εt)

|IΩ,α,mf(y)|qdy
)1/q

= ε−α−n/q+λ/q sup
x∈Rn,t>0

( 1

(εt)λ

∫
B(εx,εt)

|IΩ,α,mf(y)|qdy
)1/q

= ε−α−(n−λ)/q‖IΩ,α,mf‖Lq,λ .

Since IΩ,α,m is bounded from Lp1,λ1 × . . .× Lpm,λm to Lq,λ, we have

‖IΩ,α,mf‖Lq,λ = εα+(n−λ)/q‖IΩ,α,mfε‖Lq,λ ≤ Cεα+(n−λ)/q
m∏
j=1

‖fj(ε·)‖Lpj,λj

= Cεα+(n−λ)/q
m∏
j=1

sup
x∈Rn,t>0

( 1

tλj

∫
B(x,t)

|fj(εy)|pjdy
)1/pj

= Cεα+(n−λ)/q
m∏
j=1

ε−n/pj sup
x∈Rn,t>0

( 1

tλj

∫
B(εx,εt)

|fj(y)|pjdy
)1/pj

= Cεα+(n−λ)/q
m∏
j=1

ε(λj−n)/pj sup
x∈Rn,t>0

( 1

(εt)λj

∫
B(εx,εt)

|fj(y)|pjdy
)1/pj

= Cεα+(n−λ)/q−(n−λ)/p
m∏
j=1

‖fj‖Lpj,λj ,
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where C is independent of ε.

If (n − λ)/p < (n − λ)/q + α, then for all f ∈ Lp1,λ1 × . . . × Lpm,λm , we have
‖IΩ,α,mf‖Lq,λ = 0 as ε→ 0.

If (n − λ)/p > (n − λ)/q + α, then for all f ∈ Lp1,λ1 × . . . × Lpm,λm , we have
‖IΩ,α,mf‖Lq,λ = 0 as ε→∞.

Therefore we get (n− λ)/p = (n− λ)/q + α.

(ii) Sufficiency. If pi = s′ for some i, we take η2 = β
2− q

q̃2

( m∏
j=1
‖fj‖Lpj,λj

) q
q̃2
−1

for any

β > 0, then applying Lemma 1 and Theorem 4 in [7], we get∣∣∣{y ∈ B(x, t) :
∣∣IΩ,α,mf(y)

∣∣ > β
}∣∣∣

≤ C
∣∣∣{y ∈ B(x, t) : C

[
MΩ,α+ε,mf(y)

] 1
2
[
MΩ,α−ε,mf(y)

] 1
2 > β

}∣∣∣
≤ C

∣∣∣{y ∈ B(x, t) :
√
C
[
MΩ,α+ε,mf(y)

] 1
2 > η

}∣∣∣
+
∣∣∣{y ∈ B(x, t) :

√
C
[
MΩ,α−ε,mf(y)

] 1
2 > β/η

}∣∣∣
≤ C

∣∣∣{y ∈ B(x, t) :MΩ,α+ε,mf(y) > Cη2
}∣∣∣+

∣∣∣{y ∈ B(x, t) :MΩ,α−ε,mf(y) > Cβ2/η2
}∣∣∣

= Ctλ
[( 1

η2

m∏
j=1

‖fj‖Lpj,λj
)q̃1

+
( η2

β2

m∏
j=1

‖fj‖Lpj,λj
)q̃2]

= Ctλ

(
1

β

m∏
j=1

‖fj‖Lpj,λj

)q
.

Hence, we obtain the following inequality

‖IΩ,α,mf‖WLq,λ = sup
β>0

β sup
x∈Rn,t>0

( 1

tλ

∣∣∣{y ∈ B(x, t) : |IΩ,α,mf(y)| > β
}∣∣∣) 1

p

≤ C
m∏
j=1

‖fj‖Lpj,λj .

This is the conclusion (ii) of Theorem 4.

Necessity. Suppose that IΩ,α,m is bounded from Lp1,λ1(Rn) × . . . × Lpm,λm(Rn) to
WLq,λ(Rn). From equality (4) we get

‖IΩ,α,mfε‖WLq,λ = sup
τ>0

τ sup
x∈Rn,t>0

( 1

tλ

∫{
y∈B(x,t):IΩ,α,mfε(y)>τ

} dy)1/q

= sup
τ>0

τ sup
x∈Rn,t>0

( 1

tλ

∫{
y∈B(x,t):IΩ,α,mf(εy)>τεα

} dy)1/q
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= ε
−n
q sup
τ>0

τ sup
x∈Rn,t>0

( 1

tλ

∫{
y∈B(x,εt):IΩ,α,mf(εy)>τεα

} dy)1/q

= ε
−α−n

q
+λ
q sup
τ>0

τεα sup
x∈Rn,t>0

( 1

(εt)λ

∫{
y∈B(x,εt):IΩ,α,mf(εy)>τεα

} dy)1/q

= ε−α−(n−λ)/q‖IΩ,α,mf‖WLq,λ .

By the boundedness of the operator IΩ,α,m from Lp1,λ1 × . . .×Lpm,λm to WLq,λ, we
have

‖IΩ,α,mf‖WLq,λ = εα+(n−λ)/q‖IΩ,α,mfε‖WLq,λ

≤ Cεα+(n−λ)/q
m∏
j=1

‖fj(ε·)‖Lpj,λj

= Cεα+(n−λ)/q
m∏
j=1

sup
x∈Rn,t>0

( 1

tλj

∫
B(x,t)

|fj(εy)|pjdy
)1/pj

= Cεα+(n−λ)/q
m∏
j=1

ε−n/pj sup
x∈Rn,t>0

( 1

tλj

∫
B(εx,εt)

|fj(y)|pjdy
)1/pj

= Cεα+(n−λ)/q
m∏
j=1

ε(λj−n)/pj sup
x∈Rn,t>0

( 1

(εt)λj

∫
B(εx,εt)

|fj(y)|pjdy
)1/pj

= Cεα+(n−λ)/q−(n−λ)/p
m∏
j=1

‖fj‖Lpj,λj ,

where C is independent of ε.

If (n − λ)/p < (n − λ)/q + α, then for all f ∈ Lp1,λ1 × . . . × Lpm,λm , we have
‖IΩ,α,mf‖WLq,λ = 0 as ε→ 0.

If (n − λ)/p > (n − λ)/q + α, then for all f ∈ Lp1,λ1 × . . . × Lpm,λm , we have
‖IΩ,α,mf‖WLq,λ = 0 as ε→∞.

Therefore we get (n− λ)/p = (n− λ)/q + α.
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On Morrey type Spaces and Some Properties
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Abstract. Subspace Mp,α

ρ
of the weighted Morrey -type space Lp,α

ρ
is defined, it is proved that

infinitely differentiable functions are dense in it. An approximation properties of the Poisson
kernel is studied in Mp,α

ρ
. A sufficient condition for belonging of the product to the space Mp,α

ρ
is

obtained. It is proved that Mp,α

ρ
is an invariant subspace of a singular integral operator.

Key Words and Phrases: Morrey-type classes, Minkowski inequality, Poisson kernel.

2010 Mathematics Subject Classifications: 30E25, 46E30

1. Introduction

The concept of Morrey space was introduced by C. Morrey [1] in 1938 in the study of
qualitative properties of the solutions of elliptic type equations with BMO (Bounded Mean
Oscillations) coefficients (see also [2, 3]). This space provides a large class of weak solutions
to the Navier-Stokes system [4]. In the context of fluid dynamics, Morrey-type spaces
have been used to model the fluid flow in case where the vorticity is a singular measure
supported on some sets in Rn [5]. There appeared lately a large number of research works
which considered many problems of the theory of differential equations, potential theory,
maximal and singular operator theory, approximation theory, etc in Morrey-type spaces
(for more details see [2-26]). It should be noted that the matter of approximation in
Morrey-type spaces has only started to be studied recently (see, e.g., [11, 12, 16, 17]),
and many problems in this field are still unsolved. This work is just dedicated to this
field. Subspace Mp,α

ρ of the weighted Morrey -type space Lp,α
ρ is defined, it is proved

that infinitely differentiable functions are dense in it. An approximation properties of the
Poisson kernel is studied in Mp,α

ρ . A sufficient condition for belonging of the product to
the space Mp,α

ρ is obtained. It is proved that Mp,α
ρ is an invariant subspace of a singular

integral operator .
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2. Needful Information

We will need some facts about the theory of Morrey-type spaces. Let Γ be some
rectifiable Jordan curve on the complex plane C. By |M |Γ we denote the linear Lebesgue
measure of the set M ⊂ Γ. All the constants throughout this paper (can be different in
different places) will be denoted by c.

The expression f (x) ∼ g (x), x ∈ M , means

∃δ > 0 : δ ≤

∣

∣

∣

∣

f (x)

g (x)

∣

∣

∣

∣

≤ δ−1, ∀x ∈ M.

Similar meaning is intended by the expression f (x) ∼ g (x), x → a.

By Morrey-Lebesgue space Lp, α (Γ), 0 < α ≤ 1, p ≥ 1, we mean the normed space of
all measurable functions f (·) on Γ with the finite norm

‖f‖Lp, α(Γ) = sup
B

(

∣

∣

∣
B
⋂

Γ
∣

∣

∣

α−1

Γ

∫

B
⋂

Γ
|f (ξ)|p |dξ|

)
1/p

< +∞.

Lp, α (Γ) is a Banach space with Lp,1 (Γ) = Lp (Γ), L
p, 0 (Γ) = L∞ (Γ). Similarly we define

the weighted Morrey-Lebesgue space Lp,α
µ (Γ) with the weight function µ (·) on Γ equipped

with the norm

‖f‖Lp, α
µ (Γ) = ‖fµ‖Lp, α(Γ) , f ∈ Lp,α

µ (Γ) .

The inclusion Lp, α1 (Γ) ⊂ Lp, α2 (Γ) is valid for 0 < α1 ≤ α2 ≤ 1. Thus, Lp, α (Γ) ⊂ L1 (Γ),
∀α ∈ (0, 1], ∀p ≥ 1. For Γ = [−π, π] we will use the notation Lp,α (−π, π) = Lp, α.

More details on Morrey-type spaces can be found in [2-26].

In the sequel, we will need some auxiliary facts. Recall Minkowski’s (integral) inequal-
ity.

Let (X; Ax; ν) and (Y ; Ay; µ) be measurable spaces with σ−finite measures ν and µ,
respectively. If F (x; y) is ν × µ−measurable, then we have

∥

∥

∥

∥

∫

X

F (·; y) dν (x)

∥

∥

∥

∥

Lp(dµ)

≤

∫

X

‖F (x; ·)‖Lp(dµ) dν (x) , 1 ≤ p < +∞,

where

‖g (y)‖Lp(dµ) =

(
∫

Y

|g (y)|p dµ

)
1/p

.

Now let Y ≡ R and µ (·) be a Borel measure on R. We have

(
∫

I

∣

∣

∣

∣

∫

X

F (x; y) dν (x)

∣

∣

∣

∣

p

dµ (y)

)
1/p

≤
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≤

∫

X

(
∫

I

|F (x; y)|p dµ (y)

)
1/p

dν (x) .

Thus
(

1

|I|1−α

∫

I

∣

∣

∣

∣

∫

X

F (x; y) dν (x)

∣

∣

∣

∣

p

dµ (y)

)
1/p

≤

≤

∫

X

(

1

|I|1−α

∫

I

|F (x; y)|p dµ (y)

)
1/p

dν (x) ≤

≤

∫

X

‖F (x; y)‖Lp, α(dµ) dν (x) ,∀I ⊂ R.

Taking sup over I ⊂ R, we get
∥

∥

∥

∥

∫

X

F (x; y) dν (x)

∥

∥

∥

∥

Lp, α(dµ)

≤

∫

X

‖F (x; y)‖Lp, α(dµ) dν (x) . (1)

So the Minkowski inequality (1) holds in the Morrey-type space Lp, α (dµ).
Thus, the following Minkowski’s inequality regarding Morrey type spaces is true.

Statement 1. Let (X; Ax; ν) be a measurable space with a σ−finite measure ν and
(R; B;; µ ) be a measurable space with a Borel measure µ on σ−algebra of Borel sets B of
R. Then, for ν × µ− measurable function F (x; y), the following analog of Minkowski’s
inequality is valid

∥

∥

∥

∥

∫

X

F (x; ·) dν (x)

∥

∥

∥

∥

Lp, α(dµ)

≤

∫

X

‖F (x; ·)‖Lp, α(dµ) dν (x) .

By SΓ we denote the following singular integral operator

(SΓf) (τ) =
1

2πi

∫

Γ

f (ζ) dζ

ζ − τ
, τ ∈ Γ,

where Γ ⊂ C is some rectifiable curve on complex plane C. Let ω = {z ∈ C : |z| < 1} be
the unit disk on C and ∂ω = γ be its boundary. Define the Morrey-Hardy space Hp, α

+ of
analytic functions f (z) inside ω equipped with the following norm

‖f‖Hp, α
+

= sup
0<r<1

∥

∥f
(

reit
)
∥

∥

Lp, α .

In what follows, we assume that the function f (·) periodically continued on the whole
axis R .

We will also use the following concepts. Let Γ ⊂ C be some bounded rectifiable curve,
t = t (σ), 0 ≤ σ ≤ 1, be its parametric representation with respect to the arc length σ,
and l be the length of Γ. Let dµ (t) = dσ, i.e. let µ (·) be a linear measure on Γ. Let

Γt (r) = {τ ∈ Γ : |τ − t| < r} ,Γt(s) (r) = {τ (σ) ∈ Γ : |σ − s| < r} .

It is absolutely clear that Γt(s) (r) ⊂ Γt (r).
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Definition 1. Curve Γ is said to be Carleson if ∃c > 0:

sup
t∈Γ

µ (Γt (r)) ≤ cr,∀r > 0.

Curve Γ is said to satisfy the chord-arc condition at the point t0 = t (s0) ∈ Γ if there
exists a constant m > 0 independent of t such that |s− s0| ≤ m |t (s)− t (s0)|, ∀t (s) ∈ Γ.
Γ satisfies a chord-arc condition uniformly on Γ if ∃m > 0 : |s− σ| ≤ m |t (s)− t (σ)|,
∀t (s) , t (σ) ∈ Γ.

Let’s state the following lemma of [10] which is of independent interest.

Lemma 1. [10] Let Γ be a bounded rectifiable curve. If the power function |t− t0|
γ, t0 ∈ Γ,

belongs to the space Lp, α (Γ), 1 ≤ p < ∞, 0 < α < 1, then the inequality γ ≥ −α
p
holds. If

Γ is a Carleson curve, then this condition is also sufficient.

We will extensively use the following theorem of N.Samko [10].

Theorem 1. [10] Let the curve Γ satisfy the chord-arc condition and the weight ρ (·) be
defined by

ρ (t) =
m
∏

k=1

|t− tk|
αk ; {tk}

m
1 ⊂ Γ, ti 6= tj , i 6= j. (2)

A singular operator SΓ is bounded in the weighted space Lp, α
ρ (Γ), 1 < p < +∞, 0 < α ≤ 1,

if the following inequalities are satisfied

−
α

p
< αk < −

α

p
+ 1, k = 1, m. (3)

Moreover, if Γ is smooth in some neighborhoods of the points tk, k = 1, m, then the validity
of inequalities (3) is necessary for the boundedness of the operator SΓ in Lp, α

ρ (Γ).

In what follows, as Γ we will consider a boundary of unit disk: γ = ∂ω. Consider the
weighted space Lp,α

ρ (γ) =: Lp,α
ρ with the weight ρ ( · ). In an absolutely similar way to the

non-weighted case, we define the space Mp, α
ρ with the weight ρ (·). Denote by M̃p, α

ρ the
set of functions whose shifts are continuous in Lp, α

ρ , i.e.

‖Sδf − f‖p, α; ρ = ‖f (·+ δ) − f (·)‖p, α; ρ → 0, δ → 0,

where Sδ is a shift operator: (Sδf) (x) = f (x+ δ) and we will consider that the function
f (·) (in sequel also) periodically continued to the whole real axis R. It is not difficult to
see that M̃p, α

ρ is a linear subspace of Lp, α
ρ . Denote the closure of M̃p, α

ρ in Lp, α
ρ by Mp, α

ρ .
Consider the following class

L̃p,α
ρ =:

{

f ∈ Lp, α
ρ : ‖Tδf − f‖p, α; ρ → 0, δ → 0

}

.

It is evident that the class L̃p,α
ρ is a linear subspace of Lp, α

ρ . Let us denote by Mp, α
ρ the

closure of L̃p, α
ρ in Lp, α

ρ .
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Let us remember the following properties of Poisson kernel Pr (ϕ):

Pr (ϕ) =
1

2π

1− r2

1− 2r cosϕ+ r2
, 0 < r < 1.

(a) sup
|t|<δ

Pr (t) → 0 as |r| → 1;

(b)
∫

|t|>δ
Pr (t) dt → 0 as |r| → 1 for ∀δ > 0.

These properties directly follows from the expression for Pr (ϕ). We have

‖(Pr ∗ f) (·)− f (·)‖p,α; ρ =

∥

∥

∥

∥

1

2π

∫

−π

Pr (t) f (t− s) dt−
1

2π

∫ π

−π

Pr (t) f (s) dt

∥

∥

∥

∥

p,α; ρ

≤

≤
1

2π

∫ π

−π

Pr (t) ‖f (t− ·)− f (·)‖p, α; ρ dt =

=
1

2π

[

∫

|t|>δ

Pr (t) ‖f (t− ·)− f (·)‖p,α; ρ dt+

∫

|t|<δ

Pr (t) ‖f (t− ·)− f (·)‖p, α; ρ dt

]

.

Regarding the second integral in the right-hand side, we have

1

2π

∫

|t|<δ

Pr (t) ‖f (t− ·)− f (·)‖p, α; ρ dt ≤

≤ sup
|t|<δ

‖f (t− ·)− f (·)‖p, α; ρ , as δ → 0.

To estimate the first integral, consider

‖f (t− ·)− f (·)‖p, α; ρ ≤ ‖f‖p, α; ρ + ‖f (t− ·)‖p, α; ρ = 2 ‖f‖p, α; ρ .

We have

‖f (t− ·)‖pp, α; ρ = sup
B

1

|B
⋂

γ|1−α

∫

B
⋂

γ

|f (t− s)|p ds =

= sup
B

1

|B
⋂

γ|1−α

∫

(B
⋂

γ)t

|f (s)|p ds,

where (B
⋂

γ)t ≡ {s : t− s ∈ B
⋂

γ}. It is clear that
∣

∣

∣
B
⋂

γ
∣

∣

∣
=
∣

∣

∣

(

B
⋂

γ
)

t

∣

∣

∣
,

holds. Therefore
‖f (t− ·)‖p,α; ρ = ‖f‖p, α; ρ .

As a result
∫

|t|>δ

Pr (t) ‖f (t− ·)− f (·)‖p, α; ρ dt ≤

≤ 2 ‖f‖p, α; ρ

∫

|t|>δ

Pr (t) dt → 0 as |r| → 1.

So we have proved the following
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Theorem 2. If f ∈ Mp, α
ρ , 1 ≤ p < +∞ ∧ 0 ≤ α ≤ 1, then ‖Pr ∗ f − f‖p,α; ρ → 0 as

|r| → 1.

From Theorem 2 we immediately get the validity of the following

Theorem 3. Let f ∈ Mp, α
ρ , 0 < α ≤ 1, 1 < p < +∞. Then it holds

∥

∥(Kf) (rξ)− f+ (ξ)
∥

∥

p, α; ρ
→ 0, r → 1− 0.

Similar assertion is true in case of f− (ξ) when r → 1 + 0.

3. Subspace M
p, α
ρ

Let ρ : [−π, π] → (0, +∞) be some weight function and consider the space Mp, α
ρ . It

is easy to see that if ρ ∈ Lp, α, then C [−π, π] ⊂ Mp, α
ρ is true. Indeed, let f ∈ C [−π, π].

Without loss of generality, we assume that the function f periodically continued on the
whole axis. We have

|f (x+ δ)− f (x)| ≤ ‖f (·+ δ) − f (·)‖∞ → 0, δ → 0.

Consequently

‖f (·+ δ)− f (·)‖p, α; ρ = ‖(f (·+ δ)− f (·)) ρ (·)‖p, α ≤

≤ ‖f (·+ δ) − f (·)‖∞ ‖ρ (·)‖p, α → 0, δ → 0.

Hence, we have f ∈ Mp, α
ρ .

Let us show that the set of infinitely differentiable functions is dense in Mp, α
ρ . Consider

the following averaged function

ωε (t) =

{

cε exp
(

− ε2

ε2−|t|2

)

, |t| < ε,

0, |t| ≥ ε,

where

cε

∫ +∞

−∞
ωε (t) dt = 1.

Take ∀f ∈ Mp, α
ρ and consider the convolution f ∗ g:

(f ∗ g) (t) =

∫ +∞

−∞
f (t− s) g (s) ds,

and let

fε (t) = (ωε ∗ f) (t) = (f ∗ ωε) (t) .
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It is clear that fε is infinitely differentiable on [−π, π]. We have

‖fε − f‖p, α; ρ =

∥

∥

∥

∥

∫ +∞

−∞
ωε (s) f (· − s) ds− f (·)

∥

∥

∥

∥

p, α; ρ

=

=

∥

∥

∥

∥

∫ +∞

−∞
ωε (s) [f (· − s)− f (·)] ds

∥

∥

∥

∥

p, α; ρ

.

Applying Minkowski inequality (1) to this expression, we obtain

‖fε − f‖
p, α; ρ

≤

∫ +∞

−∞
ωε (s) ‖f (· − s)− f (·)‖p, α; ρ ds =

=

∫ ε

−ε

ωε (s) ‖f (· − s)− f (·)‖p,α; ρ ds ≤

= sup
|s|≤ε

‖f (· − s)− f (·)‖p, α; ρ → 0, ε → 0.

Thus, the following theorem is true.

Theorem 4. Let ρ ∈ Lp, α, 1 < p < +∞, 0 < α ≤ 1. Then infinitely differentiable
functions are dense in Mp, α

ρ .

Consider the singular operator S (·):

Sf (t) =
1

π

∫

γ

f (τ) dτ

τ − t
, t ∈ γ.

Applying Theorem 1 [10] to the operator S we obtain the following result.

Theorem 5. Let the weight ρ (·) be defined by the expression (2), where Γ = γ. Then the
operator S is bounded in Lp,α

ρ ,1 < p < +∞, 0 < α ≤ 1, i.e. the following inequality holds

‖Sf‖p, α; ρ ≤ c ‖f‖p, α; ρ ,∀f ∈ Lp, α
ρ ,

if and only if the following inequalities are fulfilled

−
α

p
< αk < −

α

p
+ 1, k = 1, m. (4)

Let us show that the subspace Mp, α
ρ is an invariant with respect to the operator S. It

is sufficient to prove that the shift operator S is continuous in Mp, α
ρ . So, let f ∈ Mp, α

ρ

and δ ∈ R. Consider the shift operator S:

(Sf)
(

teiδ
)

=
1

2πi

∫

γ

f (τ) dτ

τ − teiδ
, t ∈ γ.

We have

(Sf)
(

teiδ
)

=
1

2πi

∫

γ

f (τ) dτe−iδ

τe−iδ − t
=
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=
1

2πi

∫

γ

f
(

τe−iδeiδ
)

dτe−iδ

τe−iδ − t
=

1

2πi

∫

γ

f
(

ξeiδ
)

dξ

ξ − t
.

Consequently

(Sf)
(

teiδ
)

− (Sf) (t) =
1

2πi

∫

γ

f
(

ξeiδ
)

− f (ξ)

ξ − t
dξ =

=
(

S
(

f
(

·eiδ
)

− f (·)
))

(t) .

Paying attention to Theorem 5, hence we immediately obtain

∥

∥

∥
(Sf)

(

teiδ
)

− (Sf) (t)
∥

∥

∥

p,α; ρ
≤

≤ c
∥

∥

∥
f
(

eiδ
)

− f (·)
∥

∥

∥

p, α; ρ
→ 0, δ → 0,

as f ∈ Mp, α
ρ . Thus, the following theorem is true.

Theorem 6. Let the weight ρ be defined by the expression

ρ (t) =
m
∏

k=1

|t− tk|
αk , t ∈ γ, (5)

where {tk}k=1,m ⊂ γ−are different points. If the inequalities (4) hold, then the operator
S boundedly acts in Mp, α

ρ , 1 < p < +∞, 0 < α ≤ 1.

Remark 1. In previous statements and in their proofs the spaces Lp, α
ρ , Mp, α

ρ (−π, π) and
Lp, α
ρ , Mp, α

ρ , are naturally identified, respectively, i.e. Lp,α
ρ = Lp, α

ρ (−π, π) = Lp,α
ρ (γ) &

Mp, α
ρ = Mp, α

ρ (−π, π) = Mp, α
ρ (γ).

Consider the following Cauchy integral

(Kf) (z) =
1

2πi

∫

γ

f (ξ) dξ

ξ − z
, z /∈ γ.

Let f ∈ Lp,α
ρ , where the weight ρ (·) is defined by the expression (5). Applying Holder’s

inequality we obtain

‖f‖L1
=
∥

∥fρρ−1
∥

∥

L1
≤ c ‖fρ‖p, α

∥

∥ρ−1
∥

∥

q, α
=

= c ‖f‖p, α; ρ
∥

∥ρ−1
∥

∥

q;α
. (6)

Suppose that the following inequalities are fulfilled

−
α

p
< αk <

α

q
, k = 1, m,

1

p
+

1

q
= 1. (7)
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Then from (6) it follows that f ∈ L1. As a result, according to the classical facts, the
following Sokhotskii-Plemelj is true

f± (ξ) = ±
1

2
f (ξ) + (Sf) (ξ) , ξ ∈ γ, (8)

where f+ (ξ) (respectively, f− (ξ)) boundary values of a Cauchy integral (Kf) (z) on γ
inside ω (outside ω). Paying attention to Theorem 6, form (8) we obtain that if f ∈ Mp, α

ρ ,
then f± ∈ Mp, α

ρ and the following inequality holds.
∥

∥f±
∥

∥

p, α; ρ
≤ c ‖f‖p, α; ρ ,∀f ∈ Mp, α

ρ . (9)

Assume
Kz (s) =

eis

eis−z
−Cauchy kernel; Pz (s) = Ree

is+z
eis−z

− Poisson kernel;

Qz (s) = Im eis+z
eis−z

−is the conjugate Poisson kernel,
(Re−is a real part, Im−is an imaginary part). We have

Kz (s) =
1

2
+

1

2
(Pz (s) + iQz (s)) =

1

2
+

1

2

eis + z

eis − z
, z ∈ ω. (10)

Let F (z) = u (z) + iϑ (z) be an analytic function in ω. It is clear that F ∈ Hp, α
ρ if

and only if u;ϑ ∈ hp, αρ . Paying attention to the relation (10) we arrive at the conclusion
that many of the properties of functions from hp, αρ transferred to the function from Hp, α

ρ .
For example, ∀F ∈ Hp, α

ρ has a.e. on γ the nontangential boundary values F+, since,
lim

r→1−0
F
(

reit
)

= F+
(

eit
)

, a.e. t ∈ [−π, π]. We have

F+ (τ) = u+ (τ) + iϑ+ (τ) , τ ∈ γ.

Let all the conditions of Theorem 2 be fulfilled. Then the following representation is true.

u
(

reiθ
)

=
(

Pr ∗ u
+
)

(θ) , ϑ
(

reiθ
)

=
(

Pr ∗ u
+
)

(θ) ,

and, as a result

F
(

reiθ
)

=
(

Pr ∗ F
+
)

(θ) .

Paying attention to Theorem 2, we obtain the following result.

Theorem 7. Let the weight ρ (·) is defined by the expression (5) and the inequality (7)
holds. Then the Sokhotskii-Plemelj formula (8) is valid and for the boundary values the
inequality (9) holds .

Let us prove the following

Theorem 8. Let f (·) ∈ L∞
⋂

Mp, 1
ρ ∧ g (·) ∈ Mp, α

ρ and let the weight function ρ satisfies
the following condition

∃δ0 > 0 :
1

|I|1−α

∫

I

ρp (t) dt ≤ c |I|δ0 ,∀I ∈ [−π, π] .

Then f (·) g (·) ∈ Mp, α
ρ when 0 < α ≤ 1 and p ≥ 1.
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Proof. Let f (·) ∈ L∞
⋂

Mp, 1
ρ and g (·) ∈ Mp, α

ρ , 0 < α ≤ 1, p ≥ 1. For α = 1 it is
evident that Mp, 1

ρ = Lp, ρ and the following estimation is true

∫ π

−π

|f (t) g (t)|p ρp (t) dt ≤ c

∫ π

−π

|g (t)|p ρp (t) dt = c ‖g‖pp, ρ < +∞.

So, f (·) g (·) ∈ Mp, α
ρ when α = 1.

Consider the case 0 < α < 1. We have

sup
I

(

1

|I|1−α

∫

I

|f (t) g (t)|p ρp (t) dt

)
1
p

≤

≤ c sup
I

(

1

|I|1−α

∫

I

|g (t)|p ρp (t) dt

)
1
p

= c ‖g‖p, α; ρ < +∞.

Let us consider

∆δ = ‖f (·+ δ) g (·+ δ) − f (·) g (·)‖p, α; ρ .

For any ε > 0 and m > 0 there is a ϕ (·) ∈ C [−π; π] such that ‖g (·)− ϕ (·)‖p, α; ρ < ε
m
, as

g ∈ Mp, α
ρ . We have

∆δ = ‖f (·+ δ) [g (·+ δ)− ϕ (·+ δ) + ϕ (·+ δ)]− f (·) [g (·)− ϕ (·) + ϕ (·)]‖p, α; ρ ≤

≤ cf ‖g (·+ δ)− ϕ (·+ δ)‖p, α; ρ+‖f (·+ δ)ϕ (·+ δ)− f (·)ϕ (·)‖p, α; ρ+cf ‖g (·)− ϕ (·)‖p, α; ρ ,

where cf = ‖f (·)‖L∞

. From ‖g (·)− ϕ (·)‖p, α; ρ <
ε
m

it follows

‖g (·+ δ)− ϕ (·+ δ)‖p, α; ρ ≤ ‖g (·+ δ) − g (·)‖p, α; ρ +

+ ‖g (·)− ϕ (·)‖p, α; ρ + ‖ϕ (·)− ϕ (·+ δ)‖p, α; ρ .

It is obvious that ‖g (·+ δ)− g (·)‖p, α; ρ → 0, δ → 0.

Let the weight function ρ satisfies the following condition

∃δ0 > 0 :
1

|I|1−α

∫

I

ρp (t) dt ≤ c |I|δ0 ,∀I ∈ [−π; π] ,

where c > 0 is some constant.

It follows from uniformly continuity that for ∀m > 0, ε > 0 there exists δ1 > 0 : ∀δ ∈
(−δ1, δ1):

‖ϕ (·)− ϕ (·+ δ)‖p, α; ρ = sup
I

(

1

|I|1−α

∫

I

|ϕ (t)− ϕ (t+ δ)|p ρp (t)

)
1

p

<

<
ε

m
sup
I

(

1

|I|1−α

∫

I

ρp (t)

)
1
p

<
ε

m
sup
I

(

c |I|δ0
)

1
p
= c

ε

m
(2π)

δ0
p .
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Then the previous inequality implies

∆δ ≤ cf
ε

m

(

2 + c (2π)
δ0
p

)

+ ‖f (·+ δ)ϕ (·+ δ)− f (·)ϕ (·)‖p, α; ρ .

Thus, it is suffices to prove that for ϕ (·) ∈ C [−π; π] it is true

lim
δ→0

‖f (·+ δ)ϕ (·+ δ) − f (·)ϕ (·)‖p, α; ρ = 0.

We have

‖f (·+ δ)ϕ (·+ δ) − f (·)ϕ (·)‖p, α; ρ ≤ ‖f (·+ δ) [ϕ (·+ δ)− ϕ (·)]‖p,α; ρ +

+ ‖[f (·+ δ)− f (·)]ϕ (·)‖p, α; ρ ≤ cf ‖ϕ (·+ δ)− ϕ (·)‖p, α; ρ + cϕ ‖f (·+ δ)− f (·)‖p, α; ρ .

where cϕ = ‖ϕ (·)‖L∞

. Let us take

∆δ (f) = ‖f (·+ δ)− f (·)‖p, α; ρ .

Let ϑ > 0 be an arbitrary number. We have

∆δ (f) = max
{

∆
(1)
δ (f) , ∆

(1)
δ (f)

}

,

where

∆
(1)
δ (f) = sup

I:|I|≤ϑ

(

1

|I|1−α

∫

I

|f (t+ δ) − f (t)|p ρp (t) dt

)
1
p

,

∆
(21)
δ (f) = sup

I:|I|≤ϑ

(

1

|I|1−α

∫

I

|f (t+ δ)− f (t)|p ρp (t) dt

)
1
p

.

Regarding ∆
(1)
δ (f), we have

∆
(1)
δ (f) ≤ 2cf sup

|I|≤ϑ

(

1

|I|1−α

∫

I

ρp (t) dt

)
1

p

≤

≤ 2cf sup
|I|≤ϑ

(|I|)
δ0
p = c̃ϑ

δ0
p .

Regarding ∆
(2)
δ (f), we have

∆
(2)
δ (f) ≤ ϑ

α−1

p
ε sup

|I|≥ϑ

(
∫

I

|f (t+ δ) − f (t)|p ρp (t) dt

)
1
p

≤

≤ ϑ
α−1

p
ε

(
∫ π

−π

|f (t+ δ) − f (t)|p ρp (t) dt

)
1

p

≤
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ϑ
α−1

p
ε ‖f (·+ δ) − f (·)‖p, ρ .

where ϑ =
(

ε
c̃

)
p
δ0 := ϑε. It is clear that ∃δ2 > 0:

‖f (·+ δ)− f (·)‖p, ρ < ϑ
1
p
ε ,∀δ ∈ (−δ2, δ2) ,

where we can choose ε1 = ϑ
1
p
ε for any ε1 > 0. Hence we get ∆

(2)
δ (f) ≤

(

ε
c̃

)
α
δ0 .

Now let us take ∆δ (f) ≤ max
{

ε2,
(

ε2
c̃

)
α
δ0

}

, where ε2 =
ε
m

for any m > 0.

Consequently

∆δ ≤
ε

m

(

cf (2 + 2c (2π))
δ0
p + cϕ

)

,∀δ ∈ (−δ3, δ3) ,

where δ3 = min {δ1, δ2}. By taking m =

(

cf (2 + 2c (2π))
δ0
p + cϕ

)

, we get ∆δ ≤ ε,

∀δ ∈ (−δ3, δ3). It follows that ∆δ → 0 as δ → 0. ◭
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Abstract. This paper considers double system of exponentials with linear phase in the weighted
space Lp,ρ with power weight ρ (·) on the segment [π, π]. Under certain conditions on the weight
function ρ (·) and on the perturbation parameters, the completeness of this system in Lp,ρ is
proved. An explicit expression for the biorthogonal system in the case of minimality is derived.
The obtained results generalize all previously known results in this direction.
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1. Introduction

Investigation of many partial differential equation by the application of Fourier method
reduces to perturbed trigonometric system of sines (or cosines) of the form

{sin (nt+ α (t))}n∈N , (1)

where α : [0, π] → R is some function (N is a set of natural numbers). Similar problems
were studied, for example, in the papers [4, 5, 6, 7, 8, 9, 11]. To justify the Fourier method
it is necessary to study the basicity properties (completeness, minimality, basis property,
etc.) of these systems in different functional spaces. Complex versions of these systems
are perturbed system of exponents of the form{

ei(nt+β(t)signn)
}
n∈Z

, (2)

where β : [−π, π]→ R is some function (Z is the set of integers). Basis properties of the
systems (1) and (2) in corresponding spaces are closely linked, in Lebesgue spaces Lp they
are well studied by various mathematicians (see, for example [4, 5, 6, 12, 13, 17, 19, 20, 21,
22, 23, 24, 25, 26, 27, 10]). The case L∞ = C [−π, π] is treated in [38]. In connection with
application to solution of differential equations, the interest in Lebesgues spaces Lp(·) with

∗Corresponding author.
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variable summability power p (·) and in Morrey spaces Lp,α greatly increased in recent
years. Problems of approximation in these spaces have also begun to be studied and
basicity problems of the systems (1), (2) in Lp(·) are studied in [29, 30], but basicity of the
classical system of exponents with linear phase in Morrey spaces are studied in [33, 34].
Note that study of basicity properties of the systems (1), (2) in weighted spaces Lp,ρ is
equivalent to the study of analogous properties of the systems (1), (2) with corresponding
degenerate coefficients in the spaces Lp. For this reason, it can be assumed that the study
of the basicity of trigonometric systems in weighted Lebesgue spaces takes its origin from
the paper of K.Babenko [18]. Later this area was developed in the works [14, 15, 16, 28,
31, 32, 35, 36]. The problem of basicity of the exponential system in the weighted space
Lp,ρ ≡ Lp,ρ (−π, π) , 1 < p < +∞, is solved in the paper [37]. Such a condition is a
Muckenhaupt condition with respect to the weight function ρ (·):

sup
I

(
1

|I|

∫
I
ρ (t) dt

)(
1

|I|

∫
I
ρ
− 1
p−1dt

)p−1
<∞, (3)

where sup is taken over all intervals I ⊂ [−π, π] and |I| is the length of the interval I (see
e.g. [3]).

In the papers [2, 15] the system (2) is considered in the case when β (t) = β t, where
β ∈ R is some real parameter and its basicity in Lp,ρ , 1 < p < +∞, is studied when ρ (·)
has the following form

ρ (t) =

r∏
k=−r

|t− tk|αk ,

where −π = t−r < t−r+1 < ... < tr = π .
The class of weights, satisfying the condition (3), is denoted by Ap. It is easy to see

that
ρ ∈ Ap ⇔ −1 < αk < p− 1, k = −r, r.

It is additionally required in [2] that the condition α−r = αr holds, which means that
degeneration must be present at both ends of the segment [−π, π]. This effect does not
take place in the paper [15].

In this paper the completeness of the exponential system{
ei (n+

β
2
signn)t

}
n∈Z

, (4)

in the weighted space Lp,ρ , 1 < p < +∞, where β ∈ C is a complex parameter, is
studied. Under certain conditions on the parameter β and the weight function ρ (·) , the
completeness of the system (4) is established in the space Lp,ρ.

2. Preliminaries. Main lemma

Consider the following double system of exponents{
ei[(n+β1)t+γ]; e−i[(k+β2)t+γ2]

}
n∈Z+;k∈N

, (5)
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where βk = Reβk + iImβk, γk = Reγk + iImγk, k = 1, 2, are complex parameters,
Z+ = {0}

⋃
N. We assume that the weight function ρ (·) is of the following power form

ρ (t) =
r∏

k=−r
|t− tk|αk ,

where −π = t−r < t−r+1 < ... < t0 = 0 < ... < tr = π, {αk}k=− r,r ⊂ R are some
numbers. We consider the weighted space Lp,ρ, 1 < p < +∞, with the norm ‖·‖p,ρ:

‖f‖p,ρ =

(∫ π

−π
|f (t)|p ρ (t) dt

)1/p

.

It is easy to see that basicity properties of the system (5) in Lp,ρ are equivalent to basicity
properties of the system {

ei(n+β1)t; e−i(k+β2)t
}
n∈Z+;k∈N

, (6)

in Lp,ρ. We put g (t) = e
i
2
(β2−β1)t. It is evident that ∃δ > 0:

0 < δ ≤ |g (t)| ≤ δ−1 < +∞, ∀t ∈ [−π, π] .

Multiplying the system (6) to the function g (t), we immediately obtain from here that the
basicity properties of the system (6) on Lp,ρ are equivalent to the basicity properties of
the system (4) on Lp,ρ, β = β1 + β2. Thus, the study of basicity properties of the system
(5) on Lp,ρ is reduced to the investigation of corresponding properties with respect to the
system (4) on Lp,ρ.

Let β ∈ C be some complex number. We will assume throughout the paper that
(1 + z)β is some fixed branch of multivalued analytic function (1 + z)β on the complex
plane with the cut along the semiline (−∞,−1) ⊂ R on the real axis and take

(1 + z)−β =
1

(1 + z)β
.

Analogously, we define a branch zβ of a multivalued function zβ on C with the cut
along (−∞, 0) ⊂ R and z−β = 1

zβ
.

We will essentially use the following main lemma in the proof of main results.

Lemma 1. [38] Let Reβ > −1. Then the following Cauchy integral formulas hold

J−m (z) ≡ 1

2π

∫ π

−π

e−i(β+m)θ
(
1 + eiθ

)β
eiθ − z

dθ ≡
{

0, |z| < 1 ,

−z−m−β−1 (1 + z)β , |z| > 1 ,

J+
m (z) ≡ 1

2π

∫ π

−π

ei(m+1)θ
(
1 + eiθ

)β
eiθ − z

dθ ≡
{

0, |z| > 1 ,

zm (1 + z)β , |z| < 1 ,

∀m ∈ Z+.
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Consider the following system of functions

ϑ+n (t) = e−i
β
2 t

2π

(
1 + eit

)β∑n
k=0C

n−k
−β e−ikt, n ∈ Z+;

ϑ−m (t) = − e−i
β
2 t

2π

(
1 + eit

)β∑m
k=1C

m−k
−β eikt, m ∈ N ;

where

Ck−γ =
γ (γ − 1) ... (γ − k + 1)

k!
,

is a binomial coefficient. Accordingly, we denote

e+n (t) ≡ ei(n+
β
2 )t, n ∈ Z+; e−k (t) ≡ e−i(n+

β
2 )t, k ∈ N.

Assume that Reβ > −1. The expansion in powers of z of the function (1 + z)−β J+
m (z)

that is analytic on |z| < 1 is

(1 + z)−β J+
m (z) =

∞∑
n=0

a+n;mz
n,

where

a+n;m =

∫ π

−π
ei(m+β

2 )tϑ+n (t) dt.

On the other hand, it follows from Lemma 1 that

(1 + z)−β J+
m (z) ≡ zm, |z| < 1.

Comparing the corresponding coefficients, we arrive at the following equalities∫ π

−π
e+m (t)ϑ+n (t) dt = δnm, ∀n,m ∈ Z+.

Expanding the function (1 + z)−β J+
m (z) at infinity in powers of z−1, we obtain

(1 + z)−β J+
m (z) =

∞∑
n=1

b+n;mz
−n, |z| > 1,

where

b+n;m =

∫ π

−π
ei(m+β

2 )tϑ−n (t) dt, m ∈ Z+, n ∈ N.

It is easy to see that
lim
|z|→∞

(1 + z)−β J+
m (z) = 0.

On the other hand, again, as follows from Lemma 1, we have

(1 + z)−β J+
m (z) ≡ 0, |z| > 1.
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These two expansions imply∫ π

−π
ei(m+β

2 )tϑ−n (t) dt = 0, ∀m ∈ Z+, ∀n ∈ N.

The relations ∫ π
−π e

−
m (t)ϑ+n (t) dt = 0, m ∈ N, n ∈ Z+;∫ π

−π e
−
m (t)ϑ−n (t) dt = δnm, ∀n,m ∈ N

can be proved analogously.
As a result, we obtain the validity of the following statement.

Proposition 1. Let Reβ > −1. Then for all admissible values of indices n and m the
following relations∫ π

−π
e±n (t)ϑ±m (t) dt = δnm,

∫ π

−π
e±n (t)ϑ∓m (t) dt = 0,

hold.

Define the following system of functions

h±n (t) = ρ−1 (t)ϑ±n (t) .

3. Completeness in Lp,ρ

The following lemma on the uniform convergence plays an important role in the study
of the completeness of the exponential system (4) in Lp,ρ.

Lemma 2. Let −1 < Reβ < 0, or β = 0. If ψ (·) is an arbitrary Hlder function on
[−π, π] : eiβπψ (−π) = ψ (π) = 0, then the series

∞∑
n=0

a+n e
+
n (t) +

∞∑
n=1

a−n e
−
n (t) ,

uniformly converges to ψ (·) on [−π, π], where a±n =
∫ π
−π ψ (t)h±n (t) ρ (t) dt.

Proof. Consider the following conjugate problem: find a piecewise analytic function
F (z) inside and outside of the unit circle, which the boundary values on the unit circle
satisfy the following condition

F+
(
eit
)

+ e−iβtF−
(
eit
)

= e−i
β
2
tψ (t) , t ∈ (−π, π] . (7)

We will solve this problem by the method developed in the monograph F.D. Gakhov [1]
(see page 427). Consider the following multi-valued analytic function in the complex plane

ω (z) = (z + 1)γ .
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We carry out cut on the plane z from zero to infinity (−∞) along the negative real axis.
On the plane that have cut in this way, this function will be unique and the incision for it
will be line of the rupture . Denote this branch by

ω−1 (z) = (z + 1)γ−1 .

Let us define

γ =
1

2πi
ln e−i2βπ ⇒ Reγ = −Reβ.

A solution of problem (7) is the following Cauchy type integral

F+ (z) = (z + 1)γ−1X
+
1 (z) Ψ+ (z) ,

F− (z) =

(
z + 1

z

)γ
−1
X−1 (z) Ψ− (z) ,

where
X1 (z) = exp [Γ (z)] ,

Γ (z) =
1

2πi

∫
L

ln [τ−γG (arg τ)]

τ − z
dτ,

Ψ (z) =
1

2πi

∫
L

(τ + 1)−γ−1 ϕ (arg τ)

X+
1 (τ) (τ − z)

dτ,

G (t) = e−iβt; ϕ (t) = e−i
β
2
tψ (t) ,

L− is a unit circle, which goes around from the point e−iπ to the point eiπ in the positive
direction.
The fact that F (z) satisfies the boundary condition (7), follows directly from the Sokhotskii-
Plemelj formulas. Let 0 < Reγ < 1. It is clear that the function G (t) satisfies the
Holder condition on the interval [−π, π]. Moreover, it is easy to verify that the function
τ−γG (arg τ) is continuous at a point τ = −1, and as a result it satisfies a certain Holder
condition on the unit circle. Then according to the results of the monograph F.D.Gakhov
[1] (see page 55) the function X±1 (τ) satisfies the Holder condition on L. Denote

L−π =
{
z = eit : t ∈

[
−π,−π

2

]}
.

Assume

ϕ∗ (τ) =
ψ (arg τ)

X+ (τ) τ
β
2

, τ ∈ L.

Let
[
(z + 1)−γ

]∗
be a branch, holomorphic function (z + 1)−γ in the cut along a plane

L−π that takes values (t+ 1)−γ−1 on the left side L−π. So[
(t+ 1)−γ

]∗
= (t+ 1)−γ−1 on Lπ =

{
z = eit : t ∈

[
π
2 , π

]}
,

then using the results from the monograph of [1] (see page 74), the function Ψ (z) near
the point z = −1 on the contour L can be represented as
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Ψ (t) =

[
eiγπ

2i sin γπ
ϕ∗ (−1 + 0)− ctg γπ

2i
ϕ∗ (−1− 0)

]
1

[(t+ 1)γ ]∗
+ Φ (t) , for t ∈ Lπ; (8)

Ψ (t) =

[
ctg γπ

2i
ϕ∗ (−1 + 0)− e−iγπ

2i sin γπ
ϕ∗ (−1− 0)

]
1

[(t+ 1)γ ]∗
+ Φ (t) , for t ∈ L−π,

(9)
where under

[
(t+ 1)−γ

]∗
we mean the limit of the function

[
(z + 1)−γ

]∗
, when z tends to

t on the left of L−π
⋃
Lπ, and moreover

Φ (t) =
Φ∗ (t)

|t+ 1|γ0
, γ0 < Reγ, (10)

and the function Φ∗ (t) belongs to the Holder class at the neighborhood of the point
z = −1.

Applying the Sokhotskii-Plemelj formula from these representations near the point
z = −1 we have

F+ (t) = (t+ 1)γ−1X
+
1 (t)

[
1

2
(t+ 1)−γ−1 ϕ

∗ (t) +
1

2πi

∫
L

ϕ∗ (τ)

(τ + 1)γ−1 (τ − t)
dτ

]
= X+

1 (t)

[
1

2
ϕ∗ (t) +

+
eiγπ

2i sin γπ
ϕ∗ (−1 + 0)− ctg γπ

2i
ϕ∗ (−1− 0)

]
+ (t+ 1)γ−1X

+
1 (t) Φ (t) .

Passing to the limit as t→ −1− 0, and taking into account the relation (10), we obtain

F+ (−1− 0) = X+
1 (−1)

[
1

2
ϕ∗ (−1− 0) +

eiγπ

2i sin γπ
ϕ∗ (−1 + 0)− ctg γπ

2i
ϕ∗ (−1− 0)

]
=

= X+
1 (−1)

[
eiγπ

2i sin γπ
ϕ∗ (−1 + 0)− e−iγπ

2i sin γπ
ϕ∗ (−1− 0)

]
.

Similarly, from the expressions (8) and (9) we obtain

F+ (−1 + 0) = X+
1 (−1)

[
1

2
ϕ∗ (−1 + 0) +

ctgγπ

2i
ϕ∗ (−1 + 0)− e−iγπ

2i sin γπ
ϕ∗ (−1− 0)

]
=

= X+
1 (−1)

[
eiγπ

2i sin γπ
ϕ∗ (−1 + 0)− e−iγπ

2i sin γπ
ϕ∗ (−1− 0)

]
.

Thus, F+ (−1− 0) = F+ (−1 + 0), i.e. F+ (t) is continuous at the point z = −1, and as
a result, it satisfies a certain Holder condition on L. Expanding F+ (z) on z at zero, we
obtain

F+ (z) =
∞∑
n=0

a+n z
n,
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where

a+n =

∫ π

−π
ψ (t)h+n (t) ρ (t) dt, n ∈ Z+.

We have
1

2πi

∫
|z|=r<1

F+ (z) z−n−1dz =

{
a+n , n ≥ 0,
0, n < 0.

Passing to the limit as r → 1− 0, hence we get

1

2π

∫ π

−π
F+

(
eit
)
e−intdt =

{
a+n , n ≥ 0 ,
0, n < 0.

As, the function F+
(
eit
)

satisfies Holder condition on L, then its Fourier series on classical
system of exponents

{
eint
}
n∈Z uniformly converges to it on [−π, π], and consequently

F+
(
eit
)

=
∞∑
n=0

a+n e
int, t ∈ [−π, π] .

Now, we investigate the boundary properties of the function F− (z). Similarly to the
case F+ (z), using the representation (8) - (10), and the Sohotskogo- Plemelj formula, we
obtain

F− (t) = t−γ−1 (1 + t)γ−1X
−
1 (t) Ψ− (t) = t−γ−1 (1 + t)γ−1X

−
1 (t){

−1

2
ϕ∗ (t) (1 + t)−γ−1 +

[
eiγπ

2i sin γπ
ϕ∗ (−1 + 0)− ctgγπ

2i
ϕ∗ (−1− 0)

]
(1 + t)−γ−1 + Φ (t)

}
=

= t−γ−1X
−
1 (t)

[
−ϕ
∗ (t)

2
+

eiγπ

2i sin γπ
ϕ∗ (−1 + 0)− ctgγπ

2i
ϕ∗ (−1− 0) + (1 + t)γ−1 Φ (t)

]
.

Passing to the limit as t→ 1− 0, we have

F− (−1− 0) = e−iγπX−1 (−1)

[
−ϕ
∗ (−1− 0)

2
+

eiγπ

2i sin γπ
ϕ∗ (−1 + 0)− eiγπ

2i sin γπ
ϕ∗ (−1− 0)

]
=

= e−iγπX−1 (−1)
eiγπ

2i sin γπ
[ϕ∗ (−1 + 0)− ϕ∗ (−1− 0)] = 0.

F− (−1 + 0) = eiγπX−1 (−1)

[
−ϕ
∗ (−1 + 0)

2
+

eiγπ

2i sin γπ
ϕ∗ (−1 + 0)− ctgγπ

2i
ϕ∗ (−1− 0)

]
=

= eiγπX−1 (−1)
ctgγπ

2i
[ϕ∗ (−1 + 0)− ϕ∗ (−1− 0)] = 0.

Thus, F− (−1− 0) = F− (−1 + 0) = 0, and as a result, F− (t) satisfies Holder condition
on L. Similarly to the case F+ (t) , it is proved that the series

∞∑
n=1

a−n e
−int,
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uniformly converges to F−
(
eit
)

on [−π, π]. Then from the boundary condition (7) it
follows that the biorthogonal series

∞∑
n=0

a+n e
+
n (t) +

∞∑
n=1

a−n e
−
n (t) ,

uniformly converges to ψ (t) on [−π, π]. J

Using the representation (8), (9) and the expression of the functions F± (z) we establish
the validity of the following lemma.

Lemma 3. Let 0 < Reβ < 1 and ψ (·) be an arbitrary Holder function on [−π, π]. Then
the series

∞∑
n=0

a+n e
+
n (t) +

∞∑
n=1

a−n e
−
n (t) ,

where

a±n =

∫ π

−π
ψ (t)h±n (t) ρ (t) dt,

uniformly converges to ψ (·) on every compact G ⊂ (−π, π), and if
∣∣1 + eit

∣∣−Reβ ∈ Lp,ρ
converges to it in Lp,ρ, and the following inequality holds

−1 < αk <
p

q
, k = −r, r. (11)

Indeed, the first part follows from the fact that in this case the functions F±
(
eit
)

are Holder functions on each compact G ⊂ (−π, π). And under fulfilling the inequality
(11) the system of exponents

{
eint
}
n∈Z forms a basis for Lp,ρ and from the inclusion∣∣1 + eit

∣∣−Reβ ∈ Lp,ρfollows that F±
(
eit
)
∈ Lp,ρ.

The following theorem follows directly from this lemma.

Theorem 1. Let ρ ∈ L1 and the parameter β satisfy one of the following conditions:

i)−Reβ ∈
⋃∞
k=0 (k, k + 1);

ii) −β ∈ Z+;

iii)
∣∣1 + eit

∣∣−Reβ ∈ Lp,ρ and the following inequalities hold

−1 < αk <
p

q
, k = −r, r.

Then the system (4) is complete in Lp,ρ, for ∀p ≥ 1, if ρ ∈ L1.

Indeed, let us consider the case i), the case ii) proves similarly. Let, for example,
−Reβ ∈ (1, 2) , i.e. −2 < Reβ < −1 ⇒ Reβ̃ < 0, where β̃ = β + 1. Consider the system{

ei(n+
β
2 )t; e−i(n+

β
2 )t
}
n∈N

. (12)
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Presenting this system in the form of{
ei(n−1+1+β

2 )t; e−i(n+
β
2 )t
}
n∈N

,

and multiplying it by e−i
β
2
t, we get the following system{

e
i
(
n+ β̃

2

)
t
}
n∈Z

, (13)

where β̃ = β + 1, as a result, as it follows from Lemma 2, the corresponding biorthogonal
series of an arbitrary Holder function f ∈ Cα [−α, π] : f (−π) = f (π) = 0 uniformly
converges to it on [−π, π]. Denote the partial sums of this series by Sm (f), m ∈ N .
Consequently

‖f − Sm (f)‖pp,ρ =

∫ π

−π
|f (t)− Sm (f) (t)|p ρ (t) dt ≤

≤
∫ π

−π
ρ (t) dt max

[−π,π]
|f (t)− Sm (f) (t)|p → 0, m→∞.

Since the set of such functions is dense in Lp,ρ, hence, we obtain the completeness of the
system (13), and at the same time of the system (12) in Lp,ρ. From the completeness of
the system (12) follows the completeness of the system (4) in Lp,ρ. The remaining cases
are proved by mathematical induction. Case iii) directly follows from the Lemma 3.
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A Remark on the Levelling Algorithm for the Approxi-
mation by Sums of Two Compositions

A.Kh. Asgarova, V.E. Ismailov∗

Abstract. Let X be compact subset of the d-dimensional Euclidean space and C(X) be the space
of continuous functions on X. In [6], the second author, under suitable conditions, showed that
the Diliberto-Straus levelling algorithm holds for a subspace of C(X) consisting of sums of two
compositions. In the proof, he substantially used the theory of bolts and bolt functionals. In
the current paper, we prove the result differently, by implementing Golomb’s and also Light and
Cheney’s ideas.

Key Words and Phrases: uniform approximation, levelling algorithm, best approximation op-
erator, central proximity map.
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1. Introduction

Assume E is a Banach space and X and Y are closed subspaces of E. In addition, as-
sume A and B are best approximation operators acting from E onto X and Y respectively.
There are many papers devoted to methods of computing the distance to a given element
z ∈ E from X + Y . In this paper, we consider a method called the levelling algorithm.
This method can be described as follows: Starting with z1 = z compute z2 = z1 − Az1,
z3 = z2 −Bz2, z4 = z3 −Az3, and so forth. Obviously, z − zn ∈ X + Y and the sequence
{‖zn‖}∞n=1 is nonincreasing. J. von Neumann [17] was the first to prove that in Hilbert
space setting the sequence {‖zn‖}∞n=1 converges to the error of approximation from X +Y.
But for other Banach spaces, the convergence of the algorithm depends on certain addi-
tional conditions. The general result of Golomb [5] (see also Light and Cheney [13, p.57])
states that in the above Banach space setting the sequence {‖zn‖}∞n=1 converges in norm
to the error of approximation from X + Y provided that the sum X + Y is closed and the
equalities

‖z −Az + x‖ = ‖z −Az − x‖ , ‖z −Bz + y‖ = ‖z −Bz − y‖ , (1)

hold for all z ∈ E, x ∈ X and y ∈ Y. Note that best approximation operators with the
property (1) are called central proximity maps (see [13]).

∗Corresponding author.
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In 1951, Diliberto and Straus [3] considered the levelling algorithm in the space of
continuous functions. They proved that for the problem of uniform approximation of
a bivariate function defined on a unit square by sums of univariate functions, the se-
quence produced by the levelling algorithm converges to the desired quantity. In this
paper, we generalize Diliberto-Straus’s result to linear superpositions consisting of two
summands. More precisely, we consider the levelling algorithm in the problem of ap-
proximating from the set of sums of superpositions, which contains functions of the form
f(s(x))+g(p(x)),where s(x) and p(x) are fixed continuous mappings and f and g are vari-
able univariate continuous functions on the images of s and p, respectively. Under suitable
assumptions, we prove that the sequence produced by the levelling algorithm converges
to the error of approximation. It should be noted that using the idea of bolts (for this
terminology see [2, 4, 7, 9, 10, 11, 12]) and methods of Functional Analysis, the second
author [6] proved the convergence of the algorithm in the setting considered in this paper.
The method of the proof presented here is different and quite short. It is mainly based on
the above result of Golomb [5] and ideas of Light and Cheney [13].

2. Levelling algorithm for the sum of two compositions

Let Q be a compact subset of the space Rd. Fix two continuous maps s : Q −→ R,
p : Q −→ R and consider the following spaces

D1 = {f(s(x)) : f ∈ C(R)},
D2 = {g(p(x)) : g ∈ C(R)},
D = D1 + D2.

Note that the space D, in particular cases, turn into sums of univariate functions,
sums of two ridge functions, sums of two radial functions, etc. The literature abounds
with the use of ridge functions (see, e.g., [2, 7, 8, 15, 18, 20]) and radial functions (see, e.g.,
[4, 14, 16] and a great deal of references therein). Ridge functions and radial functions are
defined as multivariate functions of the form g(a · x) and g(‖x− a‖) respectively, where
a ∈ Rd is a fixed vector, x ∈ Rd is the variable, a · x is the usual inner product, ‖·‖ is the
norm induced by this inner product and g is a univariate function.

We are going to deal with the problem of approximating a continuous function h :
Q→ R using functions from the space D. By s(Q) and p(Q) we will denote the images of
Q under the mappings s and p respectively. Define the following operators

F : C(Q)→ D1, (Fh)(a) =
1

2

 max
x∈Q

s(x)=a

h(x) + min
x∈Q

s(x)=a

h(x)

 , for all a ∈ s(Q),

and

G : C(Q)→ D2, (Gh)(b) =
1

2

 max
x∈Q

p(x)=b

h(x) + min
x∈Q

p(x)=b

h(x)

 , for all b ∈ p(Q).
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In the sequel, we need that the above max and min functions be continuous. For this
reason, we will chose the functions s(x) and p(x) from the certain class of functions defined
below.

Definition 1. We say that a function f ∈ C(Q) belongs to the class M(Q), if for any
two points x and y with f(x) = f(y) and any sequence {xn}∞n=1 tending to x, there exist a
sequence {yk}∞k=1 tending to y and a subsequence {xnk

}∞k=1 such that f(yk) = f(xnk
), for

all k = 1, 2, ...

Note that the classM(Q) strictly depends on the considered set Q. That is, a contin-
uous function f : Q → R may be in M(Q), but for many subsets P ⊂ Q, it may happen
that the restriction of f to P is not in M(P ). For example, let K be the unit square in
R2 and K1 = [0, 1] × [0, 12 ] ∪ [0, 12 ] × [0, 1]. Clearly, the coordinate function f(x, y) = x is
in M(K), but not in M(K1). Indeed, for the sequence {(12 + 1

n+1 ,
1
2)}∞n=1 ⊂ K1, which

tends to (12 ,
1
2), we cannot find a sequence {(xk, yk)}∞k=1 ⊂ K1 tending to (12 , 1) such that

{xk}∞k=1 is a subsequence of {12 + 1
n+1}

∞
n=1.

Let f be a fixed continuous function on a compact set Q ⊂ Rd. For each continuous
function h : Q→ R consider the following max and min functions

r(a) = max
x∈Q

f(x)=a

h(x) and u(a) = min
x∈Q

f(x)=a

h(x), a ∈ f(Q). (2)

When these functions inherit continuity properties of the given f? It turns out that if
f ∈M(Q), then the functions in (2) are continuous for all h ∈ C(Q).

Lemma 1. Let Q be a compact set in Rd and f ∈ M(Q). Then the functions r(a) and
u(a) are continuous for each function h ∈ C(Q).

Proof. Suppose the contrary. Suppose that f ∈ M(Q), but one of the functions r(a)
and u(a) is not continuous. Without loss of generality we may assume that r(a) is not
continuous on the image of f . Let r(a) be discontinuous at a point a0 ∈ f(Q). Then there
exists a number ε > 0 and a sequence {an}∞n=1 ⊂ f(Q) tending to a0, such that

|r(an)− r(a0)| > ε, (3)

for all n = 1, 2, .... Since the function h is continuous on Q, there exist points xk ∈ Q,
k = 0, 1, 2, ..., such that h(xk) = r(ak), f(xk) = ak, for k = 0, 1, 2, .... Thus the inequality
(3) can be written as

|h(xn)− h(x0)| > ε, (4)

for all n = 1, 2, .... Since Q is compact, the sequence {xn}∞n=1 has a converging subsequence.
Without loss of generality assume that {xn}∞n=1 itself converges to a point y0 ∈ Q. Then
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f(xn) → f(y0), as n → ∞. But by the assumption, we also have f(xn) → f(x0), as
n → ∞. Therefore, f(y0) = f(x0) = a0. Note that x0 and y0 cannot be the same point,
for the equality x0 = y0 violates the condition (4). By the definition of the class M(Q),
we must have a subsequence xnk

→ y0 and a sequence zk → x0 such that

f(xnk
) = f(zk),

for all k = 1, 2, .... Since f(xnk
) = ank

, k = 1, 2, ..., and on each level set {x ∈ Q : f(x) =
ank
}, the function h takes its maximum value at xnk

, we obtain that

h(zk) ≤ h(xnk
), k = 1, 2, ...

Taking the limit in the last inequality as k →∞, gives us the new inequality

h(x0) ≤ h(y0). (5)

Recall that on the level set {x ∈ Q : f(x) = a0}, the function h takes its maximum
at x0. Thus from (5) we conclude that h(x0) = h(y0). This last equality contradicts the
choice of the positive ε in (4), since h(xn) → h(y0), as n → ∞. Hence the function r is
continuous on f(Q). By the same way one can prove that u is continuous on f(Q). J

The following theorem plays a key role in the proof of our main result (Theorem 2).

Theorem 1. Let the continuous mappings s : Q −→ R, p : Q −→ R be in the classM(Q).
Then the operators F and G are best approximation operators onto the spaces D1 and D2

respectively, both enjoying the properties of centrality and non-expansiveness.

Proof. We prove this theorem for the operator F. A proof for G can be carried out by
the same way.

Clearly, on the level set s(x) = a, the constant (Fh)(a) is a best approximation to
h, among all constants. Varying over a ∈ s(Q), we obtain a best approximating function
Fh : s(Q)→ R, which is, due to Lemma 1, in the space D1.

Now let us prove that the operator F is central. In other words, we must prove that
for any functions h(x) ∈ C(Q) and f(s(x)) ∈ D1,

‖h− Fh− f‖ = ‖h− Fh + f‖ . (6)

Put u = h− Fh. There exists a point x0 ∈ Q such that

‖u + f‖ = |u(x0) + f(s(x0))| .

First assume that |u(x0) + f(s(x0))| = u(x0)+f(s(x0)). Note that Fu = 0. This means
that

max
x∈Q

s(x)=a

u(x) = − min
x∈Q

s(x)=a

u(x), for all a ∈ s(Q). (7)
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Let

min
x∈Q

s(x)=s(x0)

u(x) = u(x1). (8)

From (7) and (8) it follows that

−u(x1) ≥ u(x0).

Taking the last inequality and the equality s(x1) = s(x0) into account we may write

‖u− f‖ ≥ f(s(x1))− u(x1) ≥ f(s(x0)) + u(x0) = ‖u + f‖ . (9)

Changing in (9) the function f to −f gives the reverse inequality ‖u + f‖ ≥ ‖u− f‖ .
Thus (6) holds.

Note that if |u(x0) + f(s(x0))| = −(u(x0) + f(s(x0))), then by replacing Eq (8) by

max
x∈Q

s(x)=s(x0)

u(x) = u(x1). (10)

we will derive from (7) and (10) that u(x1) ≥ −u(x0). This inequality is then used to
obtain the estimation

‖u− f‖ ≥ −(f(s(x1)− u(x1)) ≥ −(f(s(x0)) + u(x0)) = ‖u + f‖ ,

which in turn yields (6). The centrality has been proven.
Now we prove that the operator F is non-expansive. First note that it is nondecreasing.

That is, if h1(x) ≤ h2(x), then Fh1(s(x)) ≤ Fh2(s(x)) for all x ∈ Q. Besides, F (h + c) =
Fh + c, for any real number c. Put c = ‖h1 − h2‖ . Then for any x ∈ Q, we can write

h2(x)− c ≤ h1(x) ≤ h2(x) + c

and further

Fh2(s(x))− c ≤ Fh1(s(x)) ≤ Fh2(s(x)) + c.

From the last inequality we obtain that

‖Fh1(s(x))− Fh2(s(x))‖ ≤ c = ‖h1 − h2‖ .

Thus we see that F is non-expansive. J

Consider the iteration

h1(x) = h(x), h2n = h2n−1 − Fh2n−1, h2n+1 = h2n −Gh2n, n = 1, 2, ....

Our main result is the following theorem.
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Theorem 2. Assume s, p ∈M(Q) and D is closed in C(Q). Then ‖hn‖ converges to the
error of approximation E(h).

Proof of Theorem 2 easily follows from Theorem 1 and the result of Golomb [5]: Let
E be a Banach space and X and Y be closed subspaces of E. In addition, let the sum
X + Y be closed in E. If A and B are central proximity maps (see Introduction), then for
an element z ∈ E the sequence produced by the levelling algorithm z1 = z, z2 = z1−Az1,
z3 = z2 −Bz2, z4 = z3 −Az3, ..., converges in norm to the distance dist(z,X + Y ).

Remark 1. Theorem 2 in a more general form involving any compact Hausdorff space
X and closed subalgebras of C(X) will appear in [1].

Remark 2. A version of Theorem 2 was proved by the second author differently in
[6]. He did not consider the classes M(Q) and assumed directly that the functions r(a)
and u(a) are continuous for each function h ∈ C(Q).

Remark 3. We do not yet know if the Diliberto and Straus algorithm converges
without the closedness assumption on the subspace D. Note that this problem was posed
in various settings in several works (see, e.g., [18, 19, 20]).
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On the Equivalence of Completeness of a System of Pow-
ers and Trivial Solvability of Homogeneous Riemann Prob-
lem

T.Z. Garayev∗, A. Jabrailova

Abstract. Double system of powers with degenerate coefficients is considered in this work. Some
weighted Smirnov classes are introduced and conjugation problem for them is formulated. Equiva-
lence of the completeness of a double system of powers in a weighted Lebesgue space and the trivial
solvability of the corresponding homogeneous conjugation problem in weighted Smirnov classes is
proved.
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2010 Mathematics Subject Classifications: 42C40, 42C15

1. Introduction

Consider the following system of powers:{
A+ (t)ω+ (t)ϕn (t) ; A− (t)ω− (t) ϕ̄n (t)

}
n≥0

, (1)

where A± (t) ≡ |A± (t)| eia±(t) and ϕ (t) are complex-valued functions on the interval [a, b]
with the degenerate coefficients ω± (·):

ω± (t) ≡
l±∏
i=1

∣∣t− t±i ∣∣β±
i ,

where
{
t±i
}
⊂ (a, b),

{
β±i
}
⊂ R are some sets (R is the real axis).

Very special cases of the system (1) arise when considering spectral problems of the the-
ory of differential operators. As a typical example, we can mention so-called Kostyuchenko
system

{
eiant sinnt

}
n≥1

, where a ∈ C is a complex parameter (C is the complex plane).

Many researches have been dedicated to the basis properties of this system (see, e.g., [1-6]).
Final results on the basis properties of this system (completeness, minimality, basicity)

∗Corresponding author.
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have been obtained in [5]. Theoretical foundations for the study of basis properties of
the systems like (1) have been laid by J.L. Walsh [7]. [8] and [9] also treated the above
mentioned problems. A special case of the system (1) with ϕ (t) ≡ eit was considered in
[10,11], where basicity criteria for the exponential system with degenerate coefficients in
Lp have been obtained.

In the present work, we study the completeness of the system (1) in the weighted space
Lp,ρ ≡ Lp,ρ (a, b) , 1 < p < +∞, with the weight ρ : [a, b]→ (0,+∞).

2. Needful Information

Before stating our main result, we make the following assumptions.

1) |A± (t)| ; |ϕ′ (t)| are measurable on (a, b) and the following condition holds:

sup vrai
(a,b)

{ ∣∣A+ (t)
∣∣±1

;
∣∣A− (t)

∣∣±1
;
∣∣ϕ′ (t)∣∣±1

}
< +∞.

2) Γ = ϕ {[a, b]} is a simple closed (ϕ (a) = ϕ (b)) rectifiable Jordan curve. Γ is either a
Radon curve (i.e. the angle θ0 (ϕ (t)) between the tangent line to Γ at the point ϕ = ϕ (t)
and the real axis is a function of bounded variation on [a, b]), or a piecewise Lyapunov
curve.

For definiteness, we will assume that when the point ϕ = ϕ (t) runs across the curve
Γ as t increases, the internal domain intΓ stays on the left side.

To state our theorem, we have to introduce weighted Smirnov classes of analytic func-
tions.

Let D ≡ intΓ, and E1 (D) be a usual Smirnov class of analytic functions in D. Let ω (τ)
be some weight function on Γ and Lp,ω (Γ) be a weighted Lebesgue class of p-summable
functions on Γ:

Lp,ω (Γ)
def
≡
{
f :

∫
Γ
|f (τ)|p ω (τ) |dτ | < +∞

}
.

By f+ (τ) we denote the non-tangential boundary values of the function f (z) ∈ E1 (D).
Introduce

Ep,ω (D)
def
≡
{
f ∈ E1 (D) : f+ (τ) ∈ Lp,ω (Γ)

}
.

Let’s consider the following conjugation problem in the classes Ep±,ρ± (D):

F+
1 (τ) +G (τ)F+

2 (τ) = g (τ) , τ ∈ Γ, (2)

whereF+
2 (τ) is a complex conjugation, g (τ) ∈ Lp,ω (Γ) is some function, and G (τ) is a

given function. g (τ) and G (τ) are called the free term and the coefficient of the problem
(2), respectively. By the solution of the problem (2) we mean a pair of analytic functions
F1 (z) and F2 (z) in D, which belong to the classes Ep+,ρ+ (D) and Ep−,ρ− (D), respectively,
and whose boundary values F+

1 (τ) and F+
2 (τ) satisfy the equality (2) almost everywhere

on Γ.
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Further, denote by t = ψ (ϕ) the inverse of the function ϕ = ϕ (t) defined on
Γ\ {ϕ (a) = ϕ (b)}. The point ϕ0 = ϕ (a) = ϕ (b) is considered as two different “stuck-
together” endpoints ϕ+

0 = ϕ (a) and ϕ−0 = ϕ (b). Then, it is quite natural to assume that
ψ
(
ϕ+

0

)
= a and ψ

(
ϕ−0
)

= b.

3. t-Besselian systems

Consider the following homogeneous conjugation problem:

F+
1 (τ)−G (τ)F+

1 (τ) = 0 a.e. on Γ, (3)

where the coefficient G (τ) is defined by the formula

G (τ) =
A+ (ψ (ϕ))ω+ (ψ (ϕ)) ϕ̄′ (ψ (ϕ))

A− (ψ (ϕ))ω− (ψ (ϕ))ϕ′ (ψ (ϕ))
.

The following theorem is true.

Theorem 1. Let ρ : [a, b] → (0,+∞) be some weight function, the coefficients A± (t)
satisfy the conditions 1), 2,) and ω± ∈ Lp,ρ(a, b), where p ∈ (1,+∞) is some number.
Then the system (1) is complete in Lp,ρ(a, b) only when the homogeneous conjugation
problem (3) has only the trivial solution in the classes Eq,ρ± (D), 1

p + 1
q = 1, where

ρ± (ϕ) =
∣∣ω± (ψ (ϕ))

∣∣−q ρ1−q (ψ (ϕ)) , ϕ ∈ .

Proof. The completeness of the system (1) in Lp,ρ (a, b) is equivalent to saying that
every function f (t) ∈ Lq,ρ (a, b), 1

p + 1
q = 1, is equal to zero almost everywhere with∫ b

a A
+ (t)ω+ (t)ϕn (t) f̄ (t) ρ (t) dt = 0 ,∫ b

a A
− (t)ω− (t) ϕ̄n (t) f̄ (t) ρ (t) dt = 0 , n ≥ 0.

}
(4)

From the first of (4) we have∫ b

a
A+ (t)ω+ (t) f̄ (t)ϕn (t) ρ (t) dt =

∫
Γ
A+ (ψ (ϕ))ω+ (ψ (ϕ))×

×f̄ (ψ (ϕ))
[
ϕ′ (ψ (ϕ))

]−1
ρ (ψ (ϕ))ϕndϕ =

∫
Γ
F1 (ϕ)ϕndϕ = 0, (5)

where
F1 (ϕ) = A+ (ψ (ϕ))ω+ (ψ (ϕ))

[
ϕ′ (ψ (ϕ))

]−1
f̄ (ψ (ϕ)) ρ (ψ (ϕ)) .

It is not difficult to conclude from the conditions of the theorem that F1 (ϕ) ∈ L1 (Γ).
Then, due to the results of [12], the equalities (5) are equivalent to the existence of the
function F1 ∈ E1 (D) such that F+

1 (ϕ) = F1 (ϕ) a.e. on Γ.

It is not difficult to see that F1 (ϕ) ∈ Lq,ρ+ (Γ), where ρ+ ≡ |ω+|−q ρ1−q . Consequently,
by definition, the function F1 (z) belongs to the class Eq,ρ+ (D).
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Similarly, from the second of (4) we have∫ b

a
A− (t)ω− (t) f (t)ϕn (t) ρ (t) dt =

∫
Γ
A− (ψ (ϕ))ω− (ψ (ϕ))×

×f (ψ (ϕ))
[
ϕ′ (ψ (ϕ))

]−1
ρ (ψ (ϕ))ϕndϕ =

∫
Γ
F2 (ϕ)ϕndϕ = 0 , n ≥ 0,

where

F2 (ϕ) = A− (ψ (ϕ))ω− (ψ (ϕ))
[
ϕ′ (ψ (ϕ))

]−1
f (ψ (ϕ)) ρ (ψ (ϕ)) .

Proceeding as above, we arrive at the conclusion that there exists the function F2 (z) ∈
E1 (D) such that F+

2 (ϕ) = F2 (ϕ) a.e. on Γ, where F+
2 (ϕ) is a non-tangential boundary

value of F2 (z) on Γ. From F2 (ϕ) ∈ Lq,ρ− (Γ), ρ− ≡ |ω−|−q ρ1−q , it follows that the
function F2 (z) belongs to the class Eq,ρ− (D). Expressing the function f (t) in terms of
F1 (ϕ) and F2 (ϕ), we have

F+
1 (ϕ) = G (ϕ)F+

2 (ϕ) , ϕ ∈ Γ,

where

G (ϕ) =
A+ (ψ (ϕ))ω+ (ψ (ϕ)) ϕ̄′ (ψ (ϕ))

A− (ψ (ϕ))ω− (ψ (ϕ))ϕ′ (ψ (ϕ))
.

Thus, if the system (1) is not complete in Lp,ρ (a, b), then the homogeneous conjugation
problem (3) is non-trivially solvable in the classes Ep,ρ± (D).

Now suppose to the contrary that the problem (3) is non-trivially solvable in the classes
Ep,ρ± (D). From the definition of the classes Ep,ρ± (D) and from Fi (z) ∈ E1(D) , i = 1, 2,
it follows that ∫

Γ
F+
i (ϕ)ϕndϕ = 0, n ≥ 0.

Taking into account the expression for the function G (τ), we have

F+
1 (ϕ)ϕ′ (ψ (ϕ))

A+ (ψ (ϕ))ω+ (ψ (ϕ)) ρ (ψ (ϕ))
=

F+
2 (ϕ)ϕ′ (ψ (ϕ))

A− (ψ (ϕ))ω− (ψ (ϕ)) ρ (ψ (ϕ))
.

Denoting the last expression by f (ϕ), we obtain∫
Γ
A+ (ψ (ϕ))ω+ (ψ (ϕ))

f (ϕ)

ϕ′ (ψ (ϕ))
ϕnρ (ψ (ϕ)) dϕ =

=

∫ b

a
A+ (t)ω+ (t) f (ϕ (t))ϕn (t) ρ (t) dt = 0 , n ≥ 0.

Similarly we have ∫ b

a
A− (t)ω− (t) f (ϕ (t))ϕ̄n (t) ρ (t) dt = 0 , n ≥ 0.
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From the conditions of the theorem, by the definition of the classes Ep,ρ± (D) it follows
that the function f (ϕ (t)) belongs to the space Lq,ρ (a, b). It is absolutely clear that this
function is different from zero. Then, the previous relations imply that the system (1) is
not complete in Lp,ρ (a, b). J

Remark 1. One of the results obtained by Smirnov implies that if the domain D belongs to
the Smirnov class and ρ± ≡ 1 , p ≥ 1, then the definition of the classes Ep,ρ± is equivalent
to the classical definition for the classes Ep.
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Index
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Abstract. An article analyses the Consumer Confidence Index that is observed in the context of
Azerbaijan economy. It has been studied the connection between the changes in oil prices (Azeri
Light) and the Index value.
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tion, time-series analysis, trend, forecast, Azeri light, oil prices.

The Consumer Confidence Index as an economic indicator shows the degree of op-
timism for the current period which can be computed using a certain methodology of
measurement the consumer’s activities on saving and spending [1]. There are three well-
known methodologies – of Michigan University, ABC News/Money Magazine and The
Conference Board. We will figure out the most common features of these indices.

The Consumer Confidence Index provides information about stages of economic cycles,
the inflection points which show the change to the positive or negative trend. It’s a very
sensitive index, which can predict the upcoming recession on a very early stage. In theory,
if the country is on stage of economic growth, the level of consumption increases, as
the consumers spend more money and even buy elastic goods such as luxury goods etc.
This feature found realization in index: because the consumers are optimistic, they spend
more, and have positive expectations about economy, what has the direct connection to
the index. And vice-versa, if there is a certain tension in economy, when, for example,
the exchange rate of national currency dropped, or the world economic crisis occurred, or
the prices for the goods started growing – this all influences the consumers’ spirits and
they start saving more than consume, and if they face the choice, whether to buy or not
to buy a certain thing which may seem important, they would rather prefer to postpone
this type of purchase, and keep these money as savings. This influences the index, which
changes the dynamics from positive to the negative.

It’s interesting to find a relation of this index not only to the economic growth, but
also to other indicators. It can be a GDP value, unemployment level, the inflation rate.

In our study we took a model of connection between Azeri Light oil prices and the
Index itself for Azerbaijan. We have the following data by the end of the month for

∗Corresponding author.
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Azeri Light oil prices (USD/barrel): September 2013 –112,22 [2]; March, 2014 -109,64$
[3]; September 2014 – 97,48$ [4]; December 2014 – 61,41$ [5]; 57,27$ in March, 2015 [9],
50,06$ in September, 2015 [10], 38,23$ in December 2015 [11], 41,41$ in March 2016 [12].

Let’s put the data we have in table form:

Periods Month, year Azeri Light Price,
$/barrel

1 September 2013 112,22

2 March 2014 109,64

3 September 2014 97,48

4 December 2014 61,41

5 March 2015 57,27

6 September 2015 50,06

7 December 2015 38,23

8 March 2016 41,41

We have the following values of Index for Azerbaijan: for September 2013 and March
2014 - 25,85 units respectively, and 26,35 [6, p.17]; for September 2014 - 25 [7, p.16]. For
December 2014 - 23.8 [8, p.10]. The data in table form will be represented as:

t, period Month, year Consumer Confidence
Index

1 September 2013 25,85

2 March 2014 26,35

3 September 2014 25

4 December 2014 23,8

Let’s try to build a time-series regression model (which is close to the simple linear
regression model):

yt = β0, β1zt, ut, t = 1, n,

where yt denotes Consumer Confidence Index, zt-the price for Azeri Light crude oil; ut is
a disturbance (error term); β0, β1 are model parameters.

Let’s build a table using the data we have for 4 periods (t = 1, 4):

t zt yt
1 112,22 25,85

2 109,64 26,35

3 97,48 25

4 61,41 23,8

Now we will use the data we have to obtain OLS estimators. So, we need the following
auxiliary table:
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t zt yt z2t y2t yt ∗ zt
1 112,22 25,85 12593,33 668,2225 2900,887

2 109,64 26,35 12020,93 694,3225 2889,014

3 97,48 25 9502,35 625 2437

4 61,41 23,8 3771,188 566,44 1461,558

Sum 380,75 101 37887,8 2553,985 9688,459

First, let’s calculate the correlation coefficient and check, whether the data we have,
can be approximated by the simple linear regression. The formula looks like this:

rxy =
n
∑

xy −
∑

x
∑

y
√

[(n
∑

x2 − (
∑

x)2) ∗ (n
∑

y2 − (
∑

y)2)]
.

For the model we use zt as x, and yt as y. Formula will change the look and the applied
calculations will be (using the previous table data):

rztyt =
n
∑

ztyt −
∑

zt
∑

yt
√

[

(n
∑

z2t − (
∑

zt)2) ∗ (n
∑

y2t − (
∑

yt)2)
]

=

=
4 ∗ 9688, 459 − 380, 75 ∗ 101

√

[4 ∗ 37887, 8 − (380, 75)2] ∗ [4 ∗ 2553, 985 − 1012]
= 0, 95067.

The correlation coefficient value that we obtained (0,95) shows that there is a strong
direct (positive) connection between two variables yt and zt.

The coefficient of determination R2 can be calculated from the coefficient of correlation.
It is equal to:

R2 = (rztyt)
2 = 0, 950672 = 0, 9038.

This coefficient shows that the variation in dependent variable (Consumer Confidence
Index) can be explained by the variation in the explanatory variable (Azeri Light oil price)
for 90%. It is highly fitting the simple linear regression model.

Let’s return to OLS estimations of b0 and b1. The results of the table we will put in
our system of equations:







nβ0 + β1
∑

zt =
∑

yt,

β0
∑

zt + β1
∑

z2t =
∑

yt ∗ zt.

Let’s put the data we have in our model:







4β0 + 380, 75β1 = 101,

380, 75β0 + 37887, 8β1 = 9688, 459.

We can use Cramer’s rule. We have the following matrices:
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Z =

[

4 380, 75
380, 75 37887, 8

]

; Y =

[

101
9688, 459

]

.

Mathematically, det(Z) = 6580, 637; det(β0) = 137787; det(β1) = 298, 086. So, β0 =
det(β0)
det(Z) = 209382504; β1 using the same analogue equals to 0, 045297435.

So, the model that we obtain looks like this:

yt = 20, 9382504 + 0, 045297435 ∗ zt + ut; t = 1, n.

Using the above model, we can make a certain forecast. Let’s fill the table with the
results we know:

t, period zt yt
1 112,22 25,85

2 109,64 26,35

3 97,48 25

4 61,41 23,8

5 57,27 -

6 50,06 -

7 38,23 -

8 41,41 -

We will put the price of Azeri Light crude oil for a period t = 5 to obtain the Consumer
Confidence Index for this period:

yt=5 = 20, 9382504 + 0, 045297435 ∗ 57, 27 ≈ 23, 53243085.

For the periods t = 1, 8 the results will be the following (analogical calculations):

yt=6 ≈ 23, 20583565; yt=7 ≈ 22, 66996585; yt=8 ≈ 22, 814012.

Finally, we obtain the table and a corresponding graph:

Periods, t Azeri Light price, $/barrel Consumer Confidence
Index

1 112,22 25,85

2 109,64 26,35

3 97,48 25

4 61,41 23,8

5 57,27 23,53

6 50,06 23,21

7 38,23 22,67

8 41,41 22,81

As we can see, the Index started to increase in the current period. It shows that the
recession in our economy has finished and the economic growth is about to start again.
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In conclusion, we would like to point out that the economy of our country still has
the connection with the dynamics of the World oil prices. There’s a need to say that this
connection is getting weaker from year to year, so, in future we say that our country will
overcome this barrier and will choose non-oil sector as the base of development.
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1. Introduction

The theory of fuzzy measures and fuzzy integrals was introduced by Sugeno [15]. The
properties and applications of the Sugeno integral have been studied by many authors,
including Ralescu and Adams [9] in the study of several equivalent definitions of fuzzy
integrals, Román-Flores et al. [13] and Wang and Klir [16], among others. Many authors
generalized the Sugeno integral by using some other operators to replace the special oper-
ators ∧ and/or ∨ [17, 3, 4]. In [14] Suárez and Gil presented two families of fuzzy integrals,
the so-called seminormed fuzzy integrals and semiconormed fuzzy integrals.

The study of inequalities for Sugeno integral was initiated by Román-flores et al.
[10, 11, 12] and then followed by the authors [1, 2, 8]. Recently Ouyang et al. [1] proved a
general Minkowski type inequality for comonotone functions and arbitrary fuzzy measure-
based Sugeno integrals and then they provided the inverse of this inequality for the same
conditions [8]. In [7], Chebyshev type inequality for seminormed fuzzy integrals and a
related inequality for semiconormed fuzzy integral were proposed in a rather general form
by Ouyang and Mesiar.

Theorem 1. Let (X,F , µ) be a fuzzy measure space and f, g : X → [0, 1] two comonotone
measurable functions. Let ? : [0, 1]2 → [0, 1] be continuous and nondecreasing in both
arguments. If the seminorm T satisfies
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T (a ? b, c) ≥ (T (a, c) ? b) ∨ (a ? T (b, c)),
then ∫

T,A
f ? gdµ ≥

∫
T,A

fdµ ?

∫
T,A

gdµ

holds for any A ∈ F .

Theorem 2. Let(X,F , µ) be a fuzzy measure space and f, g : X → [0, 1] two comonotone
measurable functions. Let ? : [0, 1]2 → [0, 1] be continuous and nondecreasing in both
arguments. If the semiconorm S satisfies
S(a ? b, c) ≤ (S(a, c) ? b) ∧ (a ? S(b, c)),
then ∫

S,A
f ? gdµ ≤

∫
S,A

fdµ ?

∫
S,A

gdµ

holds for any A ∈ F .
This paper is organized as follows: In Section 2 some preliminaries and summarization
of some previous known results are given. Section 3 proposes general Minkowski type
inequalities for semiconormed fuzzy integrals. Section 4 includes a revers inequality for
this type of integrals. Section 5 contains a short conclusion.

2. Preliminaries

In this section, we recall some basic definitions and previous results that will be used in
the next sections. Let X be a non-empty set, F be a σ-algebra of subsets of X. Throughout
this paper, all considered subsets are supposed to belong to F .

Definition 1 (Sugeno [15]). A set function µ : F → [0, 1] is called a fuzzy measure if the
following properties are satisfied:

(FM1) µ(∅) = 0 and µ(X) = 1

(FM2) A ⊂ B implies µ(A) ≤ µ(B)

(FM3) An → A implies µ(An)→ µ(A).

When µ is a fuzzy measure, the triple (X,F , µ) is called a fuzzy measure space.

Let (X,F , µ) be a fuzzy measure space, and F+(X) = {f |f : X → [0, 1] is measurable
with respect to F}. In what follows, all considered functions belong to F+(X). For any
α ∈ [0, 1], we will denote the set {x ∈ X|f(x) ≥ α} by Fα and {x ∈ X|f(x) > α} by Fᾱ.
Clearly, both Fα and Fᾱ are non-increasing with respect to α, i.e., α ≤ β implies Fα k Fβ
and Fᾱ k Fβ̄.

Definition 2 (Sugeno [15]). Let (X,F , µ) be a fuzzy measure space and A ∈ F . The
Sugeno integral of f over A with respect to the fuzzy measure µ, is defined by

−
∫
A
fdµ =

∨
α∈[0,1]

(α ∧ µ(A ∩ Fα)).
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When A=X, then

−
∫
X
fdµ = −

∫
fdµ =

∨
α∈[0,1]

(α ∧ µ(Fα)).

Notice that Ralescu and Adams (see [9]) extended the range of fuzzy measures and the
Sugeno integrals from [0, 1] to [0, ∞]. But we only deal with the original fuzzy measure
and the Sugeno integrals which was introduced by Sugeno in 1974.

Note that in the above definition, ∧ is just the prototypical t-norm minimum and ∨
the prototypical t-conorm maximum. A t-conorm [6] is a function S : [0, 1]× [0, 1]→ [0, 1]
satisfying the following condition:

(S1) S(x, 0) = S(0, x) = x ∀x ∈ [0, 1].
(S2) ∀x1, x2, y1, y2 in [0, 1], if x1 ≤ x2, y1 ≤ y2 then S(x1, y1) ≤ S(x2, y2).
(S3) S(x, y) = S(y, x).
(S4) S(S(x, y), z) = S(x, S(y, z)).
A t-norm [6] is a function T : [0, 1]× [0, 1]→ [0, 1] satisfying the following condition:
(T1) T (x, 1) = T (1, x) = x ∀x ∈ [0, 1].
(T2) ∀x1, x2, y1, y2 in [0, 1], if x1 ≤ x2, y1 ≤ y2 then T (x1, y1) ≤ T (x2, y2).
(T3) T (x, y) = T (y, x).
(T4) T (T (x, y), z) = T (x, T (y, z)).
A binary operator S (T ) on [0, 1] is called a t-semiconorm (t-seminorm) [14] if it satisfies

the above conditions (S1) and(S2) ((T1) and (T2)). Using the concepts of t-seminorm and
t-semiconorm, Suárez and Gil proposed two families of fuzzy integrals:

Definition 3. Let S be a t-semiconorm, then the semiconormed fuzzy integral of f over
A with respect to S and the fuzzy measure µ is defined by∫

S,A
fdµ =

∧
α∈[0, 1]

S(α, µ(A ∩ Fᾱ)).

Definition 4. Let T be a t-seminorm, then the seminormed fuzzy integral of f over A
with respect to T and the fuzzy measure µ is defined by∫

T,A
fdµ =

∨
α∈[0,1]

T (α, µ(A ∩ Fα)).

It is easy to see that the Sugeno integral is a special seminormed fuzzy integral. More-
over, Kandel and Byatt (see [5]) showed another expression of the Sugeno integral as
follows:

−
∫
A
fdµ =

∧
α∈[0, 1]

(α ∨ µ(A ∩ Fᾱ)).

So the semiconormed fuzzy integrals also generalized the concept of the Sugeno integral.
Note that if

∫
S,A fdµ = a, then S(α, µ(A ∩ Fᾱ)) ≥ a for all α ∈ [0, 1] and, for ε > 0 there

exists αε such that S(αε, µ(A ∩ Fᾱε)) ≤ a+ ε.
In [1] Agahi et al. proved the following inequality for the Sugeno integral (with respect

to a fuzzy measure in the sense of Ralescu and Adams [9]):
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Theorem 3. Let f, g ∈ F+(X) and µ be an arbitrary fuzzy measure such that −
∫
A f ? gdµ

is finite. Let ? : [0,∞)2 → [0,∞) be continuous and nondecreasing in both arguments and
bounded from below by maximum. If f, g are comonotone, then the inequality(

−
∫
A

(f ? g)sdµ
) 1

s ≤
(
−
∫
A
fsdµ

) 1
s
?
(
−
∫
A
gsdµ

) 1
s
. (1)

holds for all 0 < s <∞.

Theorem 4 (Ouyang et al. [8]). Let f, g ∈ F+(X) and µ be an arbitrary fuzzy measure
such that −

∫
A fdµ and −

∫
A gdµ are finite. Let ? : [0,∞)2 → [0,∞) be continuous and nonde-

creasing in both arguments and bounded from above by minimum. If f, g are comonotone,
then the inequality (

−
∫
A

(f ? g)sdµ
) 1

s ≥
(
−
∫
A
fsdµ

) 1
s
?
(
−
∫
A
gsdµ

) 1
s
. (2)

holds for all 0 < s <∞.
It should be pointed out that Inequalities (1) and (2) also hold for the original Sugeno
integral.

3. Minkowski type inequality

In this section, we prove the Minkowski type inequality for the semiconormed fuzzy
integrals.

Theorem 5. Let (X,F , µ) be a fuzzy measure space and f, g : X → [0, 1] be two comono-
tone measurable functions. Let ? : [0, 1]2 → [0, 1] be continuous and non-decreasing in both
arguments. If the semiconorm S satisfies

S(a ? b, c) ≤ (S(a, c) ? b) ∧ (a ? S(b, c)), (3)

then the inequality(∫
S,A

(f ? g)sdµ
) 1

s ≤
(∫

S,A
fsdµ

) 1
s
?
(∫

S,A
gsdµ

) 1
s

(4)

holds for any A ∈ F and for all 0 < s <∞.

Proof. Let
∫
S,A f

sdµ = a and
∫
S,A g

sdµ = b, then for any ε > 0, there exist aε and

bε such that µ(A ∩ F
(aε)

1
s
) = a1 and µ(A ∩ G

(bε)
1
s
) = b1, where S(aε, a1) ≤ a + ε and

S(bε, b1) ≤ b + ε. The fact of H
(aε)

1
s ?(bε)

1
s
⊂ F

(aε)
1
s
∪ G

(bε)
1
s

and the comonotonicity of

f, g imply that µ(A ∩ H
(aε)

1
s ?(bε)

1
s
) ≤ a1 ∨ b1, where F

(aε)
1
s

= {x | f(x) > a
1
s
ε } = {x |
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fs(x) > aε}, G
(bε)

1
s

= {x | g(x) > b
1
s
ε } = {x | gs(x) > bε} and H

(aε)
1
s ?(bε)

1
s

= {x | f ? g >

a
1
s
ε ? b

1
s
ε } = {x | (f ? g)s(x) > aε ? bε}. Hence∫

S,A
(f ? g)sdµ = inf

α∈[0,1]
S(α, µ(A ∩H

α
1
s
))

≤ S(aε ? bε, a1 ∨ b1)

= S(aε ? bε, a1) ∨ S(aε ? bε, b1)

≤ [S(aε, a1) ? bε] ∨ [aε ? S(bε, b1)]

≤ [(a+ ε) ? bε] ∨ [aε ? (b+ ε)]

≤ (a+ ε) ? (b+ ε),

whence
∫
S,A(f ? g)sdµ ≤ (a

1
s ? b

1
s )s follows from the continuity of ? and the arbitrariness

of ε. It follows that( ∫
S,A

(f ? g)sdµ
) 1

s ≤ a
1
s ? b

1
s =

( ∫
S,A

fsdµ
) 1

s ?
( ∫

S,A
gsdµ

) 1
s .

Example 1. Let X = [0, 1] and the fuzzy measure µ be the Lebesgue measure. Let ? and
S be defined as ?(x, y) = x + y − xy and S(x, y) = x + y − xy. Let f(x) = x, g(x) = 1

2
and s = 2. A straightforward calculus shows that∫

S,X
f2dµ =

∫
S,X

x2dµ = inf
α∈[0,1]

S(α, µ({x ∈ [0, 1] | x2 > α}))

= inf
α∈[0,1]

S(α, (1−
√
α))

= 0.6151.

Also we have ∫
S,X

g2dµ =

∫
S,X

1

4
dµ = inf

α∈[0,1]
S(α, µ([0,

1

4
)))

= inf
α∈[0,1]

S(α,
1

4
)

= 0.25

∫
S,X

(f ? g)2dµ =

∫
S,X

1

4
(x+ 1)2dµ

= inf
α∈[ 1

4
,1]
S(α, µ({x ∈ [0, 1] | 1

4
(x+ 1)2 > α}))

= inf
α∈[ 1

4
,1]
S(α, µ({x ∈ [0, 1] | x > 2

√
α− 1}))
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= inf
α∈[ 1

4
,1]
S(α, 2− 2

√
α)

= 0.780145.

Therefore,

0.883259 =
(∫

S,X
(f ? g)2dµ

) 1
2 ≤

(∫
S,X

f2dµ
) 1

2
?
(∫

S,X
g2dµ

) 1
2

= 0.784283 ? 0.5 = 0.8921415

Notice that if the semiconormed S is maximum (i.e. for the sugeno integral) and ? is
bounded from below by maximum. Then S dominated by ?. Thus the following result
holds.

Corollary 1. Let f, g : X → [0, 1] be two comonotone measurable functions. And let
? : [0, 1]2 → [0, 1] be continuous and non-decreasing in both arguments and bounded from
below by maximum. Then the inequality(

−
∫
A

(f ? g)sdµ
) 1

s ≤
(
−
∫
A
f sdµ

) 1
s
?
(
−
∫
A
gsdµ

) 1
s
.

holds for any A ∈ F and for all 0 < s <∞.

Corollary 2 (Ouyang and Mesiar [7]). Let(X,F , µ) be a fuzzy measure space and f, g :
X → [0, 1] be two comonotone measurable functions. Let ? : [0, 1]2 → [0, 1] be continuous
and non-decreasing in both arguments. If the semiconorm S satisfies

S(a ? b, c) ≤ (S(a, c) ? b) ∧ (a ? S(b, c))

then ∫
S,A

f ? gdµ ≤
(∫

S,A
fdµ

)
?
(∫

S,A
gdµ

)
for any A ∈ F .

Theorem 6. Let (X,F , µ) be a fuzzy measures space and f, g : X → [0, 1] be two comono-
tone measurable functions. Let ? : [0, 1]2 → [0, 1] be continuous and non-decreasing in both
arguments and ϕ : [0, 1]→ [0, 1] be a continuous and strictly increasing function such that
ϕ commutes whit ?. If the semiconorm S satisfies

S(a ? b, c) ≤ (S(a, c) ? b) ∧ (a ? S(b, c)),

then

ϕ−1
( ∫

S,A
ϕ(f ? g)dµ

)
≤ ϕ−1

( ∫
S,A

ϕ(f)dµ
)
? ϕ−1

( ∫
S,A

ϕ(g)dµ
)

(5)

holds for any A ∈ F .
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Proof. Since ϕ commutes with ?, so we have∫
S,A

ϕ(f ? g)dµ =

∫
S,A

(ϕ(f) ? ϕ(g))dµ. (6)

If f, g are comonotone functions and ϕ is continuous and strictly increasing function, then
ϕ(f) and ϕ(g) are also comonotone. From (6) and using the Corollary 2, we have∫

S,A
(ϕ(f) ? ϕ(g))dµ ≤ (

∫
S,A

ϕ(f)dµ) ? (

∫
S,A

ϕ(f)dµ)

= ϕ[ϕ−1(

∫
S,A

ϕ(f)dµ) ? ϕ−1(

∫
S,A

ϕ(g)dµ)]

where ϕ commutes with ?. Hence (5) is valid.

4. A related inequality

In this section, we prove a related inequality for the Minkowski’s inequality in semi-
conormed fuzzy integrals.

Theorem 7. Let (X,F , µ) be a fuzzy measure space and f, g : X → [0, 1] be two comono-
tone measurable functions. Let ? : [0, 1]2 → [0, 1] be continuous and nondecreasing in
both arguments. If the semiconorm S satisfies

S(a ? b, c) ≥ (S(a, c) ? b) ∨ (a ? S(b, c)), (7)

then the inequality(∫
S,A

(f ? g)sdµ
) 1

s ≥
(∫

S,A
fsdµ

) 1
s
?
(∫

S,A
gsdµ

) 1
s

(8)

holds for any A ∈ F and for all 0 < s <∞.

Proof. Let
∫
S,A f

sdµ = a,
∫
S,A g

sdµ = b and
∫
S,A(f ?g)sdµ = c. Then for all α ∈ [0, 1]

we have S(α, µ(A ∩ F
α

1
s
)) ≥ a, S(α, µ(A ∩ G

α
1
s
)) ≥ b and S(α, µ(A ∩H

α
1
s
)) ≥ c, where

H
α

1
s

= {x | (f ? g)(x) > α
1
s }. Hence for any ε > 0, there exist aε, bε and cε = aε ? bε such

that µ(A∩F
(aε)

1
s
) = a1, µ(A∩G

(bε)
1
s
) = b1 and µ(A∩H

(cε)
1
s
) = c1, where S(cε, c1) ≤ c+ε.

(Thus aε ≥ a, bε ≥ b, S(aε, a1) ≥ a and S(bε, b1) ≥ b). The fact of H
(aε)

1
s ?(bε)

1
s
⊃

F
(aε)

1
s
∩ G

(bε)
1
s

and the comonotonicity of f, g imply that µ(A ∩H
(aε)

1
s ?(bε)

1
s
) ≥ a1 ∧ b1.

Hence

c+ ε ≥ S(cε, c1)

= S(aε ? bε, µ(A ∩H
(aε)

1
s ?(bε)

1
s
))
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≥ S(aε ? bε, a1 ∧ b1
= S(aε ? bε, a1) ∧ S(aε ? bε, b1)

≥ (S(aε, a1) ? bε) ∧ (aε ? S(bε, b1))

≥ (a ? bε) ∧ (aε ? b)

≥ (a ? b) ∧ (a ? b)

= a ? b.

Hence c ≥ a ? b follows from the arbitrariness of ε. Consequently from the continuity of ?
we have c ≥ (a

1
s ? b

1
s )s. This implies(∫
S,A

(f ? g)sdµ
) 1

s ≥
(∫

S,A
f sdµ

) 1
s
?
(∫

S,A
gsdµ

) 1
s
.

Example 2. Let A = [0, 1] and µ be the Lebesgue measure. Let ? be the usual product
and S be the maximum. Let f(x) = x2, g(x) = 1

4 and s = 1
2 . A straightforward calculus

shows that ∫
S,A

f
1
2dµ =

∫
S,A

xdµ = inf
α∈[0,1]

(α ∨ µ(A ∩ {x | x > α}))

= inf
α∈[0,1]

(α ∨ (1− α))

= 0.5,∫
S,A

g
1
2dµ =

∫
S,A

1

2
dµ = inf

α∈[0,1]
(α ∨ µ(A ∩ [0,

1

2
)))

= 0.5

and we have ∫
S,A

(f ? g)
1
2dµ =

∫
S,A

1

2
xdµ

= inf
α∈[0,1]

(α ∨ µ(A ∩ {x ∈ [0, 1] | 1

2
x > α}))

= inf
α∈[0,1]

(α ∨ (1− 2α))

= 0.33333.

Therefore,

0.11111 =
(∫

S,X
(f ? g)

1
2dµ

)2
≥
(∫

S,X
f

1
2dµ

)2
?
(∫

S,X
g

1
2dµ

)2

= 0.25 . 0.25 = 0.0625.

If in the Theorem 7 we assume s = 1, then we get the Chebyshev type inequality for the
semiconormed fuzzy integrals.
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Corollary 3. Let (X,F , µ) be a fuzzy measure space and f, g : X → [0, 1] be two comono-
tone measurable functions. Let ? : [0, 1]2 → [0, 1] be continuous and non-decreasing in
both arguments. If the semiconorm S satisfies

S(a ? b, c) ≥ (S(a, c) ? b) ∨ (a ? S(b, c)),

then the inequality ∫
S,A

(f ? g)dµ ≥
∫
S,A

fdµ ?

∫
S,A

gdµ

holds for any A ∈ F and for all 0 < s <∞.

If ? bounded from above by maximum, then ? is dominated by maximum. Thus
Corollary 4.4 gives us a general Minkowski type inequality for the Sugeno integral which
appears in [8].

Corollary 4. Let f, g : X → [0, 1] be two comonotone measurable functions. And let
? : [0, 1]2 → [0, 1] be continuous and non-decreasing in both arguments and bounded from
above by minimum. Then the inequality(

−
∫
A

(f ? g)sdµ
) 1

s ≥
(
−
∫
A
fsdµ

) 1
s
?
(
−
∫
A
gsdµ

) 1
s

holds for any A ∈ F and for all 0 < s <∞.

5. Conclusion

We have proved general Minkowski type inequalities for semiconormed fuzzy integrals
on an abstract fuzzy measure space (X,F , µ) based on a product like operator ? and an
inequality relevant for it. The semiconormed fuzzy integrals generalize the Sugeno integral,
so it remains that when the following inequality(∫

S,A
(f ? g)sdµ

) 1
s

=
(∫

S,A
fsdµ

) 1
s
?
(∫

S,A
gsdµ

) 1
s

holds.
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[13] H. Román-Flores, A. Flores-Franulič, R. Bassanezi and M. Rojas-Medar, On the
level-continuity offuzzy integrals, Fuzzy Sets and Systems 80 (1996) 339-344.
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Parabolic Fractional Integral Operators with Rough Ker-
nels in Parabolic Local Generalized Morrey Spaces

A.S. Balakishiyev ∗, Sh.A. Muradova, N.Z. Orucov

Abstract. Let P be a real n×n matrix, whose all the eigenvalues have positive real part, At = tP ,
t > 0, γ = trP is the homogeneous dimension on Rn and Ω is an At-homogeneous of degree zero
function, integrable to a power s > 1 on the unit sphere generated by the corresponding parabolic
metric. We study the parabolic fractional integral operator IPΩ,α, 0 < α < γ with rough kernels

in the parabolic local generalized Morrey space LM
{x0}
p,ϕ,P (Rn). We find conditions on the pair

(ϕ1, ϕ2) for the boundedness of the operator IPΩ,α from the space LM
{x0}
p,ϕ1,P

(Rn) to another one

LM
{x0}
q,ϕ2,P

(Rn), 1 < p < q < ∞, 1/p − 1/q = α/γ, and from the space LM
{x0}
1,ϕ1,P

(Rn) to the weak

space WLM
{x0}
q,ϕ2,P

(Rn), 1 ≤ q <∞, 1− 1/q = α/γ.

Key Words and Phrases: parabolic fractional integral, parabolic local generalized Morrey space.

2010 Mathematics Subject Classifications: 42B20, 42B25, 42B35

1. Introduction

The boundedness of classical operators of the real analysis, such as the fractional
integral operators, from one weighted Lebesgue space to another one is well studied by
now, and there are well known various applications of such results in partial differential
equations. Besides Lebesgue spaces, Morrey spaces, both the classical ones (the idea od
their definition having appeared in [13]) and generalized ones, also play an important role
in the theory of partial differential equations.

In this paper, we find conditions for the boundedness of the parabolic fractional integral
operators with rough kernel from a parabolic local generalized Morrey space to another
one, including also the case of weak boundedness.

Note that we deal not exactly with the parabolic metric, but with a general anisotropic
metric ρ of generalized homogeneity, the parabolic metric being its particular case, but we
keep the term ”parabolic in the title and text of the paper, following the existing tradition,
see for instance [4].

∗Corresponding author.

http://www.cjamee.org 59 c© 2013 CJAMEE All rights reserved.
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For x ∈ Rn and r > 0, we denote the open ball centered at x of radius r by B(x, r),

its complement by
{
B(x, r) and |B(x, r)| will stand for the Lebesgue measure of B(x, r).

Let P be a real n × n matrix, whose all the eigenvalues have positive real part. Let
At = tP (t > 0), and set

γ = trP.

Then, there exists a quasi-distance ρ associated with P such that (see [5])

(a) ρ(Atx) = tρ(x), t > 0, for every x ∈ Rn;

(b) ρ(0) = 0, ρ(x) = ρ(−x) ≥ 0

and ρ(x− y) ≤ k(ρ(x− z) + ρ(y − z));
(c) dx = ργ−1dσ(w)dρ, where ρ = ρ(x), w = Aρ−1x

and dσ(w) is a measure on the unit ellipsoid Sρ = {w : ρ(w) = 1}.

Then, {Rn, ρ, dx} becomes a space of homogeneous type in the sense of Coifman-Weiss
(see [5]) and a homogeneous group in the sense of Folland-Stein (see [7]).

In the standard parabolic case P0 = diag(1, . . . , 1, 2) we have

ρ(x) =

√
|x′|2 +

√
|x′|4 + x2

n

2
, x = (x′, xn).

The balls E(x, r) = {y ∈ Rn : ρ(x− y) < r} with respect to the quasidistance ρ are
ellipsoids. For its Lebesgue measure one has

|E(x, r)| = vρr
γ ,

where vρ is the volume of the unit ellipsoid. By
{E(x, r) = Rn \ E(x, r) we denote the

complement of E(x, r).

Everywhere in the sequel A . B means that A ≤ CB with some positive constant C
independent of appropriate quantities. If A . B and B . A, we write A ≈ B and say
that A and B are equivalent.

1.1. Parabolic local generalized Morrey spaces

In the doctoral thesis [8], 1994 by Guliyev (see, also [9], [1]-[3]) introduced the local
Morrey-type space LMpθ,w given by

‖f‖LMpθ,w
=
∥∥w(r) ‖f‖Lp(B(0,r))

∥∥
Lθ(0,∞)

,

where w is a positive measurable function defined on (0,∞). If θ = ∞, it denotes
LMp,w ≡ LMp∞,w. In [8] Guliyev intensively studied the classical operators in the lo-
cal Morrey-type space LMpθ,w (see also the book [9] (1999)), where these results were
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presented for the case when the underlying space is the Heisenberg group or a homo-
geneous group, respectively. Note that, the generalized local (central) Morrey spaces

LMp,ϕ(Rn) = LM
{0}
p,ϕ (Rn) introduced by Guliyev in [8] (see also, [9], [1]-[3]).

We define the parabolic local Morrey space LMp,λ,P (Rn) via the norm

‖f‖LMp,λ,P
= sup

t>0

(
t−λ

∫
E(0,t)

|f(y)|pdy

)1/p

<∞,

where 1 ≤ p ≤ ∞ and 0 ≤ λ ≤ γ.

If λ = 0, then LMp,0,P (Rn) = Lp(Rn); if λ = γ, then LMp,γ,P (Rn) = L∞(Rn); if λ < 0
or λ > γ, then LMp,λ,P = Θ, where Θ is the set of all functions equivalent to 0 on Rn.

We also denote by WLMp,λ,P (Rn) the weak parabolic Morrey space of functions f ∈
WLloc

p (Rn) for which

‖f‖WLMp,λ,P
= sup

t>0
r
−λ
p ‖f‖WLp(E(0,r)) <∞,

where WLp(E(0, r)) denotes the weak Lp-space of measurable functions f for which

‖f‖WLp(E(0,r)) = sup
t>0

t |{y ∈ E(0, r) : |f(y)| > t}|1/p .

Note that WLp(Rn) = WLMp,0,P (Rn),

LMp,λ,P (Rn) ⊂WLMp,λ,P (Rn) and ‖f‖WLMp,λ,P
≤ ‖f‖LMp,λ,P

.

If P = I, then LMp,λ(Rn) ≡ LMp,λ,I(Rn) is the local Morrey space.

We introduce the parabolic local generalized Morrey spaces following the known ideas
of defining local generalized Morrey spaces ([8, 11, 12] etc).

Definition 1. Let ϕ(x, r) be a positive measurable function on Rn×(0,∞) and 1 ≤ p <∞.
The space LMp,ϕ,P ≡ LMp,ϕ,P (Rn), called the parabolic local generalized Morrey space, is
defined by the norm

‖f‖LMp,ϕ,P
= sup

t>0
ϕ(0, t)−1 |E(0, t)|−

1
p ‖f‖Lp(E(0,t)).

Definition 2. Let ϕ(x, r) be a positive measurable function on Rn×(0,∞) and 1 ≤ p <∞.
The space WLMp,ϕ,P ≡WLMp,ϕ,P (Rn), called the weak parabolic local generalized Morrey
space, is defined by the norm

‖f‖WLMp,ϕ,P
= sup

t>0
ϕ(0, t)−1 |E(0, t)|−

1
p ‖f‖WLp(E(0,t)).

If P = I, then LMp,ϕ(Rn) ≡ LMp,ϕ,I(Rn) and WLMp,ϕ(Rn) ≡WLMp,ϕ,I(Rn) are the
generalized local Morrey space and the weak generalized local Morrey space, respectively.
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Definition 3. Let ϕ(x, r) be a positive measurable function on Rn×(0,∞) and 1 ≤ p <∞.

For any fixed x0 ∈ Rn we denote by LM
{x0}
p,ϕ,P ≡ LM

{x0}
p,ϕ,P (Rn) the parabolic generalized local

Morrey space, the space of all functions f ∈ Lloc
p (Rn) with finite quasinorm

‖f‖
LM

{x0}
p,ϕ,P

= ‖f(x0 + ·)‖LMp,ϕ,P
.

Also by WLM
{x0}
p,ϕ,P ≡ WLM

{x0}
p,ϕ,P (Rn) we denote the weak generalized Morrey space of all

functions f ∈WLloc
p (Rn) for which

‖f‖
WLM

{x0}
p,ϕ,P

= ‖f(x0 + ·)‖WLMp,ϕ,P
<∞.

According to this definition, we recover the space LM
{x0}
p,λ,P (Rn) under the choice ϕ(0, r) =

r
λ−γ
p :

LM
{x0}
p,λ,P (Rn) = LM

{x0}
p,ϕ,P (Rn)

∣∣∣∣∣
ϕ(x0,r)=r

λ−γ
p

.

Let Sρ = {w ∈ Rn : ρ(w) = 1} be the unit ρ-sphere (ellipsoid) in Rn (n ≥ 2) equipped
with the normalized Lebesgue surface measure dσ and Ω be At-homogeneous of degree
zero, i.e. Ω(Atx) ≡ Ω(x), x ∈ Rn, t > 0. The parabolic fractional integral IPΩ,αf by with

rough kernels, 0 < α < γ, of a function f ∈ Lloc
1 (Rn) is defined by

IPα f(x) =

∫
Rn

Ω(x− y) f(y)

ρ(x− y)γ−α
dy.

We prove the boundedness of the parabolic integral operator IPΩ,α with rough kernel

from one parabolic local generalized Morrey space LM
{x0}
p,ϕ1,P

(Rn) to another one LM
{x0}
q,ϕ2,P

(Rn),

1 < p < q < ∞, 1/p − 1/q = α/γ, and from the space LM
{x0}
1,ϕ1,P

(Rn) to the weak space

WLM
{x0}
q,ϕ2,P

(Rn), 1 ≤ q <∞, 1− 1/q = α/γ.

2. Preliminaries

Let v be a weight on (0,∞). We denote by L∞,v(0,∞) the space of all functions g(t),
t > 0 with finite norm

‖g‖L∞,v(0,∞) = ess sup
t>0

v(t)|g(t)|

and write L∞(0,∞) ≡ L∞,1(0,∞). Let M(0,∞) be the set of all Lebesgue-measurable
functions on (0,∞) and M+(0,∞) its subset of all nonnegative functions. By M+(0,∞;↑)
we denote the cone of all functions in M+(0,∞) non-decreasing on (0,∞) and introduce
also the set

A =

{
ϕ ∈M+(0,∞; ↑) : lim

t→0+
ϕ(t) = 0

}
.
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Let u be a non-negative continuous function on (0,∞). We define the supremal operator
Su on g ∈M(0,∞) by

(Sug)(t) := ‖u g‖L∞(t,∞), t ∈ (0,∞).

The following theorem was proved in [2].

Theorem 1. Let v1, v2 be non-negative measurable functions satisfying 0 < ‖v1‖L∞(t,∞) <
∞ for any t > 0 and let u be a continuous non-negative function on (0,∞). Then the
operator Su is bounded from L∞,v1(0,∞) to L∞,v2(0,∞) on the cone A if and only if∥∥∥v2Su

(
‖v1‖−1

L∞(·,∞)

)∥∥∥
L∞(0,∞)

<∞. (1)

We are going to use the following statement on the boundedness of the weighted Hardy
operator

H∗wg(t) :=

∫ ∞
t

g(s)w(s)ds, 0 < t <∞,

where w is a fixed function non-negative and measurable on (0,∞).
The following theorem in the case w = 1 was proved in [3].

Theorem 2. Let v1, v2 and w be positive almost everywhere and measurable functions on
(0,∞). The inequality

ess sup
t>0

v2(t)H∗wg(t) ≤ C ess sup
t>0

v1(t)g(t) (2)

holds for some C > 0 for all non-negative and non-decreasing g on (0,∞) if and only if

B := ess sup
t>0

v2(t)

∫ ∞
t

w(s)ds

ess sup
s<τ<∞

v1(τ)
<∞. (3)

Moreover, if C∗ is the minimal value of C in (2), then C∗ = B.

Remark 1. In (2) and (3) it is assumed that 1
∞ = 0 and 0 · ∞ = 0.

3. Parabolic fractional integral operator with rough kernels in the

spaces LM
{x0}
p,ϕ,P

In [10] was proved the (p, p)-boundedness of the operatorMP
Ω and the (p, q)-boundedness

of the operator MP
Ω,α.

Theorem 1. [10] Let Ω ∈ Ls(Sρ), 1 < s ≤ ∞, be At-homogeneous of degree zero. Then
the operator MP

Ω is bounded in the space Lp(Rn), p > s′.
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Theorem 2. [10] Suppose that 0 < α < γ and the function Ω ∈ L γ
γ−α

(Sρ), is At-

homogeneous of degree zero. Let 1 ≤ p < γ
α and 1/p − 1/q = α/γ. Then the fractional

integration operator IPα is bounded from Lp(Rn) to Lq(Rn) for p > 1 and from L1(Rn) to
WLq(Rn) for p = 1.

The following lemma is valid.

Lemma 1. Suppose that x0 ∈ Rn, 0 < α < γ and the function Ω ∈ L γ
γ−α

(Sρ), is At-

homogeneous of degree zero. Let 1 ≤ p < γ
α , and 1

q = 1
p −

α
γ . Then for all f ∈ Lloc

p there
hold the inequalities

‖IPΩ,αf‖Lq(E(x0,r)) . r
γ
q

∫ ∞
2kr

t
− γ
q
−1‖f‖Lp(E(x0,t))dt, p > 1

and

‖IPΩ,αf‖WLq(E(x0,r)) . r
γ
q

∫ ∞
2kr

t
− γ
q
−1‖f‖L1(E(x0,t))dt, p = 1. (1)

Proof. For a given ball E = E(x0, r) f, we represent f as

f = f1 + f2, f1(y) = f(y)χ2kE(y), f2(y) = f(y)χ {(2kE)
(y), r > 0,

and have

‖IPΩ,αf‖Lq(E) ≤ ‖IPΩ,αf1‖Lq(E) + ‖IPΩ,αf2‖Lq(E).

Since f1 ∈ Lp(Rn), by the boundedness of IPΩ,α from Lp(Rn) to Lq(Rn) it follows that

‖IPΩ,αf1‖Lq(E) ≤ ‖IPΩ,αf1‖Lq(Rn) ≤ C‖f1‖Lp(Rn) = C‖f‖Lp(2kE).

Observe that the conditions x ∈ E , y ∈ {
(2kE) imply

1

2k
ρ(x0 − y) ≤ ρ(x− y) ≤ 3k

2
ρ(x0 − y).

We then get

|IPΩ,αf2(x)| ≤ 2γ−αc1

∫
{
(2kE)

|f(y)||Ω(x− y)|
ρ(x0 − y)γ−α

dy.

By Fubini’s theorem we have∫
{(2kE)

|f(y)||Ω(x− y)|
ρ(x0 − y)γ−α

dy ≈
∫

{(2kE)
|f(y)||Ω(x− y)|

∫ ∞
ρ(x0−y)

dt

tγ+1−αdy

≈
∫ ∞

2kr

∫
2kr≤ρ(x0−y)<t

|f(y)||Ω(x− y)|dy dt

tγ+1−α

.
∫ ∞

2kr

∫
E(x0,t)

|f(y)||Ω(x− y)|dy dt

tγ+1−α .
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Applying Hölder’s inequality with 1/p+ (γ − α)/γ + (αp− γ)/γp = 1 taken into account,
we get ∫

{(2kE)

|f(y)||Ω(x− y)|
ρ(x0 − y)γ−α

dy

.
∫ ∞

2kr
‖f‖Lp(E(x0,t)) ‖Ω(· − y)‖L γ

γ−α
(E(x0,t)) |E(x0, t)|

α
γ
− 1
p

dt

tγ+1−α

.
∫ ∞

2kr
‖f‖Lp(E(x0,t))

dt

t
γ
q

+1
.

Moreover, for all p ∈ [1,∞) the inequality

‖IPΩ,αf2‖Lq(E) . r
γ
q

∫ ∞
2kr
‖f‖Lp(E(x0,t))

dt

t
γ
q

+1
. (2)

is valid. Thus

‖IPΩ,αf‖Lq(E) . ‖f‖Lp(2kE) + r
γ
q

∫ ∞
2kr
‖f‖Lp(E(x0,t))

dt

t
γ
q

+1
.

On the other hand,

‖f‖Lp(2kE) ≈ r
γ
q ‖f‖Lp(2kE)

∫ ∞
2kr

dt

t
γ
q

+1

≤ r
γ
q

∫ ∞
2kr
‖f‖Lp(E(x0,t))

dt

t
γ
q

+1
. (3)

Thus

‖IPΩ,αf‖Lq(E) . r
γ
q

∫ ∞
2kr
‖f‖Lp(E(x0,t))

dt

t
γ
q

+1
.

By Fubini’s theorem and the Minkowski inequality, we get

‖IPΩ,αf2‖Lq(E) ≤
(∫
E

∣∣∣ ∫ ∞
2kr

∫
E(x0,t)

|f(y)||Ω(x− y)|dy dt

tγ+1−α

∣∣∣q) 1
q

≤
∫ ∞

2kr

∫
E(x0,t)

|f(y)| ‖Ω(· − y)‖Lq(E)dy
dt

tγ+1−α

. r
γ
q

∫ ∞
2kr
‖f‖L1(E(x0,t))

dt

tγ+1−α

. r
γ
q

∫ ∞
2kr
‖f‖Lp(E(x0,t))

dt

t
γ
q

+1
.

Finally, in the case p = 1 by the weak (1, q)-boundedness of IPΩ,α and the inequality
(3) it follows that

‖IPΩ,αf1‖WLq(E) ≤ ‖IPΩ,αf1‖WLq(Rn) . ‖f1‖L1(Rn)
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= ‖f‖L1(2kE) . r
γ
q

∫ ∞
2kr
‖f‖L1(E(x0,t))

dt

t
γ
q

+1
. (4)

Then from (2) and (4) we get the inequality (1).

Theorem 3. Suppose that x0 ∈ Rn, 0 < α < γ and the function Ω ∈ L γ
γ−α

(Sρ) is At-

homogeneous of degree zero. Let 1 ≤ p < γ
α , 1

q = 1
p −

α
γ , and the pair (ϕ1, ϕ2) satisfy the

condition ∫ ∞
r

ess inf
t<τ<∞

ϕ1(x0, τ)τ
n
p

t
γ
q

+1
dt ≤ C ϕ2(x0, r), (5)

where C does not depend on x0 and r. Then the operator IPΩ,α is bounded from LM
{x0}
p,ϕ1,P

to LM
{x0}
q,ϕ2,P

for p > 1 and from LM
{x0}
1,ϕ1,P

to WLM
{x0}
q,ϕ2,P

for p = 1.

Proof. By Lemma 1 and Theorem 2 with v2(r) = ϕ2(x0, r)
−1, v1(r) = ϕ1(x0, r)

−1r
− γ
p

and w(r) = r
− γ
q we have for p > 1

‖IPΩ,αf‖Mq,ϕ2,P
. sup

r>0
ϕ2(x0, r)

−1

∫ ∞
r
‖f‖Lp(E(x0,t))

dt

t
γ
q

+1

. sup
r>0

ϕ1(x0, r)
−1 r

− γ
p ‖f‖Lp(E(x0,r)) = ‖f‖Mp,ϕ1,P

and for p = 1

‖IPΩ,αf‖WMq,ϕ2,P
. sup

r>0
ϕ2(x0, r)

−1

∫ ∞
r
‖f‖L1(E(x0,t))

dt

t
γ
q

+1

. sup
r>0

ϕ1(x0, r)
−1 r−γ ‖f‖L1(E(x0,r)) = ‖f‖M1,ϕ1,P

.
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Atomic Decomposition in a Direct Sum of Banach Spaces

and Their Application to Discontinuous Differential Op-

erators

T.B. Gasymov∗, Ch.M. Hashimov

Abstract. An atomic decomposition is considered in Banach space. A method for constructing
an atomic decomposition of Banach space, proceeding from atomic decomposition of subspaces
is presented. Some relations between them are established. The proposed method is used in the
study of the frame properties of systems of eigenfunctions and associated functions of discontinuous
differential operators.

Key Words and Phrases: p-frames, X̃-frames, conjugate systems to X̃ .
2010 Mathematics Subject Classifications: 34L10, 41A58, 46A35

1. Introduction

One of the commonly used methods for solving differential equations is the method
of separation of variables (Fourier method). This method yields the appropriate spectral
problem (usually with respect to the space variables). To justify the method is very impor-
tant the question of the expansion of functions of a certain class on eigenfunctions of the
spectral problem. That is why many mathematicians have been paying so much attention
lately to the study of frame properties (such as completeness, minimality, basicity, atomic
decomposition) of the systems of special functions, mostly eigenfunctions and associated
functions of differential operators. Various methods have been developed for establishing
these properties. For more information we refer the reader to [1, 2, 3, 4, 5, 6, 7, 8, 9].
In case of discontinuous differential operator, there arise the systems of eigenfunctions
that cannot be treated for frameness by the earlier methods. To shed some light on this
situation, we consider the following model spectral problem for second order discontinuous
differential operator

−y′′ (x) = λy (x) , x ∈ (−1, 0) ∪ (0, 1) , (1)

with the boundary conditions

y (−1) = y (1) = 0; y (−0) = y (+0) , (2)

∗Corresponding author.

http://www.cjamee.org 69 c© 2013 CJAMEE All rights reserved.
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y′ (−0)− y (+0) = λmy (0) .

This spectral problem has two sets of eigenfunctions [9]:

u(1)
n

(x) = sinπnx, x ∈ [−1, 1] , n ∈ N,

and

ũ(2)n (x) =

{
sinπnx+ 0

(
1
n

)
, x ∈ [−1, 0] ,

− sinπnx+ 0
(
1
n

)
, x ∈ [0, 1] , n ∈ N.

Such spectral problems arise when solving the problem of a loaded string fixed at both ends
with a load placed in the middle of the string by the Fourier method [10, 11]. The use of

this method requires the study of basis properties of the double system
{

u
(1)
n ; ũ

(2)
n

}

n∈N
in

corresponding spaces of functions (usually in the Lebesgue or Sobolev spaces). Of course,

it should be started with the basis properties of the system
{

u
(1)
n ;u

(2)
n

}

n∈N
, which is the

principal part of the asymptotics of the system
{

u
(1)
n ; ũ

(2)
n

}

n∈N
, where

u(2)n =

{
sinπnx, x ∈ [−1, 0) ,
− sinπnx, x ∈ [0, 1] .

This is usually followed by the application of various perturbation methods. This approach
is well studied (see, e.g., the articles [5, 6, 7, 8, 9, 13, 14, 15, 16] and the monographs
[12, 17, 18, 19, 20, 21, 22, 23]). On the other hand, it is not difficult to see that the principal

part
{

u
(1)
n ; u

(2)
n

}

n∈N
is not a standard (in other words, classical) system. It turns out

that the form of the system
{

u
(1)
n ;u

(2)
n

}

n∈N
is not special, i.e. it can be derived from the

general case. The general approach to these systems allows introducing a new approach for
constructing bases with a lot of applications in the spectral theory of differential operators.
It should be noted that some problems of an atomic decomposition and frames with respect
to the specific systems have been previously studied in [27, 28, 29, 30, 31].

In this work we consider an abstract approach to the above problem. We consider
a direct expansion of a Banach space with respect to subspaces. We offer a method for
constructing an atomic decomposition for a space proceeding from atomic decomposition
for subspaces.

2. Notation and needful information

We will use the standard notation. N will be a set of all positive integers; L [M ] will
denote the linear span of the set M and M will stand for the closure of M ; X∗ will denote
a space conjugate to X; L (X1,X2) will be a space of linear bounded operators from X1

to X2 with L (X,X) = L (X) ; DT will denote a domain of the operator T and RT will
be the range of T ; KerT will stand for the kernel of the operator T ; < x, f >= f (x) will
denote the value of the functional f at the point x; Banach space will be referred to as
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B-space; ‖ · ‖X will denote a norm in X; ⇔ will mean “if and only if”; 1 : n ≡ {1; ...;n};
δij will be the Kronecker symbol.

We will also use the concept of the space of coefficients. We define it as follows. Let
~x ≡ {xn}n∈N ⊂ X be a non-degenerate system in a B-space X, i.e. xn 6= 0, ∀n ∈ N .
Define

K~x ≡

{

{λn}n∈N : the series

∞∑

n=1

λnxn is convergent in X

}

.

Introduce the norm in K~x:

∥
∥
∥~λ

∥
∥
∥

K~x

= sup
m

∥
∥
∥
∥
∥

m∑

n=1

λnxn

∥
∥
∥
∥
∥
, where ~λ = {λn}n∈N .

With respect to the usual operations of addition and multiplication by a complex number,
K~x is a B- space. Take ∀~λ ∈ K~x and consider the operator T : K~x → X:

T~λ =

∞∑

n=1

λnxn, ~λ = {λn}n∈N .

Denote by {en}n∈N ⊂ K~x a canonical system in K~x, where en = {δnk}k∈N . It is absolutely
clear that Ten = xn, ∀n ∈ N . The following statement is true.

Statement 1. Space of coefficients K~x is a B-space with the canonical basis {en}n∈N .
Moreover, the system ~x forms a basis for X ⇔ T performs an isomorphism between K~x

and X.

Let’s recall some concepts and facts from the frames theory . First, let us give a
definition of atomic decomposition in Banach spaces.

Definition 1. Let X be a B-space and K be a B- space of the sequences of scalars. Let
{fk}k∈N ⊂ X , {gk}k∈N ⊂ X∗. Then

(
{gk}k∈N ; {fk}k∈N

)
is an atomic decomposition

of X with respect to K , if :
(i) {gk (f)}k∈N ∈ K , ∀f ∈ X;
(ii) ∃A,B > 0:A ‖f‖X ≤

∥
∥ {gk (f)}k∈N

∥
∥

K
≤ B ‖f‖X , ∀f ∈ X;

(iii) f =
∑

∞

k=1 gk (f) fk , ∀f ∈ X.

The concept of the frame is a generalization of the concept of an atomic decomposition.

Definition 2. Let X be a B-space and K be a B-space of the sequences of scalars. Let
{gk}k∈N ⊂ X∗ and be a bounded operator. Then

(
{gk}k∈N ; S

)
forms a Banach frame

for X with respect to K , if:
(i) {gk (f)}k∈N ∈ K , ∀f ∈ X;
(ii) ∃A,B > 0:A ‖f‖X ≤

∥
∥ {gk (f)}k∈N

∥
∥

K
≤ B ‖f‖X , ∀f ∈ X;

(iii) S
[
{gk (f)}k∈N

]
= f , ∀f ∈ X.

It is true the following
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Proposition 1. Let X be a B-space and K a B-space of the sequences of scalars with
canonical basis {δn}n∈N . Let {gk}k∈N ⊂ X∗ and S ∈ L (K ; ;X). Then the following
statements are equivalent:

(i)
(
{gk}k∈N ; S

)
is a Banach frame for X with respect to K ;

(ii)
(
{gk}k∈N ; {S (δk)}k∈N

)
is an atomic decomposition of X with respect to K .

More information about the above facts can be found in [17, 18, 19, 20, 21, 22, 23, 24].
In the sequel, we will use the following construction and some obvious facts. Let the

following direct sum hold
X = X1 ⊕ . . . ⊕Xm,

where Xi, i = 1, m, are some B-spaces. For convenience, we will represent the elements
of the space X in the form of a vector

x ∈ X ⇔ x = (x1, x2, ..., xm) ,

where xk ∈ Xk , k = 1,m. The norm in X will be defined by the formula

‖x‖X =

√
√
√
√

m∑

i=1

‖xi‖
2
Xi
.

Then we have X∗ = X∗

1 ⊕ . . . ⊕X∗

m (see [13]), and for ϑ ∈ X∗ and x ∈ X it holds

< x, ϑ >=

m∑

i=1

< xi, ϑi >,

where ϑ = (ϑ1, ..., ϑm) and

‖ϑ‖X∗ =

√
√
√
√

m∑

i=1

‖ϑi‖
2
X∗

i

.

Let some system
{

u
(i)
n

}

n∈N
⊂ Xi be given for every i ∈ 1 : m. Consider the following

system in the space X :

u0in =



 0, ..., 0, u(i)n
︸ ︷︷ ︸

i

, 0, ..., 0



 , i = 1, m ; n ∈ N.

Let the pair (
{
u0in
}

i=1,m;n∈N
; {ϑin}i=1,m;n∈N) be an atomic decomposition of X with

respect to the space of coefficients K , i.e. ∀x ∈ X has a decomposition of the form

x =

m∑

i=1

∞∑

n=1

ϑin (x)u
0
in, (3)

moreover, the following inequality holds

A ‖{ϑin (x)}‖K
≤ ‖x‖X ≤ B ‖{ϑin (x)}‖K

. (4)
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Suppose

ϑin =
(

ϑ
(1)
in ; ...;ϑ

(m)
in

)

∈ X∗,

where ϑ
(k)
in ∈ X∗

k ,∀k ∈ 1 : m . We have (x = (x1, ..., xm)): ϑin (x) =
∑m

k=1 ϑ
(k)
in (xk) , i =

1, m; n ∈ N. Take ∀k ∈ 1 : m, and let

x0k =



0; ...; 0;xk
︸ ︷︷ ︸

k

; 0; ...; 0



 .

We have
ϑin

(
x0k
)
= ϑ

(k)
in (xk) .

Then from (4) we obtain

A

∥
∥
∥

{

ϑ
(k)
in (xk)

}∥
∥
∥

K

≤ ‖xk‖Xk
≤ B

∥
∥
∥

{

ϑ
(k)
in (xk)

}∥
∥
∥

K

.

Paying attention to the decomposition (3), we obtain

x0k = (0, ..., 0, xk , 0, ..., 0) =

m∑

i=1









0, ..., 0,

∞∑

n=1

ϑ
(k)
in (xk) u

(i)
n

︸ ︷︷ ︸

i

, 0, ..., 0









=

=

(
∞∑

n=1

ϑ
(k)
1n (xk)u

(1)
n , ...,

∞∑

n=1

ϑ
(k)
kn (xk)u

(k)
n , ...,

∞∑

n=1

ϑ(m)
mn (xk)u

(m)
n

)

⇒

∞∑

n=1

ϑ
(k)
in (xk) u

(i)
n =

{
xk, i = k,

0, i 6= k.
(5)

As a result, we obtain that

({

u(k)n

}

n∈N
;
{

ϑ
(k)
kn

}

n∈N

)

, (6)

is an atomic decomposition of Xk with respect to the space of coefficients K , for every
k ∈ 1 : m.

Accept the following

Definition 3. The pair
(

{un} ;
{

~ϑn

}) (

un ∈ X ∧ ~ϑn ∈ X∗

)

is called an atomic decom-

position of X with respect to K m, if the following conditions are fulfilled:

i)
{

~ϑn (x)
}

∈ K m, ∀x ∈ X;

ii) ∃A;B > 0 : A
∥
∥
∥

{

~ϑn (x)
}∥
∥
∥

K m
≤ ‖x‖X ≤ B

∥
∥
∥

{

~ϑn (x)
}∥
∥
∥

K m
;

iii) x =
∑

∞

n=1
~ϑn (x) un, ∀x ∈ X.
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The following theorem is true.

Theorem 1. i) Let the pair
({

u0in
}

i=1,m; n∈N
; {ϑin}i=1,m; n∈N

)

be an atomic decomposi-

tion of X with respect to K , where ϑin =
(

ϑ
(1)
in ; ...;ϑ

(m)
in

)

∈ X∗, i ∈ 1 : m; n ∈ N . Then

the relation (5) holds and system (6) is an atomic decomposition of Xk with respect to K .

ii) Let the pair (6) be an atomic decomposition of Xk for every k ∈ 1 : m with respect to

K and the relation (5) holds. Then
({

~ϑn

}

; {un}
)

is an atomic decomposition of Xwith

respect to K m in the sense of Definition 3.

3. Main results

Let the following direct sum hold

X = X1+̇...+̇Xm,

where Xk, k = 1, m−are some B-spaces. Consider the system {uin}n∈N ⊂ Xi, i = 1, m;
and form

~uin = (ai1u1n; ai2u2n; ...; aimumn) , i = 1, m; n ∈ N.

Let

A = (aij) i, j = 1, m; ∆ = detA.

We will need the following easy-to-prove lemma.

Lemma 1. Let ({un} ; {ϑn}) be an atomic decomposition of Xwith respect to K and

T ∈ L (X) be some automorphism. Then
(

{Tun} ;
{

(T ∗)−1
ϑn

})

is also an atomic de-

composition of Xwith respect to K .

Let Tij : Xi → Xj be some operators. Consider the system

m∑

i=1

aijTijxi = yj, j = 1, m, (7)

where yj ∈ Xj , j = 1, m are the given, and xi ∈ Xi, i = 1, m are the sought ele-
ments. Assume that the spaces Xk, k = 1, m, are pairwise isomorphic and Tij performs
a corresponding isomorphism. Besides, assume that the following conditions are satisfied:

α) Tii = Ii, Tij = T−1
ji , TjkTij = Tik , ∀i, j = 1,m, where Ii is the identity operator in

Xi.

Applying the operator Tj1 = T−1
1j to the j-th equation in the system (7), we obtain

the following system
m∑

i=1

aijTi1xi = Tj1yj, j = 1, m.
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Let x̃i = Ti1xi, ỹj = Tj1yj. It is clear that x̃i, ỹj ∈ X1. As a result, we obtain the
following system of linear equations in the space X1:

m∑

i=1

aijx̃i = ỹj , j = 1,m.

If the determinant of this system ∆ = det (aij) 6= 0, then it is clear that this system is
uniquely solvable with respect to the unknowns x̃i. Then the system (7) is also uniquely
solvable.

The following lemma is true.

Lemma 2. Let the operators Tij : Xi → Xj perform an isomorphism between Xi and Xj,
the conditions α) be satisfied and ∆ 6= 0. Then the system (7) is uniquely solvable for
∀y ∈ X, y = (y1, . . . , ym) and, moreover, ∃M > 0:

‖x‖X ≤ M ‖y‖X , (8)

where x = (x1, . . . , xm).

The validity of the estimate (8) follows immediately from the following representation
for the solution of the system (7):

xi =

m∑

j=1

bijTjiyj, i = 1, m,

where bij are the elements of the inverse matrix A−1.

Consider the operator T : X → X defined by the matrix (aijTij)
m
i, j=1. Let all the

conditions of Lemma 2 be satisfied. It follows from this lemma that KerT = {0} , RT =
X, and the estimate (8) means T ∈ L (X). Then it follows from Banach’s theorem on the
inverse operator that T is an automorphism in X. So the following theorem is true.

Theorem 2. Let Tij ∈ L (Xi, Xj) be an isomorphism, the conditions α) be satisfied
and ∆ 6= 0. Then the operator T : X → X defined by the matrix (aijTij)

m
i, j=1 is an

automorphism in X = X1 ⊕ . . .⊕Xm.

The following theorem is true.

Theorem 3. Let the direct sum X = X1+̇...+̇Xm hold, the pair
(
{uin}n∈N ; {ϑin}n∈N

)

be an atomic decomposition of Xi, i = 1,m; with respect to K , Tij ∈ L (Xi;Xj) be an
isomorphism and Tijuin = ujn, ∀n ∈ N, for i 6= j. Let det (aij)i,j=1,m 6= 0, and operators

Tij ; i, j = 1,m; satisfy the condition α) and the operator T ∈ L (X) defined by the matrix

(aijTij)i,j=1,m . Then the pair

({{
Tu0in

}

n∈N

}

i=1,m
;
{{

(T ∗)−1 ϑ0
in

}

n∈N

}

i=1,m

)

, is also

an atomic decomposition of X with respect to K m.
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