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Approximation of Hypersingular Integral Operators on
Hölder Spaces
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Abstract. In the present paper, the hypersingular integral operator is approximated by a sequence
of operators of the special form and is obtained the estimate of the convergence rate in Hölder
spaces.
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1. Introduction

An active development of numerical methods for solving hypersingular integral equa-
tions is of considerable interest in modern numerical analysis. This is due to the fact that
hypersingular integral equations have numerous applications in acoustics, aerodynamics,
fluid mechanics, electrodynamics, elasticity, fracture mechanics, geophysics and etc. (see
[4, 5, 10, 13, 15, 20, 22, 23, 26, 27]). Therefore the construction and justification of numer-
ical schemes for approximate solutions of hypersingular integral equations is a topical issue
and numerous works [3-9,11,12,14,16-19,21-25, 27-31] are devoted to their development.
In the present paper hypersingular integral operator In the present paper hypersingular
integral operator (

S(0)ϕ
)

(t) =
1

πi

∫
γ0

ϕ (τ)

|τ − t|
dτ

is approximated by a sequences of operators of the form

(
S(0)
n ϕ

)
(t) =

2n−1∑
k=0

α
(n)
k (t)ϕ

(
τ
(t)
k

)
, t ∈ γ 0

in the unit circle γ0 = {t ∈ C : |t| = 1}, where τ
(t)
k = ekθi · t , k = 0, 2n, θ = π

n , n ∈ N ,

α
(n)
k (t) – are continuous functions in γ0 , k = 0, 2n− 1 , n ∈ N .
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It should be noted that, the determination of the inverse operator
[
S
(0)
n

]−1
is equivalent

to the study of the equation

2n−1∑
k=0

α
(n)
k (t)ϕ

(
τ
(t)
k

)
= f (t) , t ∈ γ0

at the points τ
(t)
0 , τ

(t)
1 , ..., τ

(t)
2n−1, because solving the resulting system of linear algebraic

equations with respect to
(
ϕ
(
τ
(t)
0

)
, ϕ

(
τ
(t)
1

)
, ..., ϕ

(
τ
(t)
2n−1

))
, we obtain the function

ϕ (t) = ϕ
(
τ
(t)
0

)
.

Note that, for the singular integral operators with Cauchy kernel and Hilbert kernel
similar approximations and its applications to the singular integral equations are given in
the papers [1] and [2], analogous approximations for hypersingular integral operators with
Cauchy kernel are given in [3].

2. Hypersingular integral operator

Consider the following integral∫ b

a

g (x)

|x− x0|
dx , x0 ∈ (a, b) (1)

where the function g (x) is defined in the interval [a, b]. If we define this integral similar
to the Cauchy integral, even if g ≡ 1, we get the divergent integral:

lim
ε→0+

(∫ x0−ε

a

1

|x− x0|
dx+

∫ b

x0+ε

1

|x− x0|
dx

)
= lim

ε→0+
(−2 ln ε+ ln (x0 − a) (b− x0)) =∞.

Therefore, using the idea of Hadamard finite part integral [15], we will define the
integral (1) as follows:

Definition 1. If a finite limit

lim
ε→0+

(∫ x0−ε

a

g (x) dx

|x− x0|
+

∫ b

x0+ε

g (x) dx

|x− x0|
+ 2g (x0) ln ε

)
exists, then the value of this limit is referred to as the hypersingular integral of the function
g(x)
|x−x0| , x0 ∈ (a, b) on [a, b] and is denoted by

∫ b
a

g(x)
|x−x0|dx .

Now consider the integral ∫
γ0

ϕ (τ) dτ

|τ − t|
, t ∈ γ 0 , (2)

where the function ϕ (t) is defined in the unit circleγ0 = {t ∈ C : |t| = 1}.
From the definition 1.1 for the hypersingular integral on interval, we define the integral

(2) as follows.
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Definition 2. If a finite limit

lim
ε→0+

(∫
γε

ϕ (τ) dτ

|τ − t|
+ 2itϕ (t) ln ε

)
exists, then the value of this limit is referred to as the hypersingular integral of the function
ϕ(τ)
|τ−t| , t ∈ γ 0 on the circleγ0 and is denoted by

∫
γ0

ϕ(τ)dτ
|τ−t| , where γε = {τ ∈ γ0 : |τ − t| > ε}.

From definitions 1.1 and 1.2, it follows that if t = eix0 , x0 ∈ (−π, π) , then∫
γ0

ϕ (τ) dτ

|τ − t|
= lim

ε→0+

(∫
γε

ϕ (τ) dτ

|τ − t|
+ 2itϕ (t) ln ε

)
=

= lim
ε→0+

(∫ x0+2π−δ(ε)

x0+δ(ε)

ϕ
(
eix
)
ieixdx

|eix − eix0 |
+ 2ieix0ϕ

(
eix0

)
ln ε

)
=

= lim
ε→0+

(∫
[−π,π]/(x0−δ(ε), x0+δ(ε))

ϕ
(
eix
)
ieix

|x− x0|

∣∣∣∣ x− x0
eix − eix0

∣∣∣∣ · dx+ 2ieix0ϕ
(
eix0

)
ln ε

)
=

=

∫ π

−π

ϕ
(
eix
)
ieixdx

|eix − eix0 |
+ 2ieix0ϕ

(
eix0

)
· lim
ε→0+

(ln ε− ln δ (ε)) =

∫ π

−π

ϕ
(
eix
)
ieixdx

|eix − eix0 |
, (3)

where δ (ε) = 2 arcsin ε
2 .

Equation (3) shows that, by means of change of variables t = eix the hypersingular
integral on a circle is reduced to hypersingular integral on an interval.
We will calculate the hypersingular integral

∫
γ0

dτ
|τ−t| , t = eix0 ∈ γ 0. We have

∫
γ0

dτ

|τ − t|
= lim

ε→0+

(∫
[x0−π,x0+π]/(x0−ε, x0+ε)

ieix

|eix − eix0 |
dx+ 2it ln ε

)
=

= lim
ε→0+

(∫
[x0−π,x0+π]/(x0−ε, x0+ε)

ieix

2
∣∣sin x−x0

2

∣∣dx+ 2it ln ε

)
=

= 2it · lim
ε→0+

(∫ x0+π

x0+ε

cos (x− x0)
2 sin x−x0

2

+ ln ε

)
= 2it · (ln 4− 2) , (4)

where δ (ε) = 2 arcsin ε
2 ∼ ε as ε→ 0+. From equation (4) it follows that,∫

γ0

ϕ (τ) dτ

|τ − t|
=

∫
γ0

ϕ (τ)− ϕ (t)

|τ − t|
dτ + (ln 4− 2) 2itϕ (t) . (5)

Let Hα (γ0), 0 < α ≤ 1 be the space of Hölder continuous functions with exponent α
in γ0 , i.e. the space of the functions which satisfies the following condition

∃C > 0 ∀t1, t2 ∈ γ0 : |ϕ (t1)− ϕ (t2)| ≤ C · |t1 − t2|α
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with the norm
‖ϕ‖α = ‖ϕ‖∞ +H (ϕ;α)

where

‖ϕ‖∞ = max
t∈γ0
|ϕ (t)| , H (ϕ;α) = sup

{
|ϕ (t1)− ϕ (t2)|
|t1 − t2|

: t1, t2 ∈ γ0, t1 6= t2

}
.

From equation (5) it follows that, if ϕ ∈ Hα (γ0) then hypersingular integral
∫
γ0

ϕ(τ)dτ
|τ−t|

exists for all t ∈ γ 0

Consider the hypersingular integral operator:(
S(0)ϕ

)
(t) =

1

πi

∫
γ0

ϕ (τ)

|τ − t|
dτ.

Theorem 1. Hypersingular integral operator S(0) is bounded from the space Hα (γ0) into
the space Hα−ε (γ0) for all 0 < α ≤ 1 and 0 < ε < α.

Proof. From equation (5) it follows that, it is sufficient to prove the stated theorem
for the following operator:

(Tϕ) (t) =
1

πi

∫
γ0

ϕ (τ)− ϕ (t)

|τ − t|
dτ.

Let ϕ ∈ Hα (γ0). Then

‖Tϕ‖∞ = max
t∈γ0

∣∣∣∣ 1

πi

∫
γ0

ϕ (τ)− ϕ (t)

|τ − t|
dτ

∣∣∣∣ ≤ 1

π

∣∣∣∣∫
γ0

|ϕ (τ)− ϕ (t)|
|τ − t|

|dτ |
∣∣∣∣ ≤

≤ 1

π

∣∣∣∣∫
γ0

H (ϕ;α)

|τ − t|1−α
|dτ |

∣∣∣∣ ≤ C1 ·H (ϕ;α) ≤ C1 · ‖ϕ‖α , (6)

where C1 – constant which only depends on α.
Estimate the difference (Tϕ) (t1)− (Tϕ) (t2) for any two points t1, t2 ∈ γ0, t1 6= t2.

If |t1 − t2| ≥ 1
2 , then from inequality (6) it follows that,

|(Tϕ) (t1)− (Tϕ) (t2)| ≤ 2C1 · ‖ϕα‖ ≤ 4C1 · ‖ϕα‖ · |t1 − t2| . (7)

Consider the case |t1 − t2| < 1
2 . We plot the circle centered at the t1 with radius δ =

2 · |t1 − t2|. This circle and γ0 intersect at two points, which we will denote by a and b.
Denote by l the part of γ0 which is inside of this circle .

Represent the difference (Tϕ) (t1)− (Tϕ) (t2) as follows:

(Tϕ) (t1)− (Tϕ) (t2) =
1

πi

∫
l

ϕ (τ)− ϕ (t1)

|τ − t1|
dτ − 1

πi

∫
l

ϕ (τ)− ϕ (t2)

|τ − t2|
dτ+

+
1

πi

∫
γ0\l

{
ϕ (τ)− ϕ (t1)

|τ − t1|
− ϕ (τ)− ϕ (t2)

|τ − t2|

}
dτ =
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=
1

πi

∫
l

ϕ (τ)− ϕ (t1)

|τ − t1|
dτ − 1

πi

∫
l

ϕ (τ)− ϕ (t2)

|τ − t2|
dτ +

1

πi

∫
γ0\l

ϕ (t2)− ϕ (t1)

|τ − t1|
dτ+

+
1

πi

∫
γ0\l

[ϕ (τ)− ϕ (t2)]

[
1

|τ − t1|
− 1

|τ − t2|

]
dτ = J1 + J2 + J3 + J4. (8)

From the condition ϕ ∈ Hα (γ0), δ = 2 · |t1 − t2| we have the following estimate

|J1| ≤
1

π

∫
l

|ϕ (τ)− ϕ (t1)|
|τ − t1|

|dτ | ≤ H (ϕ;α)

π

∫
l

|dτ |
|τ − t1|1−α

≤

≤ 2H (ϕ;α)

π

∫ δ

0

dr

(r/2)1−α
=

4H (ϕ;α)

πα
· |t1 − t2|α ≤

4 ‖ϕ‖α
2επα

· |t1 − t2|α−ε .

Absolutely analogously

|J2| ≤
1

π

∫
l

|ϕ (τ)− ϕ (t2)|
|τ − t2|

|dτ | ≤ H (ϕ;α)

π

∫
l

|dτ |
|τ − t2|1−α

≤

≤ 2H (ϕ;α)

π

∫ 3δ/2

0

dr

(r/2)1−α
=

6H (ϕ;α)

πα
· |t1 − t2|α ≤

6 ‖ϕ‖α
2επα

· |t1 − t2|α−ε .

We estimate the integral J3as follows:

|J3| ≤
|ϕ (t2)− ϕ (t1)|

π

∣∣∣∣∣
∫
γ0\l

dτ

|τ − t1|

∣∣∣∣∣ ≤ H (ϕ;α) · |t1 − t2|α

π

∣∣∣∣∣
∫
γ0\l

dτ

|τ − t1|

∣∣∣∣∣ ≤
≤ 4H (ϕ;α) · |t1 − t2|α · ln

π

|t1 − t2|
≤ C2 · ‖ϕ‖α · |t1 − t2|

α−ε ,

where C2 – constant which only depends on α and ε.

Now turn to the estimate of the integral J4.

|J4| =
1

π

∣∣∣∣∣
∫
γ0\l

[ϕ (τ)− ϕ (t2)] · [|τ − t2| − |τ − t1|]
|τ − t1| · |τ − t2|

dτ

∣∣∣∣∣ ≤
≤ H (ϕ;α)

π

∣∣∣∣∣
∫
γ0\l

|τ − t2| − |τ − t1|
|τ − t1| · |τ − t2|1−α

dτ

∣∣∣∣∣ ≤ H (ϕ;α) · |t1 − t2|
π

∫
γ0\l

|dτ |
|τ − t1| · |τ − t2|1−α

=

=
H (ϕ;α) · |t1 − t2|

π

∫
γ0\l
|τ − t1|α−2

∣∣∣∣τ − t1τ − t2

∣∣∣∣α−1 |dτ | .
Since for any τ ∈ γ0\l , the following inequality is holds

|τ − t1| ≤
1

3
|τ − t2| ,
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then we have

|J4| ≤
H (ϕ;α) · |t1 − t2|

31−απ

∫
γ0\l
|τ − t1|α−2 |dτ | ≤ C3 · ‖ϕ‖α · |t1 − t2|

α−ε ,

where C3 - constant which only depends on α and ε.
Comparing obtained estimates for J1, J2, J3 andJ4, from equation (8) and inequality

(7) it follows the validity of the theorem. This completes the proof of the theorem.

3. Approximation of hypersingular integral operator

Consider the sequences of operators

(
S(0)
n ϕ

)
(t) =

1

πi

n−1∑
k=0

ϕ
(
τ
(t)
2k+1

)
− ϕ (t)∣∣∣τ (t)2k+1 − t
∣∣∣ ∆τ

(t)
2k+1 + (ln 4− 2) 2itϕ (t) , t ∈ γ 0, n = 1, 2, ..,

where τ
(t)
k = ekθi · t, ∆τ

(t)
k =

(
τ
(t)
k+1 − τ

(t)
k−1

)
θ

sin θ = 2iekθi · t · θ , k = 0, 2n , θ = π
n .

It is clear that, operators S
(0)
n , n = 1, 2, .. is bounded from the space Hα (γ0) into the

space Hα (γ0) for all 0 < α ≤ 1.

Theorem 2. For any ϕ ∈ Hα (γ0), 0 < α ≤ 1, the following estimate holds∥∥∥S(0)
n ϕ− S(0)ϕ

∥∥∥
∞
≤ C4 ln (n+ 1)

nα
·H (ϕ;α) , n = 1, 2, .., (9)

where C4 – constant which only depends on α.

Proof. From equation (5) it follows that, for all t ∈ γ0

∣∣∣(S(0)
n ϕ

)
(t)−

(
S(0)ϕ

)
(t)
∣∣∣ =

∣∣∣∣∣∣
∫
γ0

ϕ (τ)− ϕ (t)

|τ − t|
dτ −

n−1∑
k=0

ϕ
(
τ
(t)
2k+1

)
− ϕ (t)∣∣∣τ (t)2k+1 − t
∣∣∣ ∆τ

(t)
2k+1

∣∣∣∣∣∣ ≤

≤ 1

π

n−1∑
k=0

∣∣∣∣∣∣
∫
τ
(t)
2k τ

(t)
2k+2

ϕ (τ)− ϕ (t)

|τ − t|
dτ −

ϕ
(
τ
(t)
2k+1

)
− ϕ (t)∣∣∣τ (t)2k+1 − t
∣∣∣ ∆τ

(t)
2k+1

∣∣∣∣∣∣ =
1

π

n−1∑
k=0

Ik . (10)

Estimate the difference Ik, k = 0, n− 1. For the difference I0we have

I0 ≤
∫
τ
(t)
0 τ

(t)
2

|ϕ (τ)− ϕ (t)|
|τ − t|

|dτ |+

∣∣∣ϕ(τ (t)1

)
− ϕ (t)

∣∣∣∣∣∣τ (t)1 − t
∣∣∣

∣∣∣∆τ (t)1

∣∣∣ ≤

≤ H (ϕ;α) ·

∫
τ
(t)
0 τ

(t)
2

|dτ |
|τ − t|1−α

+

∣∣∣∆τ (t)1

∣∣∣∣∣∣τ (t)1 − t
∣∣∣1−α

 ≤ C5

nα
·H (ϕ;α) ,
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where C5 – constant which depends on α. Analogously it follows that,

In−1 ≤
C5

nα
·H (ϕ;α) .

For Ik, k = 1, n− 2 we have

Ik ≤

∣∣∣∣∣∣
∫
τ
(t)
2k τ

(t)
2k+2

ϕ
(
τ
(t)
2k+1

)
− ϕ (t)

|τ − t|
dτ −

ϕ
(
τ
(t)
2k+1

)
− ϕ (t)∣∣∣τ (t)2k+1 − t
∣∣∣ ∆τ

(t)
2k+1

∣∣∣∣∣∣+

+

∣∣∣∣∣∣
∫
τ
(t)
2k τ

(t)
2k+2

ϕ (τ)− ϕ
(
τ
(t)
2k+1

)
|τ − t|

dτ

∣∣∣∣∣∣ = I
(1)
k + I

(2)
k .

Estimate for the difference I
(1)
k as follows:

I
(1)
k ≤

∣∣∣ϕ(τ (t)2k+1

)
− ϕ (t)

∣∣∣ ·
∣∣∣∣∣∣
∫
τ
(t)
2k τ

(t)
2k+2

dτ

|τ − t|
−

∆τ
(t)
2k+1∣∣∣τ (t)2k+1 − t

∣∣∣
∣∣∣∣∣∣ ≤

≤ H (ϕ;α) ·
∣∣∣τ (t)2k+1 − t

∣∣∣α ·
∣∣∣∣∣∣
∫
τ
(t)
2k τ

(t)
2k+2

 1

|τ − t|
− 1∣∣∣τ (t)2k+1 − t

∣∣∣
 dτ

∣∣∣∣∣∣ ≤
≤ H (ϕ;α) ·

∣∣∣τ (t)2k+1 − t
∣∣∣α−1 · ∫

τ
(t)
2k τ

(t)
2k+2

∣∣∣∣∣∣τ (t)2k+1 − t
∣∣∣− |τ − t|∣∣∣

|τ − t|
|dτ | . (11)

Since for all τ ∈ τ (t)2k τ
(t)
2k+2 the following inequality holds∣∣∣∣∣∣τ (t)2k+1 − t

∣∣∣− |τ − t|∣∣∣ ≤ ∣∣∣τ − τ (t)2k+1

∣∣∣ ≤ ∣∣∣τ (t)2k − τ
(t)
2k+1

∣∣∣ = 2 sin
θ

2
≤ θ =

π

n
, |τ − t| ≥ 1

2

∣∣∣τ (t)2k+1 − t
∣∣∣ ,

then from inequality (11) we get the following estimate:

I
(1)
k ≤ π2

2n2
H (ϕ;α) ·

∣∣∣τ (t)2k+1 − t
∣∣∣α−2 .

Now turn to the estimate of the integral I
(2)
k .

I
(2)
k ≤

∣∣∣∣∣∣
∫
τ
(t)
2k τ

(t)
2k+2

ϕ (τ)− ϕ
(
τ
(t)
2k+1

)
|τ − t|

dτ

∣∣∣∣∣∣ ≤ H (ϕ;α) ·

∣∣∣∣∣∣
∫
τ
(t)
2k τ

(t)
2k+2

∣∣∣τ − τ (t)2k+1

∣∣∣α
|τ − t|

dτ

∣∣∣∣∣∣ ≤
≤ H (ϕ;α) ·

∣∣∣τ (t)2k − τ
(t)
2k+1

∣∣∣α · ∫
τ
(t)
2k τ

(t)
2k+2

|dτ |
|τ − t|

≤ H (ϕ;α) · π
α

nα
·
∫
τ
(t)
2k τ

(t)
2k+2

|dτ |
|τ − t|

.



Approximation of Hypersingular Integral Operators 103

Comparing obtained estimates for Ik, k = 0, n− 1, from inequality (10) it follows the
following inequality: ∣∣∣(S(0)

n ϕ
)

(t)−
(
S(0)ϕ

)
(t)
∣∣∣ ≤

≤ H (ϕ;α)

π

[
2C5

nα
+
n−2∑
k=1

(
π2

2n2

∣∣∣τ (t)2k+1 − t
∣∣∣α−2 +

πα

nα

∫
τ
(t)
2k τ

(t)
2k+2

|dτ |
|τ − t|

)]
. (12)

Since

n−2∑
k=1

∣∣∣τ (t)2k+1 − t
∣∣∣α−2 =

n−2∑
k=1

∣∣∣∣2 sin
(2k + 1)π

2n

∣∣∣∣α−2 ≤ 2

n∑
k=1

∣∣∣∣2 (2k + 1)

n

∣∣∣∣α−2 ≤ C6

nα−2
,

n−2∑
k=1

∫
τ
(t)
2k τ

(t)
2k+2

|dτ |
|τ − t|

=

∫
γ0\

(
τ
(t)
−2τ

(t)
2

) |dτ ||τ − t|
≤ C7 ln (n+ 1) ,

then from inequality (12) it follows the estimate (9). This completes the proof of the
theorem.
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1. Introduction

When solving the PDEs of mixed type by Fourier method there frequently appear
systems of sines and cosines of the following form

{cos (n+ α) t}n∈Z+
, (1)

{sin (n+ α) t}n∈N , (2)

where α is a real number (here, thereafter N is the set of all natural numbers, Z+ =
{0}

⋃
N). Justification of the Fourier method requires to study the basicity properties

of such systems in some function spaces. Some examples of such equations and concrete
systems of trigonometric-type functions that appear after applying Fourier method can
be found, for example, in [1, 2, 3, 4]. The basicity properties of the systems (1) and (2)
are well studied in Lebesgue and Sobolev spaces, as well as, in their weighted settings
[5, 6, 7, 8, 9, 10, 11, 12, 27, 28, 29, 30, 31].

During the last two decades, non-standard function spaces became an extremely pop-
ular subject because of their appearance in modern problems of analysis and qualitative
theory of PDEs. Introduction of Lebesgue spaces with variable exponents at the end of last
century and variety of extraordinary results obtained therein were the main motivation

∗Corresponding author.

http://www.cjamee.org 106 c© 2013 CJAMEE All rights reserved.
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and the inception of this new tendency in analysis. We only mention the monograph [13]
and the comprehensive bibliography therein, where thoroughly treatment of these issues
can be found.

In the present work it is considered the perturbed I system of exponentials with a
piecewise continuous phase. Particular cases of these systems are eigenfunctions of model,
discontinuous, ordinary differential operators of the first order. Sufficient conditions are
obtained for phase jumps, in the course of which this system forms a basis in generalized
Lebesgue spaces.

Notice that, similar problems for the double system of exponents with complex-valued
coefficients in Lebesgue spaces with variable exponent were earlier studied in [15, 16, 17,
18, 19]. The basicity properties of the systems (1) and (2) in classical Lebesgue spaces
were studied in [20, 24].

2. Preliminaries

We use the following standard denotations: Z−the set of all integers; R−the set
of all real numbers; C−complex plane; ( · )−complex conjugate of ( . ); δnk−Kronecker
delta; χA (·)−the indicator function of the set A . ω ≡ {z ∈ C : |z| < 1}− the unit disc;
∂ω ≡ {z ∈ C : |z| = 1}− the unit circle.

Let p : [−π, π]→ [1,+∞)−be a Lebesgue measurable function. We denote by L0 the
set of all Lebesgue measurable functions on [−π, π] . Set

Ip (f)
def
≡
∫ π

−π
|f (t)|p(t) dt

and

L ≡ {f ∈ L0 : Ip (f) < +∞} .

If p+ = sup vrai
[−π,π]

p (t) < +∞, then L is a linear space with respect to pointwise linear

operations. L is a Banach space with respect to the norm

‖f‖p(·)
def
≡ inf

{
λ > 0 : Ip

(
f

λ

)
≤ 1

}
,

and we denote it by Lp(·). Set

WL
def
≡ {p : p(−π) = p(π);∃C > 0, ∀t1, t2 ∈ [−π, π] : |t1 − t2| ≤ 1

2 ⇒

⇒ |p (t1)− p (t2)| ≤ C
− ln|t1−t2|

}
.

Throughout the paper q (·) denotes the conjugate function of p (·) , that is, 1
p(t) + 1

q(t) ≡
1. Let p− = inf vrai

[−π,π]
p (t). The following generalized Hölder’s inequality holds
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∫ π

−π
|f (t) g (t)| dt ≤ c

(
p−; p+

)
‖f‖p(·) ‖g‖q(·) ,

where c (p−; p+) = 1 + 1
p− −

1
p+

.
To get the main results we will need the following facts concerning the basicity in

generalized Lebesgue spaces Lp(·) (0, π) of the following single-folded exponentional system,
which were obtained in [32]:

vn(t) ≡ a(t)eint − b(t)e−int, n ∈ N,

where a (t) = |a (t)| eiα(t), b (t) = |b (t)| eiβ(t)are some complex-valued functions on [0, π].
It will be assumed that the functions a (·) and b (·) are subjected to the following conditions
i)-iv):

i) a±1 (·) ; b±1 (·) ∈ L∞ (0, π);
ii) α (·) ; β (·) are piecewise continuous functions on (0, π), with {tk}k∈N and {τk}k∈N

as their jump points, respectively. Assume that the set {s̃k} ≡ {tk}
⋃
{τk} may have just

one limit point s̃0 ∈ (0, π) and the function θ̃ (t) ≡ β (t)− α (t) has a finite left and right
limits at the point s̃0.

iii)
∑∞

k=1 |h (s̃k)| < +∞, where h (s̃k) = θ̃ (s̃k − 0) − θ̃ (s̃k + 0) is the jump of the
function θ̃ (·) at point s̃k.

iv) The jumps
{
h̃i

}
satisfy

(
h̃(s̃i)
2π + 1

p(s̃i)

)
/∈ Z, ∀i ∈ N .

From iii) it follows that there exists r ∈ N, such that

− 2π

p(s̃k)
< h̃(s̃k) <

2π

q(s̃k)
, k = r,∞.

Enumerate the elements of the set {s̃i}r1 in increasing order and denote it by {si}r1 :0 <
s1 < ... < sr < π. Denote the jumps corresponding to them by {h(si)}r1:

h (si) = β (si − 0)− β (si + 0) + α (si + 0)− α (si − 0) , i = 1, r.

Assume that for some n0 it follows

1

p(0)
+ 2(n0 − 1) <

β(0)− α(0)

π
<

1

p(0)
+ 2n0. (3)

By iv) define the integers ni, i = 1, r as follows

− 1

p(si)
<
h(si)

2π
+ ni − ni−1 <

1

q(si)
, i = 1, r. (4)

We have the following main result:

Theorem 1. Let the coefficient functions a (·) and b (·) satisfy i)-iv), the integers {ni}r1
are defined as in (3), (4). Assume that

β(π)− α(π)

2π
+

1

2p (π)
/∈ Z. (5)



On Basicity of Perturbed Exponential System 109

If

− 1

p(π)
+ 2nr <

β(π)− α(π)

π
< − 1

p(π)
+ 2(nr + 1), (6)

then the system {vn}n∈N forms a basis in Lp(·) (0, π) . If

β(π)− α(π) < − π

p(π)
+ 2nrπ,

then the system {vn}n∈N is not complete but minimal in Lp(·) (0, π); If

β(π)− α(π) > − π

p(π)
+ 2(nr + 1)π,

then the system {vn}n∈N is complete but is not minimal in Lp(·) (0, π).

3. Main Results

Consider the following system of exponentials:

ϕn (θ) ≡ exp [i (nθ − sgnnα (θ))] , n = ±1,±2, ..., (7)

where α (θ) is a piecewise continuous odd function on [−π, π] , that is α (−θ) = −α (θ),
∀θ ∈ [−π, π]. Let the set {tk}∞1 is the set of jump points of the function α (θ) on (0, π),
which may have just one limit point t0 ∈ (0, π). Assume that the function α (θ) has finite
left and right limits att0. Furthermore, let

∞∑
k=1

|α (tk + 0)− α (tk − 0)| < +∞. (8)

Assume that
α (ti − 0)− α (ti + 0)

π
6= − 1

p (ti)
+ k, i = 1,∞, (9)

for any integer k.
Let for some integer n0 it follows

π

2p (0)
+

(
n0 −

1

2

)
π < α (0) <

π

2p (0)
+ n0π. (10)

Denote by r the integer, for which

− π

p (tk)
< α (tk − 0)− α (tk + 0) <

π

q (tk)
, k = r,∞. (11)

Enumerate the elements of the set {ti} , i = 1, r in increasing order and denote the new
set by {ti}r1 : 0 < t1 < ... < tr < π. Define the integers ni, i = 1, r as follows:

− 1

p (ti)
<
α (ti − 0)− α (ti + 0)

π
+ ni − ni−1 <

1

q (ti)
, i = 1, r. (12)
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Theorem 2. Let α (t) be a real, piecewise continuous, odd function on [−π, π] , of which
jumps satisfy (8)-(10). The integers ni, i = 1, r are defined as in (10) - (12). In addition,
let

α (π) 6= − π

2p (π)
+

(
nr +

1

2

)
π.

Then to be a basis of the system of exponentials (7) in Lp(·) (−π, π) it is sufficient that

− π

2p (π)
+

(
nr +

1

2

)
π < α (π) < − π

2p (π)
+ (nr + 1)π. (13)

If α (π) < − π
2p(π) +

(
nr + 1

2

)
π then the system (7) is not complete, but minimal in

Lp(·) (−π, π); if α (π) ≥ − π
2p(π) + (nr + 1)π then the system (7) is complete but is not

minimal in Lp(·) (−π, π).

Before proving the theorem we give some direct consequences of Theorem 1.
Let α (·) be a piecewise continuous function on [0, π] of which jumps satisfies the

conditions (8), (9).

Corollary 1. Let for some integer n0
π

2p (0)
+ (n0 − 1)π < α (0) <

π

2p (0)
+ n0π, (14)

holds, the integer nr is defined as in (14), (12) , and it is assumed that α (π) 6= − π
2p(π) +

nrπ. If

− π

2p (π)
+ nrπ < α (π) < − π

2p (π)
+ (nr + 1)π,

then the system sin (nt− α (t)) , n = 1,∞, forms a basis in Lp(·) (0, π); if α (π) <
− π

2p(π) + nrπ, then the system sin (nt− α (t)) , n = 1,∞ is not complete, but mini-

mal in Lp(·) (0, π) ; if α (π) ≥ − π
2p(π) + (nr + 1)π, then it is complete, but is not minimal

in Lp(·) (0, π).

For the case of cosine system we have the following

Corollary 2. Let α (·) be a piecewise continuous function on [0, π] of which jumps satisfy
(8), (9) , and for some n0 ∈ Z it holds

π

2p (0)
+

(
n0 −

1

2

)
π < α (0) <

π

2p (0)
+

(
n0 +

1

2

)
π. (15)

The integer nr is defined as in (15), (12) and it is assumed that α (π) 6= − π
2p(π)+

(
nr + 1

2

)
π.

If

− π

2p (π)
+

(
nr +

1

2

)
π < α (π) < − π

2p (π)
+

(
nr +

3

2

)
π,

then the system cos (nt− α (t)) , n = 1,∞, forms a basis in Lp(·) (0, π); if α (π) < − π
2p(π) +(

nr + 1
2

)
π, then the system cos (nt− α (t)) , n = 1,∞ is not complete but minimal in

Lp(·) (0, π); if α (π) > − π
2p(π) +

(
nr + 3

2

)
π, then it is complete but is not minimal in

Lp(·) (0, π).
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Proof of Theorem 3.1. Let us prove the sufficiency. First of all let us show that the
system of exponentials (7) is complete in Lp(·) (−π, π) under the conditions of Theorem 2.

Assume the contrary. Then there exists a nonzero function f (θ) ∈ Lq(·) (−π, π) , 1
p(·) +

1
q(·) = 1, such that∫ π

−π
f (θ) exp [i (nθ − sgnnα (θ))] dθ = 0, n = ±1,±2, ... (16)

From here we have∫ π
−π f (θ) cos (nθ − α (θ)) dθ + i

∫ π
−π f (θ) sin (nθ − α (θ)) dθ = 0 ,∫ π

−π f (θ) cos (nθ − α (θ)) dθ − i
∫ π
−π f (θ) sin (nθ − α (θ)) dθ = 0 .

By summing up we get

0 =
∫ π
−π f (θ) cos (nθ − α (θ)) dθ =

∫ π
0 f (θ) cos (nθ − α (θ)) dθ+

+
∫ π
0 f (−θ) cos (−nθ − α (−θ)) dθ =

∫ π
0 [f (θ) + f (−θ)] cos (nθ − α (θ)) dθ, n = 1,∞.

Since under (13), as it follows from Corollary 2, the cosine system is complete in Lp(·) (0, π),
we get that

f (θ) = −f (−θ) .

Since the function f (θ) is odd , by (16) we have∫ π
−π f (θ) sin (nθ − α (θ)) dθ = 0, n = 1,∞ ,∫ π
0 f (θ) sin (nθ − α (θ)) dθ = 0, n = 1,∞ .

Under the condition (13), as it follows from Corollary 1, the sine system is complete in
Lp(·) (0, π), from here we get that f (θ) ≡ 0, which proves the completeness of the system
of exponentials (7) in Lp(·) (−π, π).

Under the conditions of Theorem 2, as it follows from Corollary 1 and 2, the system
sin (nt− α (t)) and cos (nt− α (t)) n = 1,∞, forms a basis in Lp(·) (0, π). Let hsm (t) and

hcm (t), m = 1,∞, are biorthogonal with these systems, respectively:∫ π
0 sin (nt− α (t))hsm (t) dt = δnm ,∫ π
0 cos (nt− α (t))hcm (t) dt = δnm,

n,m = 1,∞, δnm is Kronecker delta. Define the following system of functions:

hn (θ) =
1

4

[
ĥc|n| (θ)− isgnnĥ

s
|n| (θ)

]
, n = ±1,±2, ... (17)

where

ĥc|n| (θ) =

{
ĥc|n| (θ) , θ ∈ (0, π) ,

ĥc|n| (−θ) , θ ∈ (−π, 0) ,

ĥs|n| (θ) =

{
hs|n| (θ) , θ ∈ (0, π) ,

−hs|n| (−θ) , θ ∈ (−π, 0) .
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Now we show that this system is biorthogonal with the system (7). Indeed, we have

(ϕm, hn) =

=
1

4

∫ π

−π

[
ĥc|n| (θ)− isgnnĥ

s
|n| (θ)

]
[cos (mθ − sgnmα (θ)) + i sin (mθ − sgnmα (θ))] dθ =

=
1

4

∫ π

−π
cos (mθ − sgnmα (θ)) ĥc|n| (θ) dθ −

i

4
sgnn

∫ π

−π
cos (mθ − sgnmα (θ)) ĥs|n| (θ) dθ+

+
i

4

∫ π

−π
sin (mθ − sgnmα (θ)) ĥc|n| (θ) dθ +

sgnn

4

∫ π

−π
sin (mθ − sgnmα (θ)) ĥs|n| (θ) dθ =

= I1 (n,m) + I2 (n,m) + I3 (n,m) + I4 (n,m) .

Since ĥc|n| (θ) , cos (mθ − α (θ)) are even functions, and ĥc|n| (θ) , sin (mθ − α (θ)) are odd

functions on (−π, π), from here we get that I2 (n,m) = I3 (n,m) = 0, n,m = ±1,±2, ...
So, we have

(ϕm, hn) = I1 (n,m) + I4 (n,m) =
1

2

∫ π

0
cos (mθ − sgnmα (θ))hc|n| (θ) dθ+

+
sgnn

2

∫ π

0
sin (mθ − sgnmα (θ))hs|n| (θ) dθ = δnm.

It is clear that hn (θ) ∈ Lq(·) (−π, π) , n = ±1,±2, .... Hence the minimality of the
system (7) was proved.

Now take any function ψ (t) ∈ Lp(·) (−π, π) . Consider the following series:

+∞∑
n = −∞
n 6= 0

∫ π

−π
ψ (t)hn (t) dtei[nθ−sgnnα(θ)]. (18)

We show that this series converges to the function ψ (t) in Lp(·) (−π, π). Let SN (θ) be
truncated sum of the series (18). Then

‖ψ (θ)− SN (θ)‖Lp(·)
=

∥∥∥∥∥∥∥∥∥∥∥∥
ψ (θ)−

N∑
n = −N
n 6= 0

∫ π

−π
ψ (t)hn (t) dt exp [i (nθ − sgnnα (θ))]

∥∥∥∥∥∥∥∥∥∥∥∥
Lp(·)

=

=

∥∥∥∥∥∥∥∥∥∥∥∥
ψ (θ)−

N∑
n = −N
n 6= 0

1

4

{∫ π

−π
ψ (t) ĥc|n| (t) dt cos (nθ − sgnnα (θ)) +
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+i

∫ π

−π
ψ (t) ĥc|n| (t) dt sin (nθ − sgnnα (θ))−isgnn

∫ π

−π
ψ (t) ĥs|n| (t) dt cos (nθ − sgnnα (θ)) +

+sgnn

∫ π

−π
ψ (t) ĥs|n| (t) dt sin (nθ − sgnnα (θ))

}∥∥∥∥
Lp(·)

=

=

∥∥∥∥∥∥∥∥∥∥∥∥
ψ (t)−

N∑
n = −N
n 6= 0

1

4

{∫ π

−π
ψ (t) ĥc|n| (t) dt cos (nθ − sgnnα (θ)) +

+sgnn

∫ π

−π
ψ (t) ĥs|n| (t) dt sin (nθ − sgnnα (θ))

}∥∥∥∥
Lp(·)

=

=

∥∥∥∥∥ψ (θ)−
N∑
n=1

1

2

{∫ π

−π
ψ (t) ĥcn (t) dt cos (nθ − α (θ)) +

+

∫ π

−π
ψ (t) ĥsn (t) dt sin (nθ − α (θ))

}∥∥∥∥
Lp(·)

=

∥∥∥∥ψ (θ)− 1

2
ψ (−θ) +

1

2
ψ (−θ)−

−
N∑
n=1

1

2

{∫ π

0
(ψ (t) + ψ (−t))hcn (t) dt cos (nθ − α (θ)) +

+

∫ π

0
(ψ (t) + ψ (−t))hs|n| (t) dt sin (nθ − α (θ))

}∥∥∥∥
Lp(·)

≤

≤
∥∥∥∥1

2
(ψ (θ) + ψ (−θ))−

N∑
n=1

∫ π

0

1

2
(ψ (t) + ψ (−t))hcn (t) dt cos (nθ − α (θ))

∥∥∥∥∥
Lp(·)(−π,π)

+

+

∥∥∥∥1

2
(ψ (θ)− ψ (−θ))−

N∑
n=1

∫ π

0

1

2
(ψ (t)− ψ (−t))hsn (t) dt sin (nθ − α (θ))

∥∥∥∥∥
Lp(·)(−π,π)

=

=

∥∥∥∥∥ψ (θ) + ψ (−θ)−
N∑
n=1

∫ π

0
(ψ (t) + ψ (−t))hcn (t) dt cos (nθ − α (θ))

∥∥∥∥∥
Lp(·) (0,π)

+

+

∥∥∥∥∥ψ (θ)− ψ (−θ)−
N∑
n=1

∫ π

0
(ψ (t)− ψ (−t))hsn (t) dt sin (nθ − α (θ))

∥∥∥∥∥
Lp(·) (0,π)

→ 0,

as N →∞.

It proves that the series (18) converges to the function ψ (θ) in Lp(·) (−π, π). Hence,
under the condition (13) the system (7) forms a basis in Lp(·) (−π, π).
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Now let us prove the necessity part of the theorem. Consider the case α (π) < − π
2p(π) +(

nr + 1
2

)
π. As in this case the system cos (nθ − α (θ)) n = 1,∞, is not complete in

Lp(·) (0, π), there exists a nontrivial function ψ (θ) ∈ Lq(·) (0, π) , 1
p(·) + 1

q(·) = 1, such that∫ π

0
ψ (θ) cos (nθ − α (θ)) dθ = 0, n = 1,∞ .

Introduce the following function:

f (θ) =

{
ψ (θ) , θ ∈ (0, π) ,
ψ (−θ) , θ ∈ (−π, 0) .

Since cos (nt− α (t)) , is odd function on (−π, π), but f (θ) is even, we get that∫ π

−π
f (θ) ei[nθ−sgnnα(θ)]dθ = 0, n = ±1,±2, ...,

which shows that the system (7) is not complete in Lp(·) (−π, π).
Now, consider the case of α (π) > − π

2p(π) + (nr + 1)π. In this case by Corollary

1 the system sin (nθ − α (θ)) , n = 1,∞, is not minimal. We show that the system
of exponentials (7) is not minimal as well. If it is not, there is a system of functions
hn (θ) ∈ Lq (−π, π) , n = ±1,±2, ..., such that∫ π

−π
hm (θ) ei(nθ−sgnnα(θ))dθ = δnm, n,m = ±1,±2, ...

Define the following system of functions:

hsn (θ) =
2

i
[hn (−θ)− hn (θ)] , n ≥ 1.

We have for any integers n,m ≥ 1:

I (n,m) =

∫ π

0
hsm (θ) (nθ − α (θ)) dθ = − 1

2i

∫ π

0
hsm (θ) e−i(nθ−α(θ))dθ+

+
1

2i

∫ π

0
hsm (θ) exp [i (nθ − α (θ))] dθ = − 1

2i

∫ 0

−π
hsm (−θ) e−i(nθ−α(−θ))dθ+

+
1

2i

∫ π

0
hsm (θ) ei(nθ−α(θ))dθ =

∫ 0

−π
hm (θ) ei(nθ−α(θ))dθ −

∫ 0

−π
hm (−θ) ei(nθ−α(θ))dθ−

−
∫ π

0
hm (−θ) ei(nθ−α(θ))dθ +

∫ π

0
hm (θ) ei(nθ−α(θ))dθ =

∫ π

−π
hm (θ) ei(nθ−α(θ))dθ−

−
∫ π

0
hm (−θ) ei(nθ−α(θ))dθ = δnm +

∫ π

−π
hm (θ) · e−i(nθ−α(θ))dθ = δnm.

Hence we got a contradiction. This completes the proof of Theorem 2.
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A Mixed Problem for a Class of Nonlinear Tymoshenko
Systems

N.A. Rzayeva

Abstract. In this paper a mixed problem for semilinear systems of equations describing the
oscillations of a thin-walled bar is considered. Reducing the problem under consideration to a
differential equation, a theorem on local solvability is proved.

Key Words and Phrases: system of equations of a bar vibration, mixed problem, local solvabil-
ity.
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Let us consider the bars described by a system of two differential equations in the
domain Q = [0, T ]× [0, l]

EIyxxxx + ρAytt − ρAeθtt = f1(t, x, y, θ)
ECwθxxxx −GCθxx − ρAeytt + ρ

(
I +Ae2

)
θtt = f2 (t, x, y, θ)

}
(1)

with boundary conditions

y (0, t) = 0, y (l, t) = 0, yxx (0, t) = 0 , yxx (l, t) = 0
θ (0, t) = 0 , θ (l, t) = 0, θxx (0, t) = 0 , θxx (l, t) = 0

}
(2)

with initial conditions

y (x, 0) = y0 (x) , yt (x, 0) = y1 (x)
θ (x, 0) = θ0 (x) , θt (x, 0) = θ1 (x)

}
(3)

where 0 < x < l, 0 < t < T, l > 0, T > 0 are given numbers, y (x, t) is a transverse
displacement, θ (x, t) is an angle of cross-section of the bar, E is the Young’s modulus, I
is a polar moment of inertia of the cross section with respect to its center of gravity, ρ is
a density of the material of the bar, A is a cross-sectional area, e is a distance from center
of gravity to center of torsion, Cw is a sectorial moment of inertia of the cross section, G
is a shear modulus, C is a geometric rigidity of free torsion, ECw is a stiffness of bending
torsion, GC is a stiffness of free torsion. Here, f1 and f2 are functions depending on t, x, y
and θ (see e.g. [1, 2] ).

http://www.cjamee.org 118 c© 2013 CJAMEE All rights reserved.
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The system of equations (1), (2) can be written as follows

Rwtt + Sw +Nw = F (t, x, y, θ), (4)

w (0) = w0, wt (0) = w1 (5)

where

R =

(
ρA −ρAe
−ρAe ρ

(
I +Ae2

) ) , S =

(
EI∂4 0

0 ECw∂
4

)
, N =

(
0 0
0 −GC∂2

)
,

w =

(
y
θ

)
, w0 =

(
y0
θ0

)
, w1 =

(
y1
θ1

)
Let us consider the functional space H = L2 (0, 1)× L2(0, 1) with a scalar product:

〈
w1, w2

〉
=
〈
w1, w2

〉
H

=
I

Cw

〈
y1, y2

〉
L2(0,1)

+
〈
θ1, θ2

〉
L2(0,1)

,

where

wi =
(
yi, θi

)
∈H , i = 1, 2.

Let us define Ĥ2
0 and Ĥ4

0 in the following way:

Ĥ2
0 =

{
u : u ∈ H2, u(0) = u(l) = 0

}
,

Ĥ4
0 =

{
u : u ∈ H4, u(0) = u(1) = uxx(0) = uxx(l) = 0

}
.

Denote by H1 the space Ĥ2
0 × Ĥ2

0 , and by H2 the space Ĥ4
0 × Ĥ4

0 .

Let the operator L be defined in the space H :

D (L) = H .

Lw = R−1Sw =

[
E(I+Ae2)

ρA
∂4

∂x4
eECw
ρI

∂4

∂x4

eE
ρ

∂4

∂x4
ECw
ρI

∂4

∂x4

]
w, where w =

(
y
θ

)
∈ D(L).

We also define the linear operator L1 as follows:

D (L1) = H1.

L1w = R−1Cw =

[
0 − eGC

ρI
∂2

∂x2

0 −GC
ρI

∂2

∂x2

]
w, where w =

(
y
θ

)
∈ D(L1) ∈H1.

We define the nonlinear operator G(.) in the following way

G (t, w) =

(
g1(t, x, w)
g2(t, x, w)

)
,
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where

g1 (t, x, w) =
I +Ae2

ρAI
f1 (t, x, y, θ) +

e

ρI
f2 (t, x, y, θ) ,

g2 (t, x, w) =
e

ρI
f1 (t, x, y, θ) +

1

ρI
f2 (t, x, y, θ) .

Then the problem (4), (5) can be written in the form

wtt + Lw + L1w = G(t, w), (6)

w (0) = w0, w
′ (0) = w1. (7)

Lemma 1. L is a positive self-adjoint operator in H .

Proof. Let wi = (yi, θi) ∈ D(L).

Lw1 =

(
E
(
I +Ae2

)
ρA

y1xxxx +
eECw
ρI

θ1xxxx,
eE

ρ
y1xxxx +

ECw
ρI

θ1xxxx

)
.

Hence we obtain that

〈
Lw1, w2

〉
=

I

Cw

〈
E
(
I +Ae2

)
ρA

y1xxxx +
eECw
ρI

θ1xxxx, y
2
〉
L2(0,1)

+

+

〈
eE

ρ
y1xxxx +

ECw
ρI

θ1xxxx, θ
2
〉
L2(0,1)

=

=
E
(
I +Ae2

)
ρCwA

〈
y1xx, y

2
xx

〉
L2(0,1)

+
eE

ρ

〈
θ1xx, y

2
xx

〉
L2(0,1)

+

+
eE

ρ

〈
y1xx, θ

2
xx

〉
L2(0,1)

+
ECw
ρI

〈
θ1xx, θ

2
xx

〉
L2(0,1)

. (8)

Similarly we obtain that

Lw2 =

(
E
(
I +Ae2

)
ρA

y2xxxx +
eECw
ρI

θ2xxxx,
eE

ρ
y2xxxx +

ECw
ρI

θ2xxxx

)
.

〈
w1, Lw2

〉
=

I

Cw

〈
u1,

E
(
I +Ae2

)
ρA

y2xxxx +
eECw
ρI

θ2xxxx

〉
L2(0,1)

+

〈
v1,

eE

ρ
y2xxxx +

ECw
ρI

θ2xxxx

〉
L2(0,1)

=

=
E
(
I +Ae2

)
ρCwA

〈
y1xx, y

2
xx

〉
L2(0,1)

+
eE

ρ

〈
y1xx, θ

2
xx

〉
L2(0,1)

+
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+
eE

ρ

〈
θ1xx, y

2
xx

〉
L2(0,1)

+
ECw
ρI

〈
θ1xx, θ

2
xx

〉
L2(0,1)

. (9)

Comparing (8) and (9), we obtain that〈
Lw1, w2

〉
=
〈
w1, Lw2

〉
.

On the other hand, the operator L is invertible.

Indeed, let h = (h1, h2) ∈H . Consider the equation

Lw = h, w = (y, θ) ∈ D(L). (10)

Equation (10) has the following form{
E(I+Ae2)

ρA yxxxx + eECw
ρI θxxxx = h1,

eE
ρ yxxxx + ECw

ρI θxxxx = h2.
(11)

Hence we obtain that { EI
ρAuxxxx = h1 − eh2,

y (0) = y (l) = yxx (0) = yxx (l) = 0.
(12)

The problem (11) has a unique solution y ∈ Ĥ4
0 . Similarly we obtain that the problem

(11) has a unique solution

w = (y, θ) , where y, θ ∈ Ĥ4
0 , i.e. w ∈H .

From the definition of L and from the scalar product in H , we get that

〈Lw, w〉 =
EI
(
I +Ae2

)
ρCwA

‖yxx‖2L2(0,1)
+

2eE

ρ
〈yxx, θxx〉L2(0,1)

+
ECw
ρI
‖θxx‖2L2(0,1)

. (13)

Using the Holder’s and Young’s inequality, we obtain that

|2e 〈yxx, θxx〉| = 2

∣∣∣∣∣
〈
e

√
I

Cw
yxx,

√
Cw
I
θxx

〉∣∣∣∣∣ ≤ e2 I

Cw
‖yxx‖2L2

+
Cw
I
‖θxx‖2L2

. (14)

From (13) and (14) we obtain that

〈Lw, w〉 ≥ 0.

Thus, L is a positive self-adjoint operator.

Lemma 2. Linear operator L1 is subjected to the operator L
1
2 .
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Proof. From the definition of L1 it follows that

‖Lw‖2H =
(e+ 1)G2C2

ρ2I2

∫ ∂

0

∣∣∣∣∂2θ∂x2

∣∣∣∣2dx ≤ c∥∥∥ L 1
2w
∥∥∥2

H
,

i.e. L1 is subjected to the operator L
1
2 .

Applying the general theory of nonlinear hyperbolic differential equations, we obtain.

Theorem 1. Let L be a positive self-adjoint operator and L1 is subjected to the operator
L

1
2 . Suppose that G (t, w) acts from [0, T ] ×H1 to H and satisfies the local Lipschitz

condition, i.e. if for any t1, t2 ∈ [0, T ] and w1, w2 ∈H1∥∥G (t1, w1
)
−G

(
t2, w

2
)∥∥

H
≤ c

(∥∥w1
∥∥

H1
,
∥∥w2

∥∥
H1

)
×
[
|t1 − t2|+

∥∥w1 − w2
∥∥

H1

]
.

Then for any w0 ∈ H1, w1 ∈ H there exists T ′, such that the problem (6), (7) has a
unique solution

w ∈ C(
[
0, T ′

]
,H

1
) ∩ C1(

[
0, T ′

]
,H ).

If Tmax is the length of the maximum interval of existence of solutions, then one of the
following alternatives is fulfilled

i) limt→Tmax−0
[
‖w′(t)‖H + ‖w(t)‖H1

]
= +∞

or
ii)Tmax = T .
Note that if w0 ∈H0 and w1 ∈H1,

then
w ∈ C(

[
0, T ′

]
,H

0
) ∩ C1(

[
0, T ′

]
,H1) ∩ C2(

[
0, T ′

]
,H ).

Lemma 3. Let
fi (t, x, y, θ)∈ C1([0, T ]× [0, l]×R2).

Then G (t, w) =

(
g1(t, x, w)
g2(t, x, w)

)
acts from H1 to H and satisfies the local Lipschitz

condition.

Proof. Let ti ∈ [0, T ] , wi = (yi, θi) ∈H . Then∥∥G (t1, w1
)
−G

(
t2, w

2
)∥∥2

H
≤

≤ c
∥∥f1 (t1, x, y1, θ1)− f2 (t2, x, y2, θ2)∥∥2

L2(0,l)
+ c

∥∥f2 (t2, x, y2, θ2)∥∥2

L2(0,l)
,

where c = max
{
I+Ae+Ae2

ρAI , e+1
ρI

}
, on the other hand∥∥f1 (t1, x, y1, θ1)− f2 (t2, x, y2, θ2)∥∥2

L2(0,l)
=

=

∫ l

0

∣∣∣∣∫ 1

0
f ′1t
(
t1 + τ (t2 − t1) , y1 + τ

(
y2 − y1

)
, θ1 + τ

(
θ2 − θ1

))
dτ

∣∣∣∣2dx |t1 − t2|+
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+

∫ l

0

∣∣∣∣∫ 1

0
f ′1u
(
t1 + τ (t2 − t1) , y1 + τ

(
y2 − y1

)
, θ1 + τ

(
θ2 − θ1

))
dτ

∣∣∣∣2 ∣∣y1 − y2∣∣2dx+

+

∫ l

0

∣∣∣∣∫ 1

0
f ′1u
(
t1 + τ (t2 − t1) , y1 + τ

(
y2 − y1

)
, θ1 + τ

(
θ2 − θ1

))
dτ

∣∣∣∣2 ∣∣θ1 − θ2∣∣2dx ≤
≤ sup[|f1t (t1, x, ξ, η)|+ |f1t (t1, x, ξ, η)|+ |f1t (t1, x, ξ, η)|]×

0 ≤ t ≤ T
x ∈ [0, l]
|ξ| ≤ r0
|η| ≤ r1

×[l |t1 − t2|+
∫ l

0

∣∣y1 (x)− y2 (x)
∣∣2dx+

∫ l

0

∣∣θ1 (x)− θ2 (x)
∣∣2dx].

Hence we obtain that∥∥f1 (t1, x, y1, θ1)− f2 (t2, x, y2, θ2)∥∥2

L2(0,l)
≤

≤ c
(∥∥y1∥∥

H1
,
∥∥y2∥∥

H1
,
∥∥θ1∥∥

H1
,
∥∥θ2∥∥

H1

)
× [|t1 − t2|+

∥∥ y1 − y2∥∥2
L2(0,l)

+
∥∥ θ1 − θ2∥∥2

L2(0,l)
] ≤

≤ c
(∥∥w1

∥∥
H1
,
∥∥w2

∥∥
H1

)
· [|t1 − t2|2 +

∥∥ w1 − w2
∥∥2

H1
],

where

r0 =
max

x ∈ [0, l]
[
∣∣y1 (x)

∣∣+
∣∣y2 (x)

∣∣
r1 =

max

x ∈ [0, l]
[
∣∣θ1 (x)

∣∣+
∣∣θ2 (x)

∣∣
Using Lemmas 1-3 from the Theorem 1, we obtain the following result:

Theorem 2. Let

fi (t, x, y, θ)∈ C1([0, T ]× [0, l]×R2).

Then for any y0, θ0 ∈ Ĥ2
0 , y1, θ1 ∈ L2 (0, 1) there exists T ′ > 0 , such that the problem

(1) -(3) has a unique solution (y, θ) , where

y, θ ∈ C1(
[
0, T ′

]
, L2(0, 1)) ∩ C(

[
0, T ′

]
, Ĥ2

0 ).

Moreover, if Tmax is the length of the maximum interval of existence of solutions, then
one of the following alternatives is fulfilled

i)limt→Tmax−0

[
‖yt(t, ·)‖2L2(0,l)

+ ‖θt(t, ·)‖2L2(0,l)
+ ‖y(t, ·)‖2

Ĥ2
0

+ ‖θ(t, ·)‖2
Ĥ2

0 (0,l)

]
=

+∞
or

ii)Tmax = T.
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On Embedding Theorem in Variable Lebesgue
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K.H. Safarova∗, E.V. Sadygov

Abstract. In this paper, we study theorem on continuously embedding between variable exponent
Lebesgue spaces with mixed norm. In particular, we found a criterion characterizing the embedding
between variable exponent Lebesgue spaces with mixed norm.
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1. Introduction

It is well known that the variable Lebesgue space in the literature for the first time was
studied by Orlicz [11] in 1931. In [11], Hölder’s inequality for variable discrete Lebesgue
space was proved. Orlicz also considered the variable Lebesgue space on the real line, and
proved the Hölder inequality in this setting. However, this paper is essentially the only
contribution of Orlicz to the study of the variable Lebesgue spaces (see also [8]). The next
step in the development of the variable Lebesgue spaces came two decades later in the work
of Nakano [9] and [10]. Somewhat later, a more explicit version of such spaces, namely
modular function spaces, were investigated by Musielak and others Polish mathematicians
(see [7]). In particular, the variable Lebesgue spaces were objects of interest during the last
two decades(see [4, 5]). The further investigation of these spaces being undertaken in [6,
13, 14] and e.t.c. The study of these spaces has been stimulated by problems of elasticity,
fluid dynamics, calculus of variations and differential equations with non-standard growth
conditions (see [4, 12, 15]).

In this paper, we study theorem on continuously embedding between variable exponent
Lebesgue spaces with mixed norm. In particular, we found a criterion characterizing the
embedding between variable exponent Lebesgue spaces with mixed norm.

The paper is organized as follows. Section 2 contains some preliminaries along with
the standard ingredients used in the proofs. The main results are stated and proved in
Section 3.

∗Corresponding author.
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2. Preliminaries

Let Rn be the n-dimensional Euclidean space of points x = (x1, ..., xn) and let Ω be a
Lebesgue measurable subset in Rn. Suppose that p(x) = (p1 (x1, . . . , xn) , p2 (0, x2, . . . , xn) ,
. . . , pn (0, . . . , 0, xn)) is a vector function defined on Rn with Lebesgue measurable compo-
nents pi

(
x(i)
)
, such that 1 ≤ pi(x

(i)) < ∞ and x(i) = (0, . . . , 0, xi, . . . , xn) (i = 1, . . . , n).
Further in this paper all sets and functions are supposed to be Lebesgue measurable
and x(1) = x, x(n) = (0, . . . , 0, xn) . Throughout this paper p

i
= ess inf

x(i)∈Rn
pi
(
x(i)
)
, pi =

ess sup
x(i)∈Rn

pi
(
x(i)
)
, q

i
= ess inf

x(i)∈Rn
qi
(
x(i)
)
, qi = ess sup

x(i)∈Rn

qi
(
x(i)
)

and pn
(
x(n)

)
= pn (xn) . We

denote by p′(x) =
(
p′1 (x) , p′2

(
x(2)

)
, . . . , p′n

(
x(n)

))
the conjugate exponent vector-function

defined by
1

p(x)
+

1

p′(x)
= 1, x ∈ Rn, i.e.

1

pi
(
x(i)
) +

1

p′i
(
x(i)
) = 1, i = 1, . . . , n.

By Lp1(x),x1 (Rn) we denote the space of all measurable functions on Rn such that for
some λ1 > 0

I1, p1f (x2, . . . , xn) =

∫
R

(
|f(x)|
λ1

)p1(x)

dx1 <∞.

The expression

‖f‖Lp1(x), x1
(Rn) = ‖f‖p1(·), x1 = inf

λ > 0 :

∫
R

(
|f(x)|
λ

)p1(x)

dx1 ≤ 1


is the norm in Lp1(x), x1 (Rn) with respect to the variable x1. It is obvious that the result
is a function of variables x2, . . . , xn, i.e. ‖f‖p1(·), x1 = ‖f‖p1(·), x1 (x2, . . . , xn) .

Further, by L(p1(x), p2(x(2))), x1, x2 (Rn) we denote the space of all measurable functions

on Rn such that for some λ2 > 0

I2, p2f (x3, . . . , xn) =

∫
R

(‖f‖p1(·),x1 (x2, . . . , xn)

λ2

)p2(x(2))
dx2 <∞.

The expression

‖f‖L(p1(x), p2(x(2))), x1, x2
(Rn) =

∥∥‖f‖p1(·),x1
∥∥
p2(·), x2

= inf

µ > 0 :

∫
R

(‖f‖p1(·),x1 (x2, . . . , xn)

µ

)p2(x(2))
dx2 ≤ 1


is the norm in L(p1(x), p2(x(2))), x1, x2 (Rn) . It is obvious that the result is a function of

variables x3, . . . , xn.
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Definition 1. By Lp(x) (Rn) = L(p1(x), p2(x(2)),...,pn(xn)) (Rn) we denote the space of measur-

able functions f on Rn such that for some λn > 0

In,pnf =

∫
R


∥∥∥· · · ∥∥‖f‖p1(·),x1

∥∥
p2(·), x2

· · ·
∥∥∥
pn−1(·), xn−1

(xn)

λn


pn(xn)

dxn <∞.

The expression

‖f‖Lp(x)(Rn) =
∥∥∥· · · ∥∥‖f‖p1(·),x1

∥∥
p2(·), x2

· · ·
∥∥∥
pn(·), xn

= inf

ν > 0 :

∫
R


∥∥∥· · · ∥∥‖f‖p1(·),x1

∥∥
p2(·), x2

· · ·
∥∥∥
pn−1(·), xn−1

(xn)

ν


pn(xn)

dxn ≤ 1


defines a norm in Lp(x) (Rn) .

Remark 1. Let p(x) = (p1, . . . , pn) = p ≥ 1, i.e. 1 ≤ pi
(
x(i)
)

= pi = const, i = 1, . . . , n.
It is well known that usually Lebesgue spaces with mixed norm was introduced and studied
in [3]. The variable Lebesgue spaces with mixed norm was introduced and studied in [1]
and [2].

Suppose that Ω ⊂ Rn is a measurable set and f : Ω 7→ R. The norm in the space
Lp(x) (Ω) is defines as

‖f‖Lp(x)(Ω) = ‖fχΩ‖Lp(x)(Rn),

where χΩ(x) is a characteristic function of a set Ω.

Remark 2. Let p(x) = (p1, . . . , pn) = p ≥ 1, i.e. 1 ≤ pi
(
x(i)
)

= pi = const, i = 1, . . . , n.
Then Lp(x) (Rn) coincides with the usual mixed norm Lebesgue spaces.

Remark 3. Let p1 (x1, . . . , xn) = p2

(
x(2)

)
= . . . = pn

(
x(n)

)
= p (xn) , i.e. p (x) =

(p(xn), . . . , p(xn)) . Then Lp(x) (Rn) = Lp(xn) (Rn) .

Now we introduce a analog of generalized Hölder inequality in variable Lebesgue space
with mixed norm.

Lemma 1. Let p(x) = (p1(x), . . . , pn (xn)) , q(x) = (q1(x), . . . , qn (xn)) and r(x) =
(r1(x), . . . , rn (xn)) . Suppose that 1 ≤ p

i
≤ pi

(
x(i)
)
≤ qi

(
x(i)
)
≤ qi <∞ and

1

ri
(
x(i)
) =

1

pi
(
x(i)
) − 1

qi
(
x(i)
) , i = 1, . . . , n.

Then the inequality

‖fg‖Lp(·)(Ω) ≤
n∏
i=1

(
Ai +Bi +

∥∥χΩ2,i

∥∥
L∞(Ω)

)1/p
i ‖f‖Lq(·)(Ω) ‖g‖Lr(·)(Ω)
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holds for any f ∈ Lq(x)(Ω), g ∈ Lr(x)(Ω), where Ω1,i =
{
x ∈ Ω : pi

(
x(i)
)
< qi

(
x(i)
)}
,

Ω2,i =
{
x ∈ Ω : pi

(
x(i)
)

= qi
(
x(i)
)}
, Ai = sup

x∈Ω1,i

pi
(
x(i)
)

qi
(
x(i)
) and

Bi = sup
x∈Ω1,i

qi
(
x(i)
)
− pi

(
x(i)
)

qi
(
x(i)
) .

Remark 4. Note that in the case p1 (x) = p2

(
x(2)

)
= . . . = pn (xn) = 1, Theorem Lemma

2.1 was proved in [1]. The proof of Lemma 2.1 is similar, but with some modifications
(see [2]).

3. Main results

Now we introduce an embedding theorem between variable Lebesgue spaces with mixed
norm.
Theorem 1. Let p(x) = (p1(x), . . . , pn (xn)) , q(x) = (q1(x), . . . , qn (xn)) and r(x) =
(r1(x), . . . , rn (xn)) . Suppose that 1 ≤ p

i
≤ pi

(
x(i)
)
≤ qi

(
x(i)
)
≤ qi < ∞ and satisfy

condition
1

ri
(
x(i)
) =

1

pi
(
x(i)
) − 1

qi
(
x(i)
) , i = 1, . . . , n.

Then the following conditions are equivalent
a) Lq(x) (Ω) ↪→ Lp(x) (Ω) ;
b) ‖1‖Lr(·)(Ω) =

∥∥. . . ‖χΩ‖r1(·), x1 . . .
∥∥
rn(·), xn

<∞.

Proof. The implication b) ⇒ a) immediately implies from Lemma 2.1. Indeed, if we
take g = 1 in Lemma 2.1 we proved this implication. The proof of implication a)⇒ b) is
similar to the case p1 (x1, . . . , xn) = p2

(
x(2)

)
= . . . = pn

(
x(n)

)
= p (xn) (see [5]).

Now we introduce some particular case of Theorem 3.1.
Let I = {x ∈ Rn : −∞ ≤ ai ≤ xi ≤ bi ≤ ∞, i = 1, 2, . . . , n} .

Corollary 1. [2] Let x ∈ I, and let p(x) = (p1(x), . . . , pn (xn)) and q(x) = (q1(x), . . . , qn (xn))
be a vector-functions such that 1 ≤ p

i
≤ pi

(
x(i)
)
≤ qi

(
x(i)
)
≤ qi <∞. Suppose that satisfy

the following conditions

Ai = sup
x(i+1)

bi∫
ai

(
qi

(
x(i)
)
− pi

(
x(i)
))

dxi <∞, i = 1, . . . , n− 1,

An =

bn∫
an

(qn (xn)− pi (xn))) dxn <∞.

Then Lq(x) (I) ↪→ Lp(x) (I) and the inequality

‖f‖Lp(·)(I) ≤
n∏
i=1

[Bi (pi, qi)]
γi ‖f‖Lq(·)(I)
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holds, where Bi (pi, qi) =
1

si
+
Ai
q
i

, si = ess inf
x(i)

qi
(
x(i)
)

pi
(
x(i)
) and γi =

{
1
p
i

, for Bi (pi, qi) ≥ 1
1
pi
, for Bi (pi, qi) ≤ 1.
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analysis, Birkhäuser, Basel, 2013.
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Global Bifurcation for Half-linearizable Sturm-Liouville
Problems with Spectral Parameter in the Boundary Con-
dition

G.M. Mamedova

Abstract. We consider half-linearizable Sturm-Liouville problems with spectral parameter in the
boundary condition. We study the structure of the set of bifurcation points and the behaviour of
global sets of solutions of this problem bifurcating from the points of the line of trivial solutions.

Key Words and Phrases: half-linearizable Sturm-Liouville problems, half-eigenvalue, half-
eigenfunction, bifurcation point, global sets of solutions.
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1. Introduction

In the present paper, we continue the study [2] of the boundary value problem

`(y) ≡ −
(
p(x)y′

)′
+ q(x)y = λr(x)y + h(x, y, y′, λ), x ∈ (0, π), (1)

b0y(0) = d0y
′(0), (2)

(a1λ+ b1)y(π) = (c1λ+ d1)y
′(π), (3)

where λ is a real parameter, the functions p ∈ C1[0, π], q, r ∈ C0[0, π], and b0, d0, a1, b1, c1, d1
are real numbers such that |b0|+ |d0| > 0 and

a1d1 − b1c1 > 0. (4)

We also assume that p and r are strictly positive on [0, π]. The nonlinear term h has
a representation h = αy+ + βy− + g, where α, β are the continuous functions on [0, π],
y+ = max {y, 0}, y− = max {−y, 0}, and g is a continuous function on [0, π]×R3, satisfying
the condition:

g(x, u, s, λ) = o(|u|+ |s|), (5)

near (u, s) = (0, 0), uniformly in x ∈ [0, π] and in λ ∈ Λ, for every bounded interval Λ ⊂ R.

http://www.cjamee.org 130 c© 2013 CJAMEE All rights reserved.
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The purpose of this paper is to study the structure of the set of bifurcation points on
real axis and more accurately describe the structure and behaviour of bifurcation branches
of solutions of problem (1)-(3).

In nonlinear analysis an important role is played bifurcation theory of nonlinear eigen-
value problems. The study of nonlinear eigenvalue problems has an applied interest since
problems of this type arise in the theory of vibrations, thermal convection theory, hydro-
dynamics, the theory of critical modes of operation of nuclear and chemical reactors, the
theory of critical loads and the theory of elasticity (see, for example, [7, 9, 10]).

Bifurcation problems for nonlinear Sturm-Liouville problems when the spectral pa-
rameter is not involved in the boundary conditions was considered by many authors (see
[2, 3, 6, 12, 13, 15]). In these papers prove the existence of global continua of nontrivial
solutions in R × C1 corresponding to the usual nodal properties and emanating from bi-
furcation points or bifurcation intervals (in R×{0} which we identify with R) surrounding
the eigenvalues of the corresponding linear problem. It should be noted that in a recent
paper [1] of the first author obtained similar results for nonlinear eigenvalue problems for
ordinary differential equations of fourth order.

In [3] was also studied problem (1)-(3) in the case of a1 = c1 = 0 where shown that for
this problem possessing different linearizations as y → 0+ and y → 0−, the half-eigenvalues
of the half-linear problem (1)-(3) with a1 = c1 = 0 and g ≡ 0 correspond to bifurcation
points in a global sense.

Problem (1)-(3) in a more general case (i.e. when the nonlinear term h is of the form
h = f + g, f being continuous and satisfying the condition |f(x, u, s, λ)| < M |u| in a
neighborhood of u = s = 0, uniformly in x ∈ [0, π] and in λ ∈ Λ) was considered in
[2]. In this paper prove the existence of global continua of nontrivial solutions in R× C1

emanating from bifurcation intervals surrounding the eigenvalues of the linear problem
obtained from (1)-(3) by setting h ≡ 0.

In [5] Browne uses the Prüfer angle techniques for half-eigenvalue problem (1)-(3)
with g ≡ 0 obtain the existence of two sequences of half-eigenvalues which are different
according to the sign of the corresponding half-eigenfunctions in a neighborhood of 0. He
studies also oscillatory properties of the corresponding half-eigenfunctions, but in the case
c1 6= 0 could not accurately determine the serial numbers of the half-eigenfunctions which
have the same number of zeros in the interval (0, 1). And it is prevents to detailed study
of global bifurcation of solutions of problem (1)-(3) in the case c1 6= 0.

By applying the results of works [2, 5, 8, 11] (in the case of c1 6= 0 for additional
restrictions on the functions α(x) and β(x)) we update the oscillatory properties of corre-
sponding half-linear problem (1)-(3) with g ≡ 0, and show that the set of bifurcation points
of problem (1)-(3) consists of all half-eigenvalues of problem (1)-(3) with g ≡ 0. Using
the approximation technique from [3] and combining it with the global bifurcation results
in [2, 8, 11] we prove the existence of global sets of solutions emanating from bifurcation
points which are similar to those obtained in [3].
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2. Preliminary

Along with problem (1)-(3), we consider the following boundary value problem
`(y) = λr(x)y + α(x)y+ + β(x)y−, x ∈ (0, π),
b0y(0) = d0y

′(0),
(a1λ+ b1)y(π) = (c1λ+ d1)y

′(π),
(6)

The problem (6) is non-linear, but is positively homogeneous (in the sense that if y is a
solution of this problem, then αy is also a solution for all α > 0) and linear in the cones
y > 0 and y < 0. Hence nonlinear eigenvalue problems of this type called ”half-linear” by
Berestycki [3].

The following definitions are given by Berestycki [3] (see also [14]). We say that λ is a
half-eigenvalue of problem (6) if there exists a nontrivial solution (λ, yλ) of this problem;
the function yλ be called a half-eigenfunction. In this situation, the set {(λ, tyλ) : t > 0} is
a half-line of nontrivial solutions of problem (6). The number λ is said to be simple if all
solutions (λ, v) of (6) with v and yλ, having the same sign in a deleted neighborhood of 0,
are on this half-line. There may exist another half-line of solutions {(λ, vλ) : t > 0}, but
then we say that λ is simple if vλ and yλ have different signs in a deleted neighborhood of
0, and all solutions (λ, v) of problem (6) lie on these two half-lines.

From now on ν will denote an element of {+ , −} that is, either ν = + or ν = −.

Half-linear problem (6) in the case |a1| + |c1| > 0 was investigated in [5], where the
author shows that for each ν there exists infinitely increasing sequence {λνk}

∞
k=1, of real and

simple half-eigenvalues of this problem. The corresponding half-eigenfunctions yνk(x), k =
1 2, . . . , have the following properties:

(i) νyνk > 0 in a deleted neighborhood of 0;

(i) if c1 = 0, then function yνk(x), k ∈ N, has exactly k− 1 simple nodal zeros in (0, π);

(iii) if c1 6= 0, then yνk(x) has exactly k− 1 simple nodal zeros for k ≤ Nν
0 , and exactly

k − 2 simple nodal zeros for k > Nν
0 in the interval (0, π), where a positive integer Nν

0

is determined from the inequality µνN(0)−1 < −
d1
c1
≤ µνN(0); µ

ν
k, k ∈ N, is the kth half-

eigenvalue of equation (1) with the boundary conditions (2) and y(π) = 0 (by a nodal zero
we mean the function changes sign at the zero and at a simple nodal zero, the derivative
of the function is nonzero).

For c1 6= 0 let N0 be an integer such that τN0−1 < −d1
c1
≤ τN0 , where τk, k ∈ N, is

the kth eigenvalue of the Sturm-Liouville equation `(y) = λr(x)y, x ∈ (0, π), with the
boundary conditions (2) and y(π) = 0; here we take τ0 = −∞.

We also consider the following eigenvalue problem
`(y) = λr(x)y, x ∈ (0, π),
b0y(0) = d0y

′(0),
(a1λ+ b1)y(π) = (c1λ+ d1)y

′(π).
(7)

It is known [4] that the eigenvalues of problem (7) are real, simple, and form an infinitely
increasing sequence {µk}∞k=1. The corresponding eigenfunctions vk(x), k = 1, 2, . . . , have
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the following oscillation properties : (a) if c1 = 0, then vk(x), k ∈ N, has exactly k − 1
simple nodal zeros in (0, π); (b) if c1 6= 0, then vk(x) has exactly k− 1 simple nodal zeros
for k ≤ N0, and exactly k − 2 simple nodal zeros for k > N0 in the interval (0, π).

Should be noted that in [5] for the case c1 6= 0 is not given the connection between the
natural numbers Nν

0 , ν ∈ {+ , −} and N0. Therefore, in this case, applying the global
bifurcation result from [2] (see [2, Theorem 3.4]), it is impossible to study the structure
of all the bifurcation branches of the solutions of problem (1)-(3).

3. Global bifurcation of solutions of problem (1)-(3)

Let E be the Banach space of all continuously differentiable functions on [0, π] which
satisfy the boundary condition (2). E is equipped with its usual norm ||y||1 = max

x∈[0,π]
|y(x)|+

max
x∈[0,π]

|y′(x)|. Let S+
k be the set of functions y ∈ E which have exactly k− 1 simple nodal

zeros in (0, π) and which are positive near x = 0, and set S−k = −S+
k , and Sk = S+

k ∪ S
−
k .

The sets S+
k and S−k are disjoint and open in E. We say that (λ, 0) is a bifurcation point

of (1)-(3) with respect to the set R × Sνk , k ∈ N, if in every small neighborhood of this
point there is a solution to this problem which is contained in R× Sνk .

Let Jk = [λk − M
r0
, λk + M

r0
], k ∈ N. For c1 = 0 let Ik = Jk, k ∈ N, and for c1 6= 0 let

Ik =

{
J̃k, if k 6= N0,

[λN0 − M
r0
, λN0+1 + M

r0
], if k = N0,

where M = max
x∈[0,π]

{|α(x)|+ |β(x)|}, r0 = min
x∈[0,π]

r(x) and J̃k =

{
Jk, if k < N0,
Jk+1, if k > N0.

It is obvious that

|α(x)y+(x) + β(x)y−(x)| ≤ M |y(x)|, x ∈ [0, π].

Hence for the boundary value problem (1)-(3) the assertions of section 3 of the work [2] is
true. Therefore, for this problem have the following results.

Lemma 1. The set of bifurcation points of problem (1)-(3) is nonempty.

Lemma 2. If (λ, 0) is a bifurcation point of (1)-(3), then λ is an half-eigenvalue of
problem (6).

Proof. Let (λn, yn) ∈ R × E, yn 6= 0, be a sequence of solutions of problem (1)-(3)
converging to (λ, 0). Let vn = yn

||yn||1 . Then dividing (1)-(3) by ||yn||1 and setting

vn(x) =
yn(x)

||yn||1
and gn(x) =

g(x, yn(x), y′n(x), λn)

||yn||1
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we have {
`(vn)(x) = λnvn(x) + α(x)v+n (x) + β(x)v−n (x) + gn(x), x ∈ (0, π),
vn ∈ BCλ ,

(8)

where denote by BCλ the set of boundary conditions (2)-(3). Since {vn}∞n=1 is bounded
in C1[0, π], α, β are bounded in C0[0, π], and gn → 0 in C0[0, π] (by (5)), it follows from
(8) that {vn}∞n=1 is bounded in C2[0, π]. Therefore, by the Arzela-Ascoli theorem, we may
assume that vn → v in C1[0, π], ||v||1 = 1, and thus also vn → v in C2[0, π] by equation
(8). Consequently, by passing to the limit as n→∞ in (8) we obtain{

`(v)(x) = λv(x) + α(x)v+(x) + β(x)v−(x), x ∈ (0, π),
v ∈ BCλ .

The proof of this lemma is complete.

As an immediate consequence of Lemmas 3.1, 3.2 and [2, Corollary 3.1], we obtain the
following result.

Lemma 3. The set of bifurcation points of problem (1)-(3) with respect to R×Sνk nonempty.

Lemma 4. If (λ, 0) is a bifurcation point of (1)-(3) with respect to R× Sνk , k ∈ N, then
λ ∈ Ik; moreover, λ = λνk if k < N0, λ = λνk+1 if k > N0, and either λ = λνN0

or λ = λνN0+1

if k = N0.

We define the positive numbers γk, k ∈ N ∪ {0}, as follows:

γk = λk+1 − λk, k ∈ N, γ0 = min {γk : k ∈ N} .

It is known (see [4]) that lim
k→∞

γk = +∞.

Throughout what follows, for c1 6= 0 we shall assume that the following condition
fulfilled:

M <
1

2
r0γ0. (9)

Then for any k,m ∈ N (k 6= m), we have

Jk ∩ Jm = ∅. (10)

Hence it follows by Lemmas 3.3, 3.4 and [2, Theorem 3.5] that

Lemma 5. For each k ∈ N the following relation hold:

λνk ∈ Jk.

Corollary 1. If k′ > k ≥ 1, then

λν
′
k′ > λνk for each ν ′, ν ∈ {+ , −}.
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Now we introduce the approximate problem
`(y) = λr(x)y + α(x)||y||ε1y+ + β(x)||y||ε1y−+

+ g(x, y, y′, λ), x ∈ (0, π),
(λ, y) ∈ BCλ,

(11)

where ε ∈ (0, 1]. This type of problem has been considered in [1-3, 6, 11, 13].
For each y ∈ E we define the function g̃(y) ∈ C[0, π] as follows:

g̃(y)(x) = α(x)y+(x) + β(x)y−(x), x ∈ [0, π].

Since α(x), β(x) ∈ C[0, π], the map g̃ : E → C[0, π] is continuous and satisfies the
condition

||g̃(y)||∞ ≤M ||y||1. (12)

Problem (11) can be rewritten in the following equivalent form:{
`(y) = λr(x)y + g̃(||y||ε1y) + g(x, y, y′, λ), x ∈ (0, π),
(λ, y) ∈ BCλ.

(13)

By (12), for each fixed ε ∈ (0, 1]

||g̃(||y||ε1y)||∞ = o(||y||1) as ||y||1 → 0.

Hence the assertion of [2, Theorem 2.2] holds for (13) (that is, for problem (11)): for
each k ∈ N and each ν there exists an unbounded continuum Cνk,ε of solutions of problem
(13) such that

(λk, 0) ∈ Cνk,ε ⊂ (R× T νk ) ∪ {(λk, 0)}. (14)

We define the positive numbers γ̃0 and δ0 as follows:

γ̃0 = λN0+1 − λN0 , δ0 =
γ0
4
− M

2r0
.

Lemma 6. There exits σ0 ∈ (0, 1) such that for any ε ∈ (0, 1) the problem (11) has no
solution (λ,w) satisfying the conditions δ0 < dist{λ, Jk} < 2δ0, k ∈ {N0, N0+1}, w ∈ SνN0

and ||w||1 < σ0.

Proof. To prove this statement, assume the contrary. Then for any σ ∈ (0, 1) there
exit εσ ∈ (0, 1) such that problem (13) with ε = εσ has a nontrivial solution (λσ, vσ)
satisfying the conditions

δ0 < dist{λσ, Jk} < 2δ0, k ∈ {N0, N0 + 1}, vσ ∈ SνN0
and ||vσ||1 < σ.

Let {σn}∞n=1 ⊂ (0, 1) be a sequence such that lim
n→∞

σn = 0. Then for each n ∈ N
problem (13) with ε = εn (εn = εσn) has a solution (λn, vn) = (λσn , vσn) such that

2δ0 < dist{λn, Jk} < 2δ0, k ∈ {N0, N0 + 1}, vn ∈ SνN0
and ||vn||1 < σn.
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Let wn(x) = vn(x)
||vn||1 . Then by (13) we have{
`(wn) = λr(x)wn + g̃(||vn||εn1 wn) + g(x,vn,v′n,λn)

||vn||1 , x ∈ (0, π),

(λn, vn) ∈ BCλ.
(15)

Hence it follows from (15) that the sequence {(λn, wn)}∞n=1 is bounded in R × C2[0, π].
Then there exists a subsequence {(λns , wns)}∞s=1 converging to (λ̃, w̃) in R×E. Moreover,
we may assume that ||vns ||

εns
1 → τ̃ as s→∞ for some τ̃ ∈ [0, 1]. By (15) some subsequence

{(λns , wns)}∞s=1 also converges to (λ̃, w̃) in R × C2[0, π]. In addition, δ0 < dist{λ̃, Jk} <
2δ0, k ∈ {N0, N0 + 1}, ||w̃|| = 1, w̃ ∈ SνN0

and{
`(w̃) = λ̃r(x)w̃ + τ̃ α(x)w̃+ + τ̃ β(x)w̃−, x ∈ (0, π),

(λ̃, w̃) ∈ BCλ.
(16)

Since SνN0
= SνN0

∪ ∂SνN0
and ||w̃|| = 1 it follows from the proof of Lemma 1 in [3, p. 379]

that w̃ ∈ SνN0
. Problem (16) is of the same form as (6) so Lemma 3.5 shows that λ̃ ∈

JN0 ∪JN0+1 in contradiction with the inequality δ0 < dist{λ̃, Jk} < 2δ0, k ∈ {N0, N0 + 1}.
The proof is complete.

Lemma 7. For each ν the points (λνN0
, 0) and (λνN0+1, 0) are bifurcation points of (1)-(3)

with respect to the set R× SνN0
.

Proof. Let σ ∈ (0, σ0) is an arbitrary fixed number. Since CνN0, ε
is connected, it

follows by (14) and Lemma 3.6 that for each ε ∈ (0, 1) problem (11) has a solution (λε, yε)
such that λε ∈ [λN0 − M

r0
− δ0, λN0 + M

r0
+ δ0], yε ∈ SνN0

and ||yε||1 = σ.
Let {εn}∞n=1 be a sequence such that lim

n→∞
εn = 0. Then for each n ∈ N problem (11)

with ε = εn has a solution (λεn , yεn) such that λεn ∈ Λ0 ≡ [λN0 − M
r0
− δ0, λN0 + M

r0
+ δ0],

yεn ∈ SνN0
and ||yεn ||1 = σ. Using the above argument we can show that there exists a

subsequence {λεns
, yεns

}∞s=1 converging to (λσ, yσ) in R×C2[0, π]. Note that ||yεns
||εns
1 → 1

as s→∞. In addition, λσ ∈ Λ0, ||yσ||1 = σ, yσ ∈ SνN0
and{

`(yσ) = λσyσ + α(x)y+σ + β(x)y−σ + g(x, yσ, y
′
σ, λσ), x ∈ (0, π),

(λσ, yσ) ∈ BCλ .

which implies that (λσ, yσ) solves (1)-(3).
Thus we have shown that for each ν and each σ, 0 < σ < σ0, problem (1)-(3) has

a solution (λσ, yσ) such that ||yσ||1 = σ, λσ ∈ Λ0 and yσ ∈ SνN0
. Hence it follows that

interval Λ0×{0} contains at least one bifurcation point of problem (1)-(3) with respect to
R×SνN0

. Therefore, by virtue of Lemmas 3.2, 3.4 and 3.5, (λN0 , 0) is the unique bifurcation
point in JN0 × {0} ⊂ Λ0 × {0} of (1)-(3) with respect to R× SνN0

.
In a similar way, one can show that (λN0+1, 0) is the unique bifurcation point in

JN0+1 × {0} of (1)-(3) with respect to R× SνN0
. The proof is complete.

If c1 = 0 let T νk = Sνk , k ∈ N, if c1 6= 0 let

T νk =

{
Sνk , if k ≤ N0,
Sνk−1, if k > N0.
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We denote by L the closure in R×E of the set of nontrivial solutions of problem (1)-(3)
and by Lνk the closure in R× E of the set of all solutions (λ, y) of (1)-(3) with y ∈ T νk .

The next result describes the structure and behaviour of global sets of solutions of
problem (1)-(3) bifurcating from the line of trivial solutions.

Theorem 1. For each k ∈ N and each ν there exists an unbounded continuum of solutions
of problem (1)-(3), Dν

k such that (λνk, 0) ∈ Dν
k ⊂ (R× T νk ) ∪ {(λνk × 0)}.

Proof. For each k ∈ N and each ν let denote by D̃νk the union of all components
D̃νk, λ of L emanating from the bifurcation points (λ, 0) ∈ Ik ×{0} of problem (1)-(3) with

respect to R× Sνk . Let Dνk = D̃νk ∪ (Ik × 0). Note that the set Dνk is connected in R× E,
but D̃νk my not be connected. Then it follows by [2, Theorem 3.4] that for each k ∈ N and
each ν, the set Dνk is unbounded in R× E and lies in (R× Sνk ) ∪ (Ik × 0).

Let c1 = 0. Then by Lemma 3.2 we have Lνk ∩ (R × {0}) ⊂ {(λνk, 0)}. We define
Dν
k = Dνk∩Lνk. Then it follows by the above argument that Dν

k is an unbounded component
of Lνk and (λνk, 0) ∈ Dν

k ⊂ (R× Sνk ) ∪ {(λνk × 0)}.
Let c1 6= 0. Then it follows from Lemma 3.2 that

Lνk ∩ (R× {0}) ⊂ {(λνk, 0)}, if k < N0,

Lνk ∩ (R× {0}) ⊂ {(λνk+1, 0)}, if k > N0,

LνN0
∩ (R× {0}) ⊂ {(λνN0

, 0), (λνN0+1, 0)} .

We define D̃ν
k = Dνk ∩ Lνk, k ∈ N. By Lemma 3.7 the set D̃ν

N0
has the representation

D̃ν
N0

= D̃ν
N0,1
∪ D̃ν

N0,2
such that (λνN0

, 0) ∈ D̃ν
N0,1

and (λνN0+1, 0) ∈ D̃ν
N0,2

.

Now we define the set Dν
k, k ∈ N, as follows:

Dν
k =


D̃ν
k, if k < N0,

D̃ν
N0, 1

, if k = N0,

D̃ν
N0, 2

, if k = N0 + 1,

D̃ν
k−1, if k > N0 + 1.

It is then readily verified that Dν
k for k 6= N0, N0 + 1, is an unbounded component of Lνk

and (λνk, 0) ∈ Dν
k ⊂ (R × T νk ) ∪ {(λνk, 0)}. Moreover, it follows by [8, Theorem 2.1], [11,

Theorem 1] that the set Dν
N0

contains (λνN0
, 0) and is either unbounded in R×E or meets

(λνN0+1, 0) through R×SνN0
. (It also shows that a similar result holds for Dν

N0+1.) Hence it
follows that, if Dν

N0
is bounded in R×E, then Dν

N0+1 will also be bounded in R×E, which

contradicts the unboundedness of the set D̃ν
N0

= DνN0
∩ LνN0

= Dν
N0
∪Dν

N0+1. Therefore,
Dν
N0

and Dν
N0+1 are both unbounded in R× E. The proof is complete.

If in the case c1 6= 0 not satisfied condition (9), then it follows from the relation
lim
k→∞

γk = +∞ that there exists k̃0 ∈ N such that γk >
2M
r0

for k > k̃0. Now we define the

number k0 ∈ N as follows: k0 = max {N−0 , N
+
0 , k̃0}. Then from Theorem 3.1 implies the

folllowing result which describes the bifurcation structure of problem (1)-(3) for k > k0.



138 G.M. Mamedova

Theorem 2. If c1 6= 0, then for each k > k0 and each ν there exists an unbounded
continuum of solutions of problem (1)-(3), Dν

k such that (λνk, 0) ∈ Dν
k ⊂ (R × Sνk−1) ∪

{(λνk, 0)}.

References

[1] Z.S. Aliyev, Global bifurcation of solutions of certain nonlinear eigenvalue problems
for ordinary differential equations of fourth order, Sb. Math., 207(12), (2016), 1625-
1649.

[2] Z.S. Aliyev, G.M. Mamedova, Some global results for nonlinear Sturm-Liouville prob-
lems with spectral parameter in the boundary condition, Ann. Polon. Math., 115(1),
(2015), 75-87.

[3] H. Berestycki, On some nonlinear Sturm-Liouville problems, J. Differential Equations,
26, (1977), 375-390.

[4] P. A. Binding, P. J. Browne, K. Seddici, Sturm-Liouville problems with eigen-
parameter dependent boundary conditions, Proc. Edinburgh Math. Soc., 37 (1993),
57-72.
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1. Introduction

Let En be n-dimensional Euclidean space of points x = (x1, ..., xn) , n ≥ 3, D−
be a bounded domain lying in En, ∂D− be the boundary of domain D, wherein ∂D ∈
C2u, 0 ∈ D̄. Let us consider in D the first boundary value problem

Lu =
n∑

i,j=1

aij (x)uij +
n∑

i,j=1

bi (x)ui + c (x)u = f (x) , x ∈ D, (1)

u|∂D = 0, (2)

with ‖aij (x)‖− be real and symmetric matrix having measurable elements defined in D,
such that for any x ∈ D, ζ ∈ En it holds the condition

γ

n∑
i=1

λi (x) ζ2
i ≤

n∑
i,j=1

aij (x) ζiζj ≤ γ−1
n∑
i=1

λi (x) ζ2
i . (3)

Where γ ∈ (0, 1] is a constant, ui = ∂u
∂xi
, uij = ∂2u

∂xi∂xj
, λi (x) = gi (ρ (x)) , ρ (x) =∑n

i=1 ω (|xi|) , gi (t) =
(
ω−1
i (t) /t

)2
, i = 1, ..., n, ωi (t) are positive and continues func-

tions, monotony increasing on [0, diamD], and ωi (0) = 0, ω−1
i (t)− are the inverse func-

tions to ωi (t) . The functions ωi(t)
t are decreasing for t > 0 and the constants α, β, η ∈

(0,∞) there exist such that

αωi (t) ≤ ωi (ηt) ≤ βωi (t) , t ∈ (0, diamD) . (4)

http://www.cjamee.org 3 c© 2013 CJAMEE All rights reserved.
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Further more, we assume that λi (x)−are positive and finite a.e. in D, such that the
coefficients and right hand side terms in (1) are measurable functions inD.

Also the condition

hij (x) =
aij (x)√

λi (x)λj (x)
∈ C

(
D̄
)
, i, j = 1, ..., n. (5)

will be assumed.
From the condition (5) it follows that there is a positive and continuous function ω (t)

on [0, diamD] such that ω (0) = 0 and

|hij (x)− hij (y)| ≤ ω (|x− y|) , x, y ∈ D̄, i, j = 1, ..., n. (6)

Concerning the little term coefficients of operator L the following conditions

bi (x) ∈ Lm (D) ,m = n+ 2; c (x) ∈ Lµ (D) , µ =
n+ 2

2
, c (x) ≤ 0

for a. e. x ∈ D, and f (x) ∈ Lq (D) , q >
n

3
is assumed. (7)

Let x0 ∈ En, R > 0,K > 0, for
∏
R:K

(
x0
)
−being the parallelepiped

{
x :
∣∣xi − x0

i

∣∣ < K·

ω−1
i (R)

}
, and ΘR:K

(
x0
)

is the ellipsoid

{
x :
∑n

i=1
(xi−x0i )

2

(ω−1
i (R))

2 < K2

}
, BR

(
x0
)

is a ball{
x :
∣∣x− x0

∣∣ < R
}

.
Let x′ ∈ ∂ΘR:1+r/2 (0) , Θr = Θr (x′) = ΘR:r (x′) and Θ̄R:1+r (0) ⊂ D, where R−is an

arbitrary fixed number in (0, 1] , and r ∈
(
0, 1

2

]
that will be specified latter.

We say that u ∈ C∞0 (Θr) if a compact set Ku ⊂ Y ′ exists such that, sup pu (x) ⊂
Ku, u (x) ∈ C∞

(
Θ̄r

)
. We call the number

ϕf :p (σ) =

 sup
E⊂D
mesE≤σ

∫
E
|ϕ (x)|p dx

1/p

,

AC− modulo of continuity of the function |ϕ|p for ϕ (x) ∈ Lp (D) , 1 < p <∞.
Denote by W 2

2,λ (D) a Banach space of functions u (x) in D, such that the norm

‖U‖w2
2,λ(D) =

∫
D

U2 +

n∑
i=1

λi (x)U2
i +

n∑
i,j=1

λi (x)λj (x)U2
ij

 dx

1/2

is finite. Let
o

W 2
2,λ (D)− be close of the functions class u (x) ∈ C∞

(
D̄
)
, u |∂D = 0 on the

norm W 2
2,λ (D).

The aim of this paper is to prove the unique strong solvability of the problem (1),
(2) in weighted Sobolev’s spaces. Notice, the proof for an analogous result in the case of
uniformly elliptic equations may be found in [1-3]. As to uniformly degenerated elliptic
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equations we refer to [4-5]. The elliptic equations having weak degeneration (logarithmic)
the strong solvability and uniqueness results have been proved in [6]. We refer to [7-9],
for a study of the strong solvability and uniqueness results of the first boundary value
problem in the case of no uniformly degeneration of power function type degeneration in
a fixed point. We refer also to the results in [10-12] on strong solvability.

2. Auxiliary integral estimates

Lemma 1. Let x ∈ Θr, then it holds the estimates

C1 (n)

(
ω−1
i (R)

R

)2

≤ λi (x) ≤ C2 (n)

(
ω−1
i (R)

R

)2

, i = 1, ..., n. (8)

Proof. Always in the feature, by C (., ., .) we denote the different positive constants,
the value of which depends on the content in the bracket.

Let x ∈ Θr, then using the Minkowsky inequality it follows(
n∑
i=1

x2
i(

ω−1
i (R)

))1/2

≤

(
n∑
i=1

(xi − x′i)
2(

ω−1
i (R)

)2
)1/2

+

(
n∑
i=1

(x′i)
2(

ω−1
i (R)

)2
)1/2

≤

≤ r + 1 +
r

2
= 1 +

3r

2
≤ 1 +

3

4
=

7

4
.

Therefore, for i = 1, ..., n

|xi| <
7

4
ω−1
i (R) .

From condition (4) we get

ρ (x) =
n∑
i=1

ωi (|xi|) ≤ βnR.

On other hand,(
n∑
i=1

x2
i(

ω−1
i (R)

)2
)1/2

≥

(
n∑
i=1

(x′i)
2(

ω−1
i (R)

)2
)1/2

−

(
n∑
i=1

(xi − x′i)
2(

ω−1
i (R)

)2
)1/2

≥

≤ 1 +
r

2
− r = 1− r

2
= 1− 1

4
=

3

4
.

Then it will be found an i0, 1 ≤ i0 ≤ n such that,

|xi| ≥
3

4
√
n
ω−1
i (R)

therefore

ρ (x) =
n∑
i=1

ωi (|xi|) ≥
n∑
i=1

ωi

(
3

4
√
n
ω−1
i (R)

)
≥ αnR
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Hence (
ω−1
i (αnR)

βnR

)2

≤ λi (x) ≤
(
ω−1
i (βnR)

αnR

)2

that completes the proof of Lemma 1.

Let us to consider the operator with a constant coefficients

L0 =

n∑
i=1

λi
(
x′
) ∂2

∂x2
i

, λi
(
x′
)

= const.

Lemma 2. Let u (x) ∈ C∞0 (Θr). Then it holds an inequality∫
Θr

n∑
i,j=1

λi (x)λj (x)u2
ijdx ≤ C3 (n)

∫
Θr

(L0u)2 dx. (9)

Proof. Apply a change of coordinate variables yi = xi/ω
−1
i (R) , i = 1, ...n. Let ũ (y)

and Θ̃r− be the image of the function u (x) and the ellipsoid Θr, respectively. It is clear
that the operator L0 will be transformed to

L̃0 =
n∑
i=1

λi
(
x′
)
· 1(
ω−1
i (R)

)2 ∂2

∂y2
i

(10)

According to Lemma 1 for any ζ ∈ En it holds

C1 (n)R−2 |ζ|2 ≤
n∑
i=1

λi
(
x′
) 1(
ω−1
i (R)

)2 ζ2
i ≤ C2 (n)R−2 |ζ|2 , (11)

i.e. L̃0 is a uniformly elliptic operator in Θ̃r.
We have∫

Θ̃r

(
L̃0ũ

)
dy =

∫
Θ̃r

(
n∑
i=1

λi (x′)(
ω−1
i (R)

)2 ũii
)2

dy =

∫
Θ̃r

n∑
i,j=1

λi (x′)λj (x′)(
ω−1
i (R)

)2 (
ω−1
j (R)

)2 ũii·ũjj =

=
n∑

i,j=1

∫
Θ̃r

λi (x′)λj (x′)(
ω−1
i (R)

)2 (
ω−1
j (R)

)2 ũ
2
ijdy ≥

C2
1

R4

∫
Θ̃r

n∑
i,j=1

ũ2
ijdy. (12)

Coming back, the preceding variablesx, we infer that

C2
1

R4

∫
Θr

n∑
i,j=1

[ω−1
i (R) , ω−1

j (R)]2u2
ijdx ≤

∫
Θr

(L0u)2 dx.

Now it suffices to apply Lemma 1 in order to get the estimate (9) and to complete the
proof of Lemma 2.
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Corollary 1. Let

La =
n∑

i,j=1

aij
(
x′
) ∂2

∂xi∂xj
, aij

(
x′
)

= const

Then for the function u (x) ∈ C∞0 (Θr) satisfying condition (3) it holds an estimate∫
Θr

n∑
i,j=1

λi (x)λj (x)u2
ijdx ≤ C4 (γ, n)

∫
Θr

(Lau)2 dx.

First, consider the operator without little terms

L′ =
n∑

i,j=1

aij (x)
∂2

∂xi∂xj
.

Lemma 3. Let the conditions (3) and (6) be satisfied for the coefficients of operator L′.
Then the estimate ∫

Θr

n∑
i,j=1

λi (x)λj (x)u2
ijdx ≤ C5 (γ, n)

∫
Θr

(
L′u
)2
dx. (13)

holds for a function u (x) ∈ C∞0 (Θr) as r ≤ r0 (L′, n).

Proof. Assume that r0 ≤ 1
2 . We have

(Lau)2 ≤ 2
(
L′u
)2

+ 2
((
L′ − La

)
u
)2
. (14)

On other hand

(
L′ − La

)
u =

n∑
i,j=1

[
aij (x)√

λi (x)λj (x)
− aij (x′)√

λi (x)λj (x)

]√
λi (x)λj (x) · uij (x) .

Therefore

∣∣(L′ − La)u∣∣ ≤ n∑
i,j=1

∣∣∣∣∣hij (x)− hij
(
x′
)

+
aij (x′)√

λi (x′)λj (x′)
− aij (x′)√

λi (x)λj (x)

∣∣∣∣∣ ·
·
√
λi (x)λj (x) · |uij | ≤

n∑
i,j=1

∣∣∣∣hij (x)− hij
(
x′
) ∣∣∣∣√λi (x)λj (x)

∣∣∣∣uij∣∣∣∣+
+

n∑
i,j=1

∣∣hij (x′)∣∣
∣∣∣∣∣1−

√
λi (x′)λj (x′)

λi (x)λj (x)

∣∣∣∣∣√λi (x)λj (x) |uij | = j1 + j2. (15)

Further, we have

j1 ≤ ω
(∣∣x− x′∣∣) n∑

i,j=1

√
λi (x)λj (x) |uij | . (16)
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for x ∈ Θr and i = 1, ..., n |xi − x′i| ≤ rω
−1
i (R).

Inserting ζi = ηi√
λi(x)

, i = 1, ..., n in condition (3) for x ∈ D, we get

γ |η|2 ≤
n∑
i,j

hij (x) ηiηj ≤ γ−1 |η|2 ,

where η ∈ En.
From this it follows that γ ≤ hii (x) ≤ γ−1 and 2γ ≤ hii (x) +hjj (x) + 2hij (x) ≤ 2γ−1

for i 6= j,x ∈ D, i, j = 1, ..., n. Thus it follows that |hij (x)| ≤ h0 (γ) , i, j = 1, ..., n for
x ∈ D.

Therefore

j2 ≤ h0

n∑
i,j=1

∣∣∣∣∣1−
√
λi (x′)λj (x′)

λi (x)λj (x)

∣∣∣∣∣√λi (x)λj (x) |uij | .

On other hand∣∣∣∣∣1−
√
λi (x′)λj (x′)

λi (x)λj (x)

∣∣∣∣∣ ≤
∣∣∣∣∣1−

√
λj (x′)

λj (x)

∣∣∣∣∣+

√
λj (x′)

λj (x)

∣∣∣∣∣1−
√
λi (x′)

λi (x)

∣∣∣∣∣ ≤
≤

∣∣∣∣∣1−
√
λj (x′)

λj (x)

∣∣∣∣∣+

√
c2

c1

∣∣∣∣∣1−
√
λj (x′)

λj (x)

∣∣∣∣∣ =

(
1 +

√
c2

c1

)
Ki,

i = 1, ..., n.

Therefore

Ki =

∣∣∣∣∣1−
√
λi (x′)

λi (x)

∣∣∣∣∣ ≤ |λi (x)− λi (x′)|
λi (x)

≤ C6 (n) (17)

Thus

j2 ≤ C7 (n)h0

n∑
i,j=1

√
λi (x)λj (x) |uij | ≤

≤ C7h0n

 n∑
i,j=1

λi (x)λj (x)u2
ij

1/2

. (18)

Inserting conditions (16) and (18) in (15), we get

∣∣(L′ − La)u∣∣2 ≤ n2
[
ω
(
r0

√
n
)

+ C7h0

]2 n∑
i,j

λi (x)λj (x)u2
ij . (19)

Now, from (14), (19) and Lemma 2 it follows that∫
Θr

n∑
i,j=1

λi (x)λj (x)u2
ijdx ≤ 2C4

∫
Θr

(
L′u
)2
dx+
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+2C4n
2
[
ω
(
r0

√
n
)

+ C7h0

]2 · ∫
Θr

n∑
i,j=1

λi (x)λj (x)u2
ijdx.

Now it suffices to choose r0 from the condition

ω
(
r0

√
n
)

+ C7h0 ≤
1

2n
√
C4

in order to get the estimate (13).

In the feature, we assume that r = r0 no reminding about.

Lemma 4. Let be satisfied all conditions of preceding Lemma. Then for a function u (x) ∈
C∞0 (Θr) it holds the estimate

‖u‖W 2
2,λ(Θr)

≤ C8 (γ, n)
∥∥L′u∥∥

L2(Θr)
(20)

Proof. It suffices to show that for a function u (x) ∈ C∞0 (Θr) it is satisfied the inequal-
ities ∫

Θr

u2dx ≤ C9 (n)

∫
Θr

n∑
i=1

λi (x)u2
i dx,

∫
Θr

n∑
i=1

λi (x)u2
i dx ≤ C10 (n)

∫
Θr

n∑
i,j=1

λi (x)λj (x)u2
ijdx.

To proof this, apply the change of coordinate axes as that was carry out in Lemma
2. Let Θ0

r = {y : |yi − y′i| < r} , i = 1, ..., n, where y′ is image of the point x′. Continue
the function ũ (y) on Θ̄0

r\Θ̃r inserting zero in it and denote it again as ũ (y). Let y′′ =
(y2, ..., yn) , y1 ∈ (y′1 − r, y′1 + r ). We have

ũ
(
y1, y

′′) =

∫ y1

y′1−r
ũ1

(
z, y′′

)
dz, i.e.

ũ2
(
y1, y

′′) =

(∫ y1

y′1−r
ũ1

(
z, y′′

)
dz

)2

≤

(∫ y1

y′1−r
12dz

)(∫ y1

y′1−r
ũ2

1dz

)
=

=
(
y1 − y′1 + r

) ∫ y1

y′1−r
ũ2

1dz ≤ 2r

∫ y′1+r

y′1−r
ũ2

1dz.

After integration the last inequality over Θ0
r , we get∫

Θ0
r

ũ2dy ≤ 4r2

∫
Θ0
r

ũ2
1dy ≤ 4r2

∫
Θ0
r

n∑
i=1

ũ2
i dy.

Therefore ∫
Θ0
r

ũ2dy ≤ 4r2

∫
Θ̃r

n∑
i=1

ũ2
i dy.
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By the analogy, we can derive∫
Θ̃r

n∑
i=1

ũ2
i dy ≤ 4r2

∫
Θ̃r

n∑
i,j=1

ũ2
ijdy.

Coming back to the first variables x, we get∫
Θr

u2dx ≤ 4r2

∫
Θr

n∑
i=1

[
ω−1
i (R)

]2
u2
i dx ≤

≤ 16r2

∫
Θr

n∑
i,j=1

[
ω−1
i (R)ω−1

j (R)
]2
u2
ijdx.

Now it suffices to apply Lemma 1 in order to complete the proof of estimate (20).
Let Θ′r = Θr/2 (x′) = ΘR: r

2
(x′).

Lemma 5. Let be satisfied all conditions of Lemma 3, then it holds an estimate for any
function u (x) ∈ C∞

(
Θ̄r

)
and ε > 0 :

‖U‖W 2
2,λ(Θ′r)

≤ C8

∥∥L′u∥∥
L2(Θr)

+ ε ‖u‖W 2
2,λ(Θr)

+
C11 (γ, n)

εr2R2
‖u‖L2(Θr)

. (21)

Proof. Fix arbitrary ε′ > 0. Let ζ (x) ∈ C∞0 (ΘR:r (x′)) , 0 ≤ ζ (x) ≤ 1, ζ (x) = 1 in
ΘR: r

2
(x′) , and ζ (x) = 0 on the complement of ΘR: 3r

4
(x′), moreover

|ζi| ≤
C12 (n)

rω−1
i (R)

, |ζij | ≤
C12 (n)

r2ω−1
i (R)ω−1

j (R)
, i, j = 1, ..., n. (22)

It is clear that, u (x) · ζ (x) ∈ C∞0 (Θr). Applying Lemma 4 for this function, we get

‖U‖W 2
2,λ(Θ′r)

≤ C8

∥∥L′ (u (x) · ζ (x))
∥∥
L2(Θr)

(23)

On the other hand

L′ (u · ζ) = ζ · L′u+ 2
n∑

i,j=1

aij (x)uiζj + u · L′ζ.

Therefore, and using (22), it follows

∣∣L′ (u · ζ)
∣∣ ≤ ∣∣L′u∣∣+ 2

∣∣∣∣∣∣
n∑

i,j=1

aij (x)uiζj

∣∣∣∣∣∣+ |u| ·
∣∣L′ζ∣∣ ≤

≤
∣∣L′u∣∣+ 2

 n∑
i,j=1

aij (x)uiuj

1/2

·

 n∑
i,j=1

aij (x) ζiζj

1/2

+
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+ |u| ·

∣∣∣∣∣∣
n∑

i,j=1

aij (x) ζij

∣∣∣∣∣∣ ≤ ∣∣L′u∣∣+ 2γ−1

∣∣∣∣∣
n∑
i=1

λi (x)u2
i

∣∣∣∣∣×
(

n∑
i=1

λi (x) ζ2
i

)1/2

+

+ |u| ·
n∑

i,j=1

aij (x) · C12

r2ω−1
i (R)ω−1

j (R)
≤
∣∣L′u∣∣+ 2γ−1

(
n∑
i=1

λi (x)u2
i

)1/2

·

·

 n∑
i,=1

C2

(
ω−1
i (R)

R

)2

· C2
12

r2
(
ω−1
i (R)

)2
1/2

+ |u| · C12

γr2
·
n∑
i=1

λi (x) · 1(
ω−1
i (R)

)2 ≤ ∣∣L′u∣∣+
+

2C12

√
nC2

γrR

(
n∑
i=1

λi (x)u2
i

)1/2

+ |u| nC2C12

γr2R2
. (24)

Taking into the account this inequality it follows from (23) that

‖u‖W 2
2,λ(Θ′r)

≤ C8

∥∥L′u∥∥
L2(Θr)

+
C13 (γ, n)

r2R2
‖u‖L2(Θr)

+

+
C14 (γ, n)

rR

∥∥∥∥∥∥
√√√√ n∑

i=1

λi (x)u2
i

∥∥∥∥∥∥
L2(Θr)

. (25)

On other hand

J2 =

∥∥∥∥∥∥
√√√√ n∑

i=1

λi (x)u2
i

∥∥∥∥∥∥
2

L2(Θr)

=

∫
Θr

n∑
i=1

λi (x)u2
i dx ≤

≤ C2

R2

∫
Θr

n∑
i=1

(
ω−1
i (R)

)
u2
i dx =

C2

R2

n∑
i=1

∥∥ω−1
i (R)ui

∥∥2

L2(Θr)
.

Therefore

J ≤
√
C2

R2

∥∥∥∥∥
n∑
i=1

(
ω−1
i (R)

)
ui

∥∥∥∥∥
L2(Θr)

=

√
C2

R

n∑
i=1

‖ũi‖L2(Θ̃r) .

According to the interpolation inequality from [13], for any ε′ > 0 there exists a
constant C15 (n) such that

n∑
i=1

‖ũi‖L2(Θr)
≤ ε′

n∑
i,j=1

∥∥ũij∥∥L2(Θ̃r)
+
C15

ε′
‖ũ‖L2(Θ̃r) .

Coming back to the variables x and using Lemma 1, it follows

C14

rR
· J ≤ C14

rR
·
√
C2

R
· ε′ ·

n∑
i,j=1

∥∥ũij∥∥L2(Θ̃r)
+
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+
C14

rR
·
√
C2

R
· C15

ε′
· ‖ũ‖L2(Θ̃r) =

ε′ · C14

√
C2

rR2

n∑
i,j=1

∥∥∥ω−1
i (R)ω−1

j (R)uij

∥∥∥
L2(Θr)

+

+
C14C15

√
C2

ε′rR2
· ‖u‖L2(Θr)

≤ ε′ · C14

√
C2 ·R2

rR2 · C1
‖u‖W 2

2,λ(Θr)
+
C14C15

√
C2

ε′rR2
· ‖u‖L2(Θr)

. (26)

Finally, choose ε′ = εC1·r
C14
√
C2

in order to get the needed estimate (21) using (25) and (26).

3. Main estimation on coercivity

Lemma 6. Let AR = Θ
R:1+ r

2
+ r2

16

(0) \Θ
R:1+ r

2
− r2

16

(0). Then for the countable ellipsoids

system

Θ′r (xν) = ΘR: r
2

(xν) , xν ∈ ∂ΘR:1+ r
2

(0) , ν = 1, 2, ...

there exists a covering for the set AR.

Proof. Let x ∈ AR. Without losing the generality, we may assume that x1 6= 0. Choose
α1 so that a point xν = (α1, x2, ..., xn) belongs to ∂ΘR:1+ r

2
(0):

(
n∑
i=2

x2
i(

ω−1
i (R)

)2 +
α2

1(
ω−1

1 (R)
)2
)1/2

= 1 +
r

2
,

then

1 +
r

2
− r2

16
<

(
n∑
i=1

x2
i(

ω−1
i (R)

)2
)1/2

< 1 +
r

2
+
r2

16
,

where from it follows that there exists such an α1. Assume that signx1 = signα1. Let for
the convenience, |x1| ≥ |α1|, then

x2
1 − α2

1(
ω−1

1 (R)
)2 =

n∑
i=1

x2
i(

ω−1
i (R)

)2 −
(

n∑
i=2

x2
i(

ω−1
1 (R)

)2 +
α2

1(
ω−1
i (R)

)2
)
≤

≤
(

1 +
r

2
+
r2

16

)2

−
(

1 +
r

2

)2
=
(

1 +
r

2

)2
+ 2

(
1 +

r

2

)
· r

2

16
+

r4

256
−
(

1 +
r

2

)2
=

On other hand x2
1 − α2

1 ≥ (x1 − α1)2. Therefore,(
n∑
i=1

(xi − xνi )(
ω−1
i (R)

)2
)1/2

=

(
(x1 − α1)2(
ω−1

1 (R)
)2
)1/2

≤

((
x2

1 − α2
1

)2(
ω−1
i (R)

)2
)1/2

<
r

2
,

which completes the proof of Lemma.
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Lemma 7. Let ĀR0 ⊂ D and for m = 1, 2, ... it is Rm = R0 · am, where the number a
is so that

α

β
≤ a < 1.

Therefore

Θ
R0:1+ r

2
+ r2

16

(0) \ {0} ⊂
∞⋃
m=0

ARm

Proof. For m = 1, 2, ... it suffices to set

Θ
Rm+1:1+ r

2
+ r2

16

(0) ⊃ Θ̄
Rm:1+ r

2
− r2

16

(0) . (27)

The inclusion (27) is equivalently to that of(
1 +

r

2
− r2

16

)
ω−1
i (Rm) ≤

(
1 +

r

2
+
r2

16

)
ω−1
i (Rm+1) .

for m = 1, 2, ..., i = 1, ..., n. It follows from (4) that

αRm ≤ βRm+1

i.e.
α

β
≤ Rm+1

Rm
= a < 1.

This completes the lemma.

Remark 1. It holds an inclusion
∞⋃
ν=1

Θr (xν) ⊂ BR = ΘR:1+ 3r
2

(0) ⊃ Θ̄Rm:1− r
2

(0) ,

where is a cover with ellipsoids Θr (xν) = ΘR:k (xν) has a finite multiplicity N1 (n, r) and
xν ∈ ∂ΘR:1+ r

2
(0).

Remark 2. It holds an inclusion
∞⋃
m=0

BRm\ΘR:1+ 3r
2

(0) ,

where is a cover with spherical layers BRm has a finite multiplicity N2 (n, r).

Let

Θ1
R0

(x̄) = Θ
R0:1+ r

2
+ r2

16

(x̄) ,Θ1
R0

(0) = Θ1
R0
, Θ2

R0
(x̄) = ΘR0:1+ 3r

2
(x̄) ,Θ2

R0
(0) = Θ2

R0
.

It is easy to see that

Θ1
R0
⊂ Θ2

R0
, Θ1

R0
=
∞⋃
m=0

ARm , Θ2
R0

=

∞⋃
m=0

BRm . (28)
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Lemma 8. Let be satisfied the conditions (3) and (5), then for a function u (x) ∈
C∞

(
Θ2
R0

)
it holds an estimate for any ε > 0 :

‖u‖
W 2

2,λ

(
Θ1
R0

) ≤ C16

(
L′, n

) ∥∥L′u∥∥
L2

(
Θ2
R0

) + ε ‖u‖
W 2

2,λ

(
Θ
R2
0

) +
C17 (L′, n)

ε
sup
Θ2
R0

‖u‖ . (29)

Proof. Fix arbitrary ε > 0. It follows from Lemma 5 that for any ε′ > 0 and ν = 1, 2, ...
it holds the estimate

‖u‖2W 2
2,λ(Θ′r(x

ν)) ≤ C18

(
L′, n

) ∥∥L′u∥∥
L2(Θr(xv))

+
(
ε′
)
‖u‖2W 2

2,λ(Θr(xν))+
C19 (γ, n)

(ε′)2 r4R4
‖u‖2L2(Θr(xν)) ,

(30)
on the ellipsoids Θ′r and Θr where is R = Rm, m = 0, 1, 2, ... .

Summing all inequalities (30) over ν and using Lemma 6 with help of Remark 1 to
Lemma 7, we infer

‖u‖2W 2
2,λ(ARm ) ≤ C20

(
L′, n

) ∥∥L′u∥∥2

L2(BRm )
+N1

(
ε′
)2 ‖u‖2W 2

2,λ(BRm ) +
C21 (L′, n)

(ε′)2 r4R4
m

‖u‖2L2(BRm )

On other hand, it is

‖u‖2L2(BRm ) =

∫
BRm

u2dx ≤

sup
Θ2
R0

|u|

2

·mesΘ2
R0
.

Thus

‖u‖2W 2
2,λ(ARm ) ≤ C20

∥∥L′u∥∥2

L2(BRm )
+N1

(
ε′
)2 ‖u‖2W 2

2,λ(BRm )+
C22 (L′, n)

(ε′)2

sup
Θ2
R0

|u|

2

. (31)

After summing all inequalities (31) over m beginning from zero to infinity and applying
Lemma 7, Remark 2 on it, we come to the inequality

‖u‖2
W 2

2,λ

(
Θ1
R0

) ≤ C23

∥∥L′u∥∥2

L2

(
Θ2
R0

) +N1N2 ·
(
ε′
)2 ‖u‖2

W 2
2,λ

(
Θ2
R0

) +
C24 (L′, n)

(ε′)2

sup
Θ2
R0

|u|

2

Finally, choosing ε′ = ε√
N1N2

we complete the proof on needed estimation (29).

Remark 3. Since the operator L′ degenerates on a point 0, the estimate (29) takes place
in the ellipsoids Θ1

R0
(x̄) and Θ2

R0
(x̄) provided that Θ̄2

R0
(x̄) ⊂ D, Θ2

R0
(x)
⋂

ΘR0:1 (0) = ∅.
Also, the mentioned estimate takes place for any R ∈ (0, R0].

Let D (ρ) =
{
x : x ∈ D,Θ2

ρ (x) ⊂ D
}

, for ρ > 0, and Θ2
ρ (x) = Θ

ρ:1+ 3r
2

(x) , Θ1
ρ (x) =

Θ
ρ:1+ r

2
+ r2

16

(x).
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Lemma 9. For a function u (x) ∈ C∞
(
Θ2
R0

)
, a number ε > 0, and sufficiently small

ρ > 0 it holds an estimate

‖u‖W 2
2,λ(D(ρ)) ≤ C25

(
L′, n, ρ,D

) ∥∥L′u∥∥
L2(D)

+ ε ‖u‖W 2
2,λ(D) +

+
C26 (L′, n, ρ,D)

ε
sup
D
|u| (32)

Proof. Fix a number ε > 0 and sufficiently small ρ > 0. Cover the set D (ρ) with finite
N3 (n, ρ,D) number ellipsoids

{
Θ1
ρ (xv)

}
. According to the Lemma 8, for a ε′ > 0 it holds

‖u‖2
W 2

2,λ(Θ1
ρ(xv)) ≤ C27

(
L′, n

) ∥∥L′u∥∥2

L2(Θ2
ρ(xv)) +

(
ε′
)2 ‖u‖2

W 2
2,λ

(
Θ2
R0

(xv)
) +

+
C26

(ε′)2

(
sup
D
|u|
)2

, ν = 1, ..., N3. (33)

Summing all inequalities (33) over the ν from 1 to N3, we get

‖u‖2W 2
2,λ(D(ρ)) ≤ C27 ·N3

∥∥L′u∥∥2

L2(D)
+N3

(
ε′
)2 ‖u‖2W 2

2,λ(D) +

+
C28 (L′, n, ρ,D)

(ε′)2 ·N3

(
sup
D
|u|
)2

.

Now it suffices to set ε′ = ε√
N3

in order to get the estimate (32).

For a ρ > 0 set Dρ = {x : x ∈ D, dist (x, ∂D) > ρ}.

Lemma 10. Let the conditions (3) and (5) be satisfied. Then for a function u (x) ∈
W 2

2,λ (D) it holds an estimate for any ε > 0 and ρ > 0 :

‖u‖2W 2
2,λ(Dρ) ≤ C29 (n, ρ,D, γ)

(∫
D

(
L′u
)2
dx+ ε ‖u‖2W 2

2,λ(D) +
1

ε

(
sup
D
|u|
)2
)
. (34)

Proof. Fix a number ε > 0 and arbitrary small ρ > 0. Cover D̄ρ with finite
N4 (n, ρ,D, γ) number ellipsoids Θ1

ρ (xv) applying Lemma 8 in the everyone.

Lemma 11. Let the conditions (3) and (5) be satisfied. Then for a function u (x) ∈
0

W 2
2,λ (D) it holds the estimate for a ρ > 0 :

‖u‖2W 2
2,λ(D\Dρ) ≤ C30 (n, γ, ρ,D)

(∫
D

∣∣L′u∣∣2 dx+

(
sup
D
|u|
)2
)
. (35)
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Proof. Since ∂D ⊂ C2, according to [2], for sufficiently small ρ such that (D\Dρ)
⋂

Θρ:1 (0) =
∅, it holds that

‖u‖2W 2
2 (D\Dρ) ≤ C31 (n, γ, ρ,D)

(∫
D

∣∣L′u∣∣2 dx+

∫
D
|u|2 dx

)
Now, in order to complete the proof of the following Theorem, it suffices to apply

‖u‖W 2
2 (D\Dρ) ≤ C32 (n, ρ) · ‖u‖W 2

2 (D\Dρ)

and the inequality ∫
D
|u|2 dx ≤ mesD ·

(
sup
D
|u|
)2

.

Theorem 1. Let the coefficients of operator L′ satisfy the conditions (3) and (5), then

for a function u (x) ∈
0

W 2
2,λ (D) the estimate

‖u‖2W 2
2,λ(D) ≤ C33 (n, γ,D)

(∣∣∣∣L′u∣∣∣∣2
L2(D)

+

(
sup
D
|u|
)2
)

(36)

takes place.

Proof. Fix the sufficiently small number ρ > 0 and sum the inequalities (34) and (35).
We get

‖u‖2W 2
2,λ(D) ≤ (C29 + C30)

∫
D

∣∣L′u∣∣2 dx+ C29 · ε · ‖u‖2W 2
2,λ(D) +

+

(
C29

ε
+ C30

)(
sup
D
|u|
)2

.

Now, it suffices to set ε = 1
2C29

and C33 = max
{

2 (C29 + C30) ; 2
(
2C2

29 + C30

)}
in

order to complete the proof.

For proving the estimate (36) for operator L, we need the following imbedding assertion
from [2].

Theorem 2. For a function u (x) ∈ C∞ (D) , with u|∂D = 0 it holds the estimate

n∑
i=1

‖ui‖Lp(D) ≤ C34 (p, q, n)

n∑
i,j=1

‖uij‖Lq(D) ,

provided that

p ≥ q ≥ 1, 1−
(

1

q
− 1

p

)
· (n+ 2) ≥ 0, (37)

and
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‖u‖Lp1 (D) ≤ C35 (p1, q1, n)

n∑
i,j=1

‖uij‖Lq1 (D) ,

provided that

p1 ≥ q1 ≥ 1, 2−
(

1

q1
− 1

p1

)
(n+ 2) ≥ 0. (38)

Theorem 3. Let the coefficients of operator L satisfy conditions (3)-(7), then for a func-
tion u (x) ∈ C∞

(
D̄
)
, with u|∂D = 0 takes place the estimate

‖u‖W 2
2,λ(D) ≤ C36 (L, n,D)

(
‖Lu‖L2(D) + sup

D
|u|
)
. (39)

Proof. First, prove that

n∑
i=1

‖biui‖L2(D) ≤ C37 (L, n,D)ϕB:m (σ)
n∑

i,j=1

‖u‖W2,λ(D) , (40)

where bi (x) ∈ Lm (D) , m = n+ 2, i = 1, ..., n, and ϕB:M (σ) = max
1≤i≤n

ϕbi:m, σ = mesD.

Evidently, (37) takes place for q = p(n+2)
p+n+2 . Using Holder’s inequality, we have

W1 =

n∑
i=1

‖biui‖L2(D) =

n∑
i=1

(∫
D
b2iu

2
i dx

)1/2

≤

≤
n∑
i=1

(∫
D
|bi|m dx

)1/m

·
(∫

D
|ui|

2m
m−2 dx

)m−2
2m

≤

≤ ϕB:m (σ) ·
n∑
i=1

||ui||L 2m
m−2

(D) ≤ C34ϕB:m (σ) ·
n∑

i,j=1

||uij ||Lq(D) ,

where p = 2m
m−2 and q = 2m(n+2)

m(n+4)−2(n+2) (see [2]). Since m = n + 2, it is p = 2(n+2)
n and

q = 2. Therefore

W1 ≤ C34ϕB:m (σ) ·
n∑

i,j=1

‖uij‖L2(D) ≤ C34ϕB:m (σ) ‖uij‖W 2
2 (D) ≤ C37ϕB:m (σ) ‖u‖W 2

2,λ(D) .

(41)
Show that, for a c (x) ∈ Lµ (D) and µ = n+2

2 , it holds

‖Cu‖L2(D) ≤ C38 (L, n,D)ϕC:µ (σ) ‖u‖W 2
2,λ(D) . (42)

Evidently, the estimate (38) holds for q1 = p1(n+2)
2p1+n+2 .
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We have

W2 = ‖Cu‖L2(D) =

(∫
D
C2u2dx

)1/2

≤
(∫

D
Cµdx

)1/µ

·
(∫

D
|u|

2µ
µ−2 dx

)µ−2
2µ

=

= ‖C‖Lµ(D) · ‖u‖L 2µ
µ−2

(D) ≤ C35ϕC:µ (σ) · ‖uij‖Lq1 (D) ,

According to Theorem 2 with p1 = 2µ
µ−2 and q1 = 2µ(n+2)

µ(n+6)−2(n+2) . Since, µ = n+2
2 , it is

p1 = 2(n+2)
n−2 and q1 = 2. Therefore,

W2 ≤ C35ϕC:µ (σ) ‖uij‖L2(D) ≤ C35ϕC:µ (σ) ‖u‖W 2
2 (D) ≤ C38ϕC:µ (σ) ‖u‖W 2

2,λ(D) (43)

From Theorem 1 it follows that

‖u‖W 2
2,λ(D) ≤ C33

(
‖Lu‖L2(D) +

n∑
i=1

‖biui‖L2(D) + ‖Cu‖L2(D) + sup
D
|u|

)
≤

≤ C33

(
‖Lu‖L2(D) + (C37ϕB:m (σ) + C38ϕC:µ (σ)) ‖u‖W 2

2,λ(D) + sup
D
|u|
)
.

Now, it suffices to set

C37ϕB:m (σ) + C38ϕC:µ (σ) ≤ 1

2C33
,

in order to get the estimate (39).

Theorem 4. Let the conditions (3)-(7) be satisfied for the coefficients of operator L. Then

for a function u (x) ∈
o

W 2
2,λ (D) , it holds the estimate too

‖u‖W 2
2,λ(D) ≤ C39 (n,L,D) ‖Lu‖Lq(D) . (44)

Proof. By assumptions, c (x) ≤ 0 and therefore the Aleksandrov’s inequality [14] takes
place

sup
D
|u| ≤ C40 (n,D)

∥∥∥∥∥ f
n
√

det (aij)

∥∥∥∥∥
Ln(D)

· Fn

∥∥∥∥∥ b
n
√

det (aij)

∥∥∥∥∥
Ln(D)

 , (45)

where Fn (z) = l
1

nωn
( zn)

n
+ϕn(z), moreover ϕn are bounded and ϕn (0) = 0 (in particular,

ϕ1 = 0), and ωn− is volume of unit n−dimensional ball

‖b‖Ln(D) =

∥∥∥∥∥∥
√√√√ n∑

i=1

b2i

∥∥∥∥∥∥
Ln(D)

.

Evidently

det (aij (x)) ≥ C41 (n,D)
n∏
i=2

λi (x) ≥ C41

n∏
i=1

[
ω−1
i (

∑n
i=1 ωi (|xi|))∑n

ε=1 ωi (|xi|)

]2

.
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By assumptions, the function ωi(t)
t , decreases on t in (0,∞) for any i = 1, ..., n. There-

fore, the function
ω−1
i (t)
t will be increasing on (0,∞). On base of inequality ρ (x) =∑n

i=1 ωi (|xi|) ≥ ωi (|xi|) and that the function
ω−1
i (t)
t is increasing, we get

det (aij (x)) ≥ C41

n∏
i=1

[
ω−1
i (ωi (|xi|))
ωi (|xi|)

]2

= C41

n∏
i=1

(
|xi|

ωi (|xi|)

)2

.

We have∥∥∥∥∥ f
n
√

det (aij)

∥∥∥∥∥
Ln(D)

=

(∫
D

|f |n

det (aij)
dx

)1/n

≤
(∫

D
|f |nS dx

)1/nS

·

(∫
D

dx

(det (aij))
S′

)1/S′n

,

where 1
S + 1

S′ = 1.
Let q = nS, then S = q

n , S
′ = S

S−1 = q
q−n and

∥∥∥∥∥ f
n
√

det (aij)

∥∥∥∥∥
Ln(D)

≤ 1
n
√
C41
‖f‖Lq(D)

(∫
D

n∏
i=1

(
ωi (|xi|)
(|xi|)

) 2q
q−n

dx

) q−n
qn

. (46)

Here the condition
2q

q − n
> −1,

is needed in order to get the finiteness of the integral in the right hand side. That integral
is finite, since q > n

3 .
Now, prove that the multiplier in the right hand side (45) is finite. Indeed

∥∥∥∥∥ b
n
√

det (aij)

∥∥∥∥∥
Ln(D)

=

∥∥∥∥∥∥∥
√√√√ n∑

i=1

(
b

n
√

det (aij)

)2
∥∥∥∥∥∥∥
Ln(D)

=

=

∫
D


√√√√ n∑

i=1

(
bi

n
√

det (aij)

)2
 dx


1/n

≤ C42 (n)

(
n∑
i=1

∫
D

|bi|n

det (aij)
dx

)1/n

.

Therefore, we have

∫
D

|bi|n

det (aij)
dx ≤

(∫
D
|bi|m dx

) n
m

·

(∫
D

dx

(det (aij))
m

m−n

)m−n
m

≤ C43 (n, γ,D) ‖bi‖nL(D)
m
·

·

(∫
D

n∏
i=1

(
ωi (|xi|)
(|xi|)

) 2m
m−n

dx

)m−n
m

= C43 ‖bi‖nL(D)
m
·

(∫
D

n∏
i=1

(
ωi (|xi|)
(|xi|)

)n+2

dx

) 2
n+2

=
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= C43 ‖bi‖nL(D)
m
·

∥∥∥∥∥
n∏
i=1

(
ωi (|xi|)
(|xi|)

)∥∥∥∥∥
2

. (47)

Then according to (7), the right hand side (47) is finite. Thus

sup
D
|u| ≤ C44 (n, γ, q,D) ‖Lu‖Lq(D) . (48)

On other hand

‖Lu‖L2(D) =

(∫
D
|Lu|2 dx

)1/2

≤
(∫

D
|Lu|q dx

)1/q

·
(∫

D
1

q
q−2dx

) q−2
2q

=

= (mesD)
q−2
2q · ‖Lu‖Lq(D) . (49)

From (39), (45) and (49), we infer

‖u‖W 2
2,λ(D) ≤ C36

(
(mesD)

q−2
2q + C44

)
‖Lu‖Lq(D) ,

Therefore, the estimate (44) has been proved.

4. Strong solvability of the first boundary value problem

Consider the first boundary value problem (1)-(2) in the domain D ⊂ <n. A function

u (x) ∈
o

W 2
2,λ (D) , is called the strong solution of this problem if that satisfies (1) almost

everywhere in D.

Theorem 5. Let the coefficients of operator L are defined in D and it is satisfied the
conditions (3)-(7). Then for q > n

3 , the first boundary value problem (1)-(2) uniquely

solvable in space
o

W 2
2,λ (D) for any function f (x) ∈ Lq (D). Moreover, the function u (x)

satisfies to the inequality
‖u‖W 2

2,λ(D) ≤ C39 ‖f‖Lq(D) . (50)

Proof. Assume first the littler terms coefficients of equation (1) and the right hand
side f (x) be infinitely differentiable in D̄. Introduce the integer numbers s ∈ ℵ , D+ (s) ={
x : x ∈ D, ρ (x) < 1

s

}
; and i, j = 1, .., n

λ
(S)
i (x) =


λi (x) , if x ∈ D̄\D+ (s) ,[
ω−1
i ( 1

s )
1
s

]2

, if x ∈ D+ (s) ;

a
(s)
ij (x) = aij (x), for x ∈ D̄\D+

(
s
2

)
, a

((s)
ij (x) are extending over D+

(
s
2

)
such that,

a
(s)
ij (x) ∈ C

(
D̄
)

and for any x ∈ D and ζ ∈ En it satisfies

γ̄

n∑
i=1

λ
(s)
i (x) ζ2

i ≤
n∑

i,j=1

a
(s)
ij (x) ζiζj ≤ γ̄−1

n∑
i=1

λ
(s)
i (x) ζ2

i ,
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where γ̄ = γ/2, and γ− is a constant from (3).
Set

L(S) =

n∑
i,j=1

a
(s)
ij

∂2

∂xi∂xj
+

n∑
i=1

bi (x)
∂

∂xi
+ c (x) .

It is clear to see that for an integer s the operator L (s) is uniformly elliptic in D. Let
u(s) (x)− be a strong solution of the first boundary value problem

L(S)u(S) = f (x) , x ∈ D; u(S)
∣∣∣
∂D

= 0. (51)

Since a
(s)
ij (x) ∈ C

(
D̄
)
, according to [2] there exists a strong solution for the problem (51)

that is unique and belongs to the space
o

W 2
p (D) for any p ∈ (1,∞). Where

o

W 2
p (D) denotes

the closure of all functions u (x) ∈ C∞
(
D̄
)

with u|∂D = 0 in the norm

‖u‖W 2
p (D) =

∫
D

|u|p +
n∑
i=1

|ui|p +
n∑

i,j=1

|uij |p
 dx

1/p

.

Show that u(s) (x) ∈
o

W 2
2,λ (D) . Let p > 2− be a real number. For i, j = 1, ..., n, we

have ∫
D
λi (x)λj (x)

(
uSij
)2
dx ≤

(∫
D

∣∣∣u(S)
ij

∣∣∣p dx)2/p

·
(∫

D
[λi (x)λj (x)]

p
p−2 dx

) p
p−2

By using Lemma 1, there exists a large number p, such that∫
D

[λi (x)λj (x)]
p
p−2 dx <∞, i, j = 1, ..., n. (52)

Evidently

λi (x) · λj (x) =

[
ω−1
i (ρ (x))

ρ (x)

]2

·

[
ω−1
j (ρ (x))

ρ (x)

]2

.

From this according to Theorem 4, we infer∥∥∥u(S)
∥∥∥
W 2

2,λ(D)
≤ C39 ‖f‖Lq(D) . (53)

It follows from the strong boundedness of the sequence
{
u(s) (x)

}
in

o

W 2
2,λ (D) that this

is a weakly compact sequence in this space. Therefore, there exists a function u′ (x) ∈
o

W 2
2,λ (D) and a subsequence of integer numbers {sk} such that

lim
k→∞

(
Lu(sk), ψ

)
=
(
Lu′, ψ

)
, (54)
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for a function ψ (x) ∈ C∞
(
D̄
)

as k → ∞. Where (g, ψ) =
∫
D g (x) · ψ (x) dx. On other

hand (
Lu(sk), ψ

)
=
(
L(sk)u(sk), ψ

)
+
(

(L− Lsk)u(sk), ψ
)

=

= (f, ψ) +
((
L− L(sk)

)
u(sk), ψ

)
= (f, ψ) + ik,

which together with (54) means that

(f, ψ) + lim
k→∞

ik =
(
Lu′, ψ

)
. (55)

Further, we have

|ik| ≤
n∑

i,j=1

∫
D+(Sk/2)

|aij (x)|√
λi (x)λj (x)

√
λi (x)λj (x)

∣∣∣u(Sk)
ij

∣∣∣ · |ψ| dx+

+

n∑
i,j=1

∫
D+(Sk/2)

∣∣∣a(Sk)
ij (x)

∣∣∣√
λi (x)λj (x)

√
λi (x)λj (x)

∣∣∣u(Sk)
ij

∣∣∣ · |ψ| dx = i1k + i2k. (56)

From conditions (5)-(6) it follows that |hij (x)| ≤ h0 (L) for x ∈ D and i, j = 1, ..., n.
Therefore, and using (53), we get

i1k ≤ h0 · ‖u‖W 2
2,λ(D+(Sk/2)) · ‖ψ‖L2(D) , i.e. lim

k→∞
i1k = 0. (57)

Arguing by the analogy with preceding it follows that for the equality

lim
k→∞

i2k = 0 (58)

it suffices that ∫
D

dx

λi (x)λj (x)
<∞, i, j = 1, ..., n. (59)

Indeed, by using Lemma 1,∫
D

dx

λi (x)λj (x)
≤
∫
D

(
ωi (|xi|)
|xi|

)2

dx <∞,

therefore, the inequality satisfied. From (55)-(58) it follows that for a function ψ (x) ∈
C∞

(
D̄
)

it holds the equality (
Lu′, ψ

)
= (f, ψ) ,

therefore, Lu′ = f (x) almost everywhere in D.
Consider the general situation. Let O1 be n− dimensional ball of unit radii and center

in the coordinate center, a function ϑ1 (x) ⊂ C∞0 (En) be such that ϑ1 (x) ≥ 0, ϑ1 (x) = 0
everywhere outside O1 and

∫
En
ϑ1 (x) dx = 1.

Set ϑε (x) = 1
εnϑ1

(
x
ε

)
for ε > 0.
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For a locally integrable function ψ (x) in En denote ψε (x)=
∫
En
ϑε (x− y)ψ (y) dy the

Frederiche’s average of ψ (x) with parameter ε.

Let for i = 1, ..., n the functions b
[l]
i (x) , C [l] (x) and f [l] (x) are mollifies of the proper

functions with parameter 1
l

L[l] =

n∑
i,j=1

aij (x)
∂2

∂xi∂xj
+

n∑
i=1

b
[l]
i (x)

∂

∂xi
+ C [l] (x) ,

and u[l] (x) be a strong solution from
o

W 2
2,λ (D) of the first boundary value problem

L[l]u[l] = f [l] (x) , x ∈ D; u[l]
∣∣∣
∂D

= 0.

According to the preceding results, such a solution exists, moreover the Theorem 4 con-
forms on the estimate∥∥∥u[l]

∥∥∥
W 2

2,λ(D)
≤ C39

∥∥∥f [l]
∥∥∥
Lq(D)

≤ C45 (L, n, q,D, f) . (60)

Therefore, there exists a solution u (x) ∈
o

W 2
2,λ (D) and a subsequence of natural numbers

{lk} such that

lim
k→∞

(
Lu[lk], ψ

)
= (Lu, ψ) (61)

as k →∞ for a function ψ (x) ∈ C∞
(
D̄
)
.

On other hand (
Lu[lk], ψ

)
=
(
L[lk]u[lk], ψ

)
+
((
L− L[lk]

)
u[lk], ψ

)
=

=
(
f [lk], ψ

)
+
(
L− L[lk]u[lk], ψ

)
=
(
f [lk], ψ

)
+ jk.

The (61) and the limit expression

lim
k→∞

(
f [lk], ψ

)
= (f, ψ)

yields

(f, ψ) + lim
k→∞

jk = (Lu, ψ) . (62)

Further, we have

|jk| ≤
n∑
i=1

∫
D

∣∣∣bi (x)− b[lk]
i (x)

∣∣∣ · ∣∣∣u[lk]
i

∣∣∣ · |ψ| dx+

+

∫
D

∣∣∣C (x)− C [lk] (x)
∣∣∣ · ∣∣∣u[lk] (x)

∣∣∣ · |ψ (x)| dx = j1
k + j2

k . (63)
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According to (40) and (42), we infer

j1
k ≤ ‖ψ‖L2(D) ·

n∑
i=1

∫
D

∣∣∣∣∣∣(bi − b[lk]
i

)
u

[lk]
i

∣∣∣∣∣∣
L2(D)

≤

≤ C46 (L, n,D) ‖ψ‖L2(D) ·max
∥∥∥bi − b[lk]

i

∥∥∥
Lm(D)

·
∥∥∥u[lk]

∥∥∥
W 2

2,λ(D)
;

j2
k ≤ ‖ψ‖L2(D) ·

∥∥∥(C − C [lk]
)
u[lk]

∥∥∥
L2(D)

≤

≤ C47 (L, n,D) ‖ψ‖L2(D) ·
∥∥∥C − C [lk]

∥∥∥
Lµ(D)

·
∥∥∥u[lk]

∥∥∥
W 2

2,λ(D)
,

where the constants m and µ have the meaning as in the condition (7).
Using (60), we get

lim
k→∞

j1
k = lim

k→∞
j2
k = 0,

which together with (62) and (63) give

(Lu, ψ) = (f, ψ) . (64)

Since the equality (64) is true for a function ψ (x) ∈ C∞
(
D̄
)
, then Lu = f (x) for almost

everywhere D. Therefore, it has been proved the existence of strong solution of the bound-
ary value problem (1)-(2) and the estimate (50) follows from the Corollary of Theorem
4.

Prove now the uniqueness of the boundary value problem (1)-(2). Let u1 (x) and u2 (x)
be different solutions of that problem. Set ϑ (x) = u1 (x)− u2 (x), then the function ϑ (x)
will be a generalized solution of the problem (1)-(2) with f (x) ≡ 0. According to (50)
ϑ (x) ≡ 0 almost everywhere in D, i.e. u1 (x) ≡ u2 (x) a.e. in D.

This completes the proof of Theorem 5.
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On the Influence of the Short- and Open-circuit Condi-
tions on Stability loss of the PZT/Metal/PZT Sandwich

Circular Plate-disc Condition

F.I. Jafarova∗, O.A. Rzayev

Abstract. The axisymmetric stability loss of the PZT/Metal/PZT sandwich circular plate is
investigated simultaneously within the scope of the open-circuit and short-circuit electrical con-
ditions. It is assumed that these conditions satisfy on the upper and lower face-planes of the
piezoelectric layers. Moreover, it is assumed that on the lateral-boundary cylindrical surfaces of
the piezoelectric face layers the short-circuitconditions satisfy. The 3D linearized stability loss
theory for piezoelectric materials is employed for investigation of the corresponding eigenvalue
problem. Concrete numerical results are obtained by utilizing FEM for various piezoelectric face
and metal core layers and the main attention is focused on the influence of the piezoelectricity on
the values of the compressional critical stress and the influence of the aforementioned two type
electrical boundary conditions on these stresses. According to the comparison of the results, it
is made conclusions on the significance of the influence of the electrical boundary conditions on
the values of the absolute values of the critical stresses. In particular, it is established that in the
case where the open-circuit boundary conditions satisfy the influence of the piezoelectricity of the
face layers materials on the critical stresses is more significant than that in the case where the
short-circuit boundary conditions satisfy.

Key Words and Phrases: Piezoelectric material, open-circuit, short-circuit, circular sandwich
plate, stability loss, critical stress

2010 Mathematics Subject Classifications: 74H55

1. Introduction

Investigations of stability loss of plate type element of constructions made of piezoelec-
tric materials (shortly PZT) or made of layered composites containing PZT layers has a
great significance not only in the theoretical, but also in the practical sense. Researchers
such as [11], Jerom and Ganesan (2010) and many others listed therein can be taken as
examples for such investigations in which it was established that the piezoelectricity of the
plate or beam materials causes an increase in the values of the mechanical critical forces

Now we consider a brief review of the related recent investigations and first note the
paper by [10] in which static analysis of the simply supported rectangular plate made

∗Corresponding author.

http://www.cjamee.org 26 c© 2013 CJAMEE All rights reserved.
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of functionally graded piezoelectric material is studied with the use of the refined plate
theories. The “open- and closed- circuit” conditions on the upper and lower face surfaces
are considered. The paper by [4] deals with the study the response of the bi-layered
circular plate made of functionally-graded piezoelectric material and resting on a Winkler-
Pasternak foundation.

[7] studies the buckling of the sandwich circular plate with piezoelectric face and porous
middle layers under radial compression within the scope of the Kirchhoff-Love plate theory
and therefore results obtained in this paper are acceptable for very thin plates. The
analytical expression for the critical force is obtained and according to this expression the
influence of the problem parameters, as well as of the piezoelectricity of the covering layer
material is discussed.

The foregoing brief review shows that all the foregoing investigations have been made
within the scope of the approximate plate theories, the accuracy of which depends signif-
icantly on the geometrical and electro-mechanical properties. It is obvious that the order
of the accuracy of these results can be estimated with the use of the corresponding results
obtained within the scope of the 3D linearized exact stability loss theories the present
level of which has been detailed in the monograph by [5] who made many fundamental
contributions to creating this theory. At the same time we note that the 3D linearized
stability loss theories for the elements of constructions made of time-dependent materials
was developed in the monograph by [1].

In the foregoing sense, in the paper by [2] the first attempt with respect to the stability
loss problems related to the system comprising elastic and piezoelectric constituents was
made. At the same time, it should be noted that the study of stability loss of elements
of constructions made of piezoelectric materials by employing 3D linearized stability loss
theories just is beginning.

One of the main question in the theory of piezoelectricity, as well as in the investigations
of a stability loss of element of constructions made of these materials, is the study the
influence of the “open-circuit” and “short-circuit” type electrical boundary conditions on
the electro-mechanical behavior of these constructions. Taking the this statement into
consideration in the present paper the aforementioned influence is studied for the circular
sandwich PZT/Metal/PZT plate within the scope of the 3D linearized stability loss theory.
Under this study it is assumed that the plate is compressed in the radial inward direction
by uniformly distributed rotationally symmetric normal forces.

We recall that the corresponding 3D stability loss problems for the circular plate
consisting of elastic and viscoelastic constituents are made in the papers by [3] and [9]
the results of which are also detailed in the monograph by [1].

2. Formulation of the problem

We consider a circular sandwich plate whose geometry is shown in Fig. 1 and assume
that the materials of the upper and lower face layer are the same and PZT.

We associate with the lower face layer of the plate the cylindrical coordinate system
Orθz(Fig. 1) and the position of the points of the plate we determine through the La-
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grange coordinates in this system. Thus, according to Fig.1, in the selected coordinate
system, the plate occupies the region {0 ≤ r ≤ `/2; 0 ≤ θ ≤ 2π; 0 ≤ z ≤ h} . Investigate
the axisymmetris (rotationally symmetric) stability loss of the mentioned plate under
compression of that in the inward radial direction by uniformly distributed rotationally
symmetric normal forces with intensity p acting on the lateral boundary-surface.

a
b

Fig. 1. The geometry of the considered circular plate (a) and the cross
section of this plate with loading condition and some geometric values (b).

Below we will denote the values related to the upper and lower face layers by upper
indices (3) and (1) respectively, whereas the values related to the core layer are denoted
by (2). Moreover, the values related to the pre-critical stress-strain state are denoted by
additional upper index 0.

Under investigations we will consider two type boundary conditions on the upper and
lower face planes of the PZT layers. The first type of these conditions are the “open-
circuit” ones, according to which it is assumed that D1

z = 0 at z = 0 and hF , and D3
z = 0

at z = hc + hF and hc + 2hF , D
(k)
z is a normal component of the electric displacement.

The second type conditions are the “short-circuit” ones, according to which, φ1 = 0 at
z = 0 and hF , and φ3 = 0 at z = hc + hF and hc + 2hF , where φ(k) is a potential of an

electric field and E
(k)
r = −∂φ(k)/∂r, E

(k)
z = −∂φ(k)/∂z. Here E

(k)
r and E

(k)
z are the radial

and normal component of the electric field vector.
In the case where the “open-circuit” conditions take place the pre-critical stress state

is determined according to the following expressions:

σ(k),0
zz = 0, σ(k),0

rz = 0, s(k),0zz = 0,D(k),0
z = D(k),0

r = 0, k = 1, 2, 3.

E(k),0
r = a

(k)
1 s(k),0rr + b

(k)
1 s(k),0zz , E(k),0

z = d
(k)
1 s(k),0rr + c

(k)
1 s(k),0zz ,

a
(k)
1 =

ε
(k)
13 (e

(k)
31 + e

(k)
32 )− ε

(k)
33 (e

(k)
11 + e

(k)
22 )

ε
(k)
11 ε

(k)
33 − ε

(k)
13 ε

(k)
31

, b
(k)
1 =

ε
(k)
13 e

(k)
33 − ε

(k)
33 e

(k)
13

ε
(k)
11 ε

(k)
33 − ε

(k)
13 ε

(k)
31

,

d
(k)
1 =

ε
(k)
11 (e

(k)
31 + e

(k)
32 )− ε

(k)
31 (e

(k)
11 + e

(k)
12 )

ε
(k)
13 ε

(k)
31 − ε

(k)
11 ε

(k)
33

, c
(k)
1 =

ε
(k)
11 e

(k)
33 − ε

(k)
31 e

(k)
13

ε
(k)
13 ε

(k)
31 − ε

(k)
11 ε

(k)
33

.
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s(k),0zz = a(k)zr s
(k),0
rr , a(k)zr =

c
(k)
31 + c

(k)
32 − e

(k)
13 a

(k)
1 − e

(k)
33 d

(k)
1

c
(k)
33 − e

(k)
13 b

(k)
1 − e

(k)
33 c

(k)
1

.

σ(k),0
rr = A(k)

r s(k),0rr , A(k)
r = c

(k)
11 + c

(k)
12 − e

(k)
11 a

(k)
1 +

+a(k)zr c
(k)
13 − a(k)zr e

(k)
11 b

(k)
1 − a(k)zr e

(k)
31 c

(k)
1 .

s(1),0rr = s(2),0rr , 2hfσ
(1),0
rr + hCσ

(2),0
rr = hp, σ(1),0

rr = p

(

2
hF
h

+
hC
h

A
(2)
r

A
(1)
r

)

−1

. (1)

In (1) σ
(k),0
rr ,. . . , and s

(k),0
rr ,. . . , are the components of the stress and Green strain

tensors, respectively, u
(k),0
r and u

(k),0
z are components of the displacement vector, D

(k),0
r

and D
(k),0
z are the components of the electrical displacement vector, E

(k),0
r and E

(k),0
z

are the components of the electric field vector, and c
(k)
ij , e

(k)
ij and ε

(k)
nj are the elastic,

piezoelectric and dielectric constants, respectively.
In the case where the aforementioned “short-circuit” conditions are satisfied, the pre-

critical state is determined according to the following expressions.

φ(k),0 = 0, E(k),0
r = E(k),0

z = 0, σ(k),0
zz = σ(k),0

rz = 0, σ(k),0
rr = σ

(k),0
θθ ,

s(k),0rr = s
(k),0
θθ = (c

(k)
11 + c

(k)
12 )

−1σ(k),0
rr , σ(2),0

rr = σ(1),0
rr (c

(1)
11 + c

(1)
12 )

−1(c
(2)
11 + c

(2)
12 ),

σ(1),0
rr = p

(

2
hF
h

+
hC
h

(c
(2)
11 + c

(2)
12 )

(c
(1)
11 + c

(1)
12 )

)

−1

,

D(k),0
r =

(

e
(k)
11 + e

(k)
12 −

c
(k)
31 + c

(k)
32

c
(k)
33

e
(k)
13

)

s(k),0rr ,

D(k),0
z =

(

e
(k)
31 + e

(k)
32 −

c
(k)
31 + c

(k)
32

c
(k)
33

e
(k)
33

)

s(k),0rr . (2)

Note that the expressions in (1) and (2) are approximate in the near vicinity of the
lateral boundary surface on which the external compressional radial forces act. Never-
theless, as we will consider the cases where h

/

` ∼ 10−1 (where h = 2hF + hC (Fig. 1),
therefore the influence of the mentioned proximity on the values of the critical parameters
can be taken as insignificant one. Moreover, note that the expressions in (1) are ob-
tained within the scope of the “open-circuit” condition satisfied on the face layers upper
and lower plane-boundaries, according to which, the normal component of the electrical
displacement vector on these planes is equal to zero.

Thus, within the scope of the foregoing assumptions, according to [5], [11], [2] the
3D linearized stability loss equations and relations for the case under consideration are
obtained as follows:

3D linearized stability loss equations



30 F.I. Jafarova, O.A. Rzayev

∂t
(k)
rr

∂r
+

∂t
(k)
zr

∂z
+

1

r
(t(k)rr − t

(k)
θθ ) = 0,

∂t
(k)
rz

∂r
+

∂t
(k)
zz

∂z
+

1

r
t(k)rz = 0,

∂D
(k)
R

∂r
+

1

r
D

(k)
R +

∂D
(k)
Z

∂z
= 0.

t(k)rr = σ(k)
rr + σ(k),0

rr

∂u
(k)
r

∂r
+M (k)

rr , t
(k)
θθ = σ

(k)
θθ + σ

(k),0
θθ

u
(k)
r

r
+M

(k)
θθ ,

t(k)zr = σ(k)
zr +M (k)

zr , t(k)rz = σ(k)
rz + σ(k),0

rr

∂u
(k)
z

∂r
+M (k)

rz , t(k)zz = σ(k)
zz +M (k)

zz ,

M (k)
rr = E(k),0

r E(k)
r − E

(k),0
θ E

(k)
θ − E(k),0

z E(k)
z ,

M
(k)
θθ = E

(k),0
θ E

(k)
θ − E(k),0

r E(k)
r − E(k),0

z E(k)
z ,

M (k)
zz = E(k),0

z E(k)
z − E

(k),0
θ E

(k)
θ − E(k),0

r E(k)
r . (3)

Linearized strain-displacement relations

s(k)rr =
∂u

(k)
r

∂r
, s

(k)
θθ =

u
(k)
r

r
, s(k)zz =

∂u
(k)
z

∂z
, s(k)rz =

1

2

(

∂u
(k)
r

∂z
+

∂u
(k)
z

∂r

)

, (4)

Linearized electro-mechanical relations

σ(k)
rr = c

(k)
11 s

(k)
rr + c

(k)
12 s

(k)
θθ + c

(k)
13 s

(k)
zz − e

(k)
11 E

(k)
r − e

(k)
31 E

(k)
z ,

σ
(k)
θθ = c

(k)
12 s

(k)
rr + c

(k)
22 s

(k)
θθ + c

(k)
23 s

(k)
zz − e

(k)
12 E

(k)
r − e

(k)
32 E

(k)
z ,

σ(k)
zz = c

(k)
31 s

(k)
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(k)
32 s

(k)
θθ + c

(k)
33 s

(k)
zz − e

(k)
13 E

(k)
r − e

(k)
33 E

(k)
z ,

σ(k)
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(k)
15 s

(k)
rz − e

(k)
15 E

(k)
r − e

(k)
35 E

(k)
z ,

D(k)
r = e

(k)
11 s

(k)
rr + e

(k)
12 s

(k)
θθ + e

(k)
13 s

(k)
zz + ε

(k)
11 E

(k)
r + ε

(k)
13 E

(k)
z ,

D(k)
z = e

(k)
31 s

(k)
rr + e

(k)
32 s

(k)
θθ + e

(k)
33 s

(k)
zz + ε

(k)
31 E

(k)
r + ε

(k)
33 E

(k)
z ,

E(k)
r = −

∂φ(k)

∂r
,E(k)

z = −
∂φ(k)

∂z
. (5)

Note that the relations in (1) - (3) are written for the piezoelectric materials and

supposing that e
(k)
ij = 0 and ε

(k)
ij = 0 we can obtain the mechanical relations for the elastic

materials. Moreover, note that under writing of the relations in (5) it is assumed that the
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polled direction of the piezoelectric material is the Oz axis direction (Fig. 1). At the same
time, we assume that the contact and boundary conditions given below satisfy.

t(3)zz

∣

∣

∣

z=hF+hC

= t(2)zz

∣

∣

∣

z=hF+hC

, t(3)zr

∣

∣

∣
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∣

∣

∣
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∣

∣

∣
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,
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∣

∣

∣
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∣

∣

∣
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∣

∣

∣
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= t(1)zr

∣

∣

∣

z=hF

,

u(2)z

∣

∣

∣

z=hF

= u(1)z

∣

∣

∣

z=hF

, u(2)r

∣

∣

∣

z=hF

= u(1)r

∣

∣

∣

z=hF

,

t3zz
∣

∣

z=2hF+hC

= 0, t3zr
∣

∣

z=2hF+hC

= 0, t3zz
∣

∣

z=0
= 0, t1zr

∣

∣

z=0
= 0 for 0 ≤ r ≤ l/2,

t(k)rr

∣

∣

∣

r=l/2
= 0, u(k)z

∣

∣

∣

r=l/2
= 0, for k = 1, 2, 3 under r = l/2 0 ≤ z ≤ 2hF + hC . (6)

Note that the conditions given in (6) relate to the mechanical quantities and the
corresponding conditions for the electrical quantities are given for the components of the

electrical displacements D
(k)
z and D

(k)
r , or for the electric potential φ(k). In the case where

we assume that the “open-circuit” conditions satisfy the following relations take place

D(3)
z

∣

∣

∣

z=2hF+hC

= 0, D(3)
z

∣

∣

∣

z=hF+hC

= 0, D(1)
z

∣

∣

∣

z=0
= 0, D(1)

z

∣

∣

∣

z=hF

= 0, (7)

φ(3)
∣

∣

∣

r=l/2
= 0, φ(1)

∣

∣

∣

r=l/2
= 0. (8)

However in the case where we assume that the ”short-circuit” conditions satisfy the rela-
tions in (7) are replaced with the following ones.

φ(3)
∣

∣

∣

z=2hF+hC

= 0, φ(3)
∣

∣

∣

z=hF+hC

= 0, φ(1)
∣

∣

∣

z=0
= 0, φ(1)

∣

∣

∣

z=hF

= 0. (9)

Consequently, in the present investigation we consider simultaneously two cases deter-
mined by conditions in (7) and (9).

This completes the formulation of the problem, according to which, the determination
of the critical values of the pre-critical quantities is reduced to the solution of the eigenvalue
problem (1), (3) – (8) for the “open-circuit” case, and (2),(3) – (6), (8) and (9) for the
“short-circuit” case.
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3. FEM modelling of the problem

We attempt to solve to the problem formulated in the previous section by employing
FEM and for this purpose, according to [5], [11], [2] and others, we introduce the following
functional.

Π( u(1)
r , u(2)

r , u(3)
r , u(1)

z , u(2)
z , u(3)

z , φ(1), φ(2), φ(3)) =

1

2

3
∑

k=1

∫∫

Ω(k)

[

t(k)rr

∂u
(k)
r

∂r
+ t

(k)
θθ

u
(k)
r

r
+ t(k)rz

∂u
(k)
z

∂r
+ t(k)zr

∂u
(k)
r

∂z
+

+t(k)zz

∂u
(k)
z

∂z
+ E(k)

r D(k)
r + E(k)

z D(k)
z

]

rdrdz, (10)

where
Ω (1) = {0 ≤ r ≤ `/2; 0 ≤ z ≤ hF } ,

Ω (2) = {0 ≤ r ≤ `/2;hF ≤ z ≤ hF + hC} ,

Ω (3) = {0 ≤ r ≤ `/2;hF + hC ≤ z ≤ 2hF + hC } . (11)

From equating to zero the first variation of the functional (7), i.e. from the relation

δΠ =

3
∑

k=1

∂Π

∂u
(k)
r

δu(k)
r +

3
∑

k=1

∂Π

∂u
(k)
z

δu(k)
z +

3
∑

k=1

∂Π

∂φ(k)
δφ(k) = 0, (12)

and after well-known mathematical manipulations we obtain the first three equations in
(3). The boundary and contact conditions in (6) and (7) are given with respect to the
forces and electrical displacements. In this way it is proven that the first three equations in
(3) are the Euler equations for the functional (10) and the boundary and contact conditions
in (6) and (7) which are given with respect to the forces and electrical displacements, are
the related natural boundary and contact conditions.

According to FEM modelling, the solution domains indicated in (11) are divided into
a finite number of finite elements. For the considered problem each of the finite elements
is selected as a standard rectangular Lagrange family quadratic finite element (i.e. with

nine nodes) and each node has three degrees of freedom, i.e. radial displacement u
(k)
r ,

transverse displacement u
(k)
z and electric potential φ(k). Employing the standard Ritz

technique detailed in many references, for instance, in the book by [13], we determine
the displacements and electrical potential at the selected nodes. After this determination,
from the equation

det(K) = 0 (13)

the values of the critical compressional forces are determined, where Kis a corresponding
stiffness matrix. The solution procedure of the equation (13) is made according to the
well-know “bi-section” method which basis on the sign change of the det(K).
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Note that in the “open-circuit” case under FEM modeling the nodes on the planes
z = 0, hF , hF + hC and 2hF + hCthe electrical potentials φ(1) and φ(3) are taken as
unknown ones, however in the “short-circuit” case these potentials are taken as known
ones and are equated to zero. Namely with these the FEM modeling in the “short-circuit”
case is distinguished with that in the “open-circuit” case.

This completes the consideration of the method of solution.

4. Numerical results and discussions

Note that in the present paper, the piezoelectric materials PZT -5H, PZT -4 and
BaTiO3 are taken as the face layer materials, however the metal materials - aluminum (Al)
and steel (St) are taken as the core layer materials. The values of the elastic, piezoelectric
and dielectric constants of the selected piezoelectric materials and the references used are
given in Table 1.

Table 1. The values of the mechanical, piezoelectrical and dielectrical constants of
the selected piezoelectric materials

Materials
(Source Ref)

c
(r1)
11 c

(r1)
12 c

(r1)
13 c

(r1)
33 c

(r1)
44 c

(r1)
66 e

(r1)
31 e

(r1)
33 e

(r1)
15 ε

(r1)
11 ε

(r1)
33

PZT-4
[11]

13.9 7.78 7.40 11.5 2.56 3.06 -5.2 15.1 12.7 0.646 .562

PZT-5H
[11]

12.6 7.91 8.39 11.7 2.30 2.35 -6.5 23.3 17.0 1.505 1.302

BaTiO3
[8]

16.6 7.66 7.75 16.2 4.29 4.29 -4.4 18.6 11.6 1.434 1.182

×1010N/m2 C/m2 ×1010C/V m

Table 2. The values of the critical dimensionless stresses σ1
cr, σ

2
cr and p̄cr obtained for

the case where the material of the core layer is Steel in the cases where the piezoelectric
constants of PZT are equated to zero (upper number), the “short-circuit” (middle num-
ber) and the “open-circuit” conditions (lower number) satisfy and the piezoelectric and
dielectric constants are equal to the corresponding data given in Table 1
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hF / l Crit.
Param.

Materials of the face layers

PZT-
5H

PZT-4 BaTiO3

1/40 σ
(2.1)
cr

0.1015
0.1017
0.1925

0.1399
0.1401
0.2244

0.1249
0.1249
0.1418

σ
(2.2)
cr

0.3246
0.3251
0.3578

0.3120
0.3123
0.3375

0.2010
0.2010
0.2053

p̄cr
0.2689
0.2693
0.3165

0.2690
0.2693
0.3093

0.1820
0.1820
0.1895

1/30 σ
(2.1)
cr

0.0946
0.0950
0.1858

0.1337
0.1342
0.2194

0.1222
0.1222
0.1394

σ
(2.2)
cr

0.3026
0.3037
0.3453

0.2982
0.2991
0.3302

0.1965
0.1967
0.2019

p̄cr
0.2333
0.2342
0.2922

0.2434
0.2442
0.2933

0.1718
0.1719
0.1811

1/24 σ1
cr

0.0896
0.0904
0.1816

0.1296
0.1304
0.2165

0.1206
0.1208
0.1381

σ
(2.2)
cr

0.2866
0.2890
0.3377

0.2888
0.2908
0.3258

0.1940
0.1944
0.2000

p̄cr
0.2046
0.2063
0.2727

0.2225
0.2240
0.2803

0.1635
0.1638
0.1743

1/20 σ1
cr

0.0867
0.0881
0.1800

0.1274
0.1290
0.2156

0.1202
0.1206
0.1379

σ2
cr

0.2774
0.2818
0.3345

0.2841
0.2875
0.3243

0.1933
0.1939
0.1998

p̄cr
0.1821
0.1850
0.2573

0.2058
0.2083
0.2700

0.1568
0.1573
0.1689

According to [6], the values of Lame’s constants of the core layer material is selected
as follows: for the Al: λ = 48.1GPa and µ = 27.1GPa; for the St: λ = 92.6GPa and
µ = 77.5GPa.

Under FEMmodelling using the symmetry with respect to the plane z = hF+hC/2 and
the axial symmetry with respect to the Oz (Fig. 1a) axis of the mechanical and geometrical
properties of the plate, we consider only the region {0 ≤ r ≤ `/2; 0 ≤ z ≤ hF + hC} and
this region is divided into 40 finite elements along the radial direction and 12 finite elements
along the plate’s thickness direction, resulting in 31022 NDOF. Such selection of the finite
elements numbers is established according to the convergence of the numerical results. All
the corresponding PC programs are composed by the authors of the paper.

The algorithm and programs employed in the present investigations are some modifi-
cations and development of the corresponding algorithm and programs used and testing in
the many investigations and discussed in the monograph by [1]. Consequently, the validity
and trustiness of the used in the present investigations PC programs and algorithm cause
no doubt.

For simplification of the consideration, we introduce the following notation for the
dimensionless critical radial stresses and critical compressive forces:

σ(1)
cr = σ(1),0

rr.cr

/

c
(1)
44 , σ

(2)
cr = σ(2),0

rr.cr

/

c
(1)
44 , p̄cr = p/c

(1)
44 . (14)

Thus, according to (14), we estimate the work carrying capacity of the plate under con-
sideration with respect to the stability loss by simultaneous use of the values of three
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dimensionless critical parameters which are the dimensionless radial compressive stress

σ
(1)
cr in the face piezoelectric layer, the dimensionless radial compressive stress σ

(2)
cr in the

core metal layer and the dimensionless intensity p̄cr of the external compressive force.
Such an approach for estimation of the buckling delamination allows us to have more pre-
cise information on the influence of the problem parameters such as the piezoelectricity of
the face layers’ materials, the face layers’ thickness and the mechanical properties of the
layers’ materials.

Thus, we consider the numerical results obtained for the critical parameters indicated
in (14) and detailed above. Note that these results are given in Tables 2 and 3 which
are obtained for the cases where the material of the core layer is St and Al respectively.
Moreover, note that these results are obtained for the cases where face layers materials
are PZT-5H, PZT-4 and BaTiO3. For estimation of the influence of the face layers’
piezoelectricity on the values of the critical stresses in the tables, three types of results
are presented simultaneously, the first of which (upper number) relates to the case where
the values of the piezoelectric and dielectric constants of the face layer materials are
equated to zero, i.e. coupling of the mechanical and electrical fields is not taken into
consideration. However, under obtaining the second (third type) of results indicated by
the middle numbers (by the lower numbers) the values of the piezoelectric and dielectric
constants are taken into consideration as given in Table 1 and the coupling effect between
the electrical and mechanical fields is taken into consideration completely and the “short-
circuit” (9) (the “open-circuit” (7)) condition is satisfied.

Analysis of the results shows that for all the cases under consideration the piezoelec-
tricity of the face layers causes an increase in the values of the dimensionless critical
stressesσ1

cr. σ2
crand p̄cr. However this increase is more significant for the PZT-5H and

PZT-4 than that for the BaTiO3. At the same time, this increase is very significant for
the “open-circuit” case than that for the “short-circuit” case.

Table 3. The values of the critical dimensionless stresses σ1
cr, σ

(2)
cr and p̄cr obtained

for the case where the material of the core layer is Aluminum in the cases where the piezo-
electric constants of PZT are equated to zero (upper number), the “short-circuit” (middle
number) and the “open-circuit” conditions (lower number) satisfy and the piezoelectric
and dielectric constants are equal to the corresponding data given in Table 1
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hF / l Crit.
Param.

Materials of the face layers

PZT-
5H

PZT-4 BaTiO3

1/40 σ
(1)
cr

0.1264
0.1268
0.2430

0.1772
0.1776
0.2828

0.1586
0.1587
0.1793

σ
(2)
cr

0.1491
0.1495
0.1667

0.1458
0.1461
0.1570

0.0941
0.0942
0.0958

p̄cr
0.1435
0.1439
0.1858

0.1537
0.1540
0.1884

0.1103
0.1104
0.1167

1/30 σ
(1)
cr

0.1259
0.1267
0.2434

0.1777
0.1786
0.2823

0.1590
0.1593
0.1792

σ
(2)
cr

0.1485
0.1494
0.1670

0.1461
0.1469
0.1567

0.0944
0.0946
0.0957

p̄cr
0.1410
0.1419
0.1925

0.1567
0.1575
0.1986

0.1160
0.1162
0.1236

1/24 σ
(1)
cr

0.1259
0.1274
0.2422

0.1773
0.1790
0.2795

0.1580
0.1584
0.1775

σ
(2)
cr

0.1485
0.1503
0.1662

0.1458
0.1472
0.1552

0.0938
0.0940
0.0948

p̄cr
0.1391
0.1408
0.1979

0.1590
0.1605
0.2070

0.1206
0.1209
0.1293

1/25 σ1
cr

0.1261
0.1288
0.2402

0.1762
0.1791
0.2750

0.1559
0.1567
0.1746

σ2
cr

0.1488
0.1519
0.1647

0.1449
0.1474
0.1527

0.0926
0.0930
0.0933

p̄cr
0.1375
0.1404
0.2205

0.1606
0.1633
0.2139

0.1243
0.1249
0.1340

The discussed above character of the influence of the piezoelectricity of the face layers
materials on the values of the dimensionless critical stresses can be explained with the
so-called “piezoelectric stiffening” effect of the piezoelectric materials, i.e. with the in-
crease of the material stiffness as a result of the piezoelectricity of that. The mentioned
“piezoelectric stiffening” effect in the “open-circuit” case is more significant than that in
the “short-circuit” case.

Consequently, the fact that an increase of the thickness of the face layers also increases
the stiffness of the piezoelectric layers. However, under fixed h/l (=0.2) thickness of the
plate an increase hF /l cases a decrease of the hC/l as a result of which the whole stiffness
of the plate depends on the ratio of stiffnesses of the core and face layers materials. Under
explanation of the results discussed above it is also necessary to take into consideration
of the complicate character of the dependence between the selected dimensionless critical
stress and the ratio of the stiffnesses of the layers.

Namely with the foregoing statements it can be explained the character of the influence
of the change hF /l on the values of the critical stresses. According to the results given in
Tables 2 and 3 this character can be formulated as follows:

1. For the pairs of materials consisting of PZT + St an increase in the values of hF /l
causes to decrease in all the values of the critical stresses under consideration;

2. For the pairs of materials consisting of PZT + Al the values of p̄cr increase with
hF /l, however dependence among σ1

cr, σ
2
cr and hF / l has non-monotonic character;
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3. The foregoing conclusions take place not only in the “open-circuit” case but also in
the “short-circuit” case.

This completes the discussions of the obtained numerical results.

5. Conclusions

Thus, in the present paper within the scope of 3D linearized theory of stability for
piezoelectric materials, the axisymmetric stability loss of the PZT/Metal/PZT sandwich
circular plate has been investigated. The cases where “open-circuit” and “short-circuit”
conditions with respect to the electrical displacement and electric potential respectively
on the upper and lower surfaces, and short-circuit conditions with respect to the electri-
cal potential on the lateral surface of the face layers are satisfied, are considered. The
corresponding eigenvalue problem is solved numerically by employing FEM. Numerical
results are presented in Tables 2 and 3 for the PZT-5H/Al/PZT-5H, PZT-4/Al/PZT-4,
BaTiO3/Al/BaTiO3, PZT-5H/St/PZT-5H, PZT-4/St/PZT-4 and BaTiO3/St/ BaTiO3
plates, respectively. These results illustrate simultaneously the values of the critical di-

mensionless radial compressive stress σ
(1)
cr acting in the face piezoelectric layer, the values

of the dimensionless critical compressive radial stress σ
(2)
cr acting in the core-metal layer

and the values of the dimensionless critical stress of the intensity p̄cr of the external com-
pressive forces obtained in the case where the piezoelectricity, i.e. the coupling effect, are
taken into consideration (middle and lower numbers in the tables) and in the case where
the coupling effect is not taken into consideration (upper number in the tables). According
to these results, the concrete conclusions on the influence of the electro-mechanical and
geometrical parameters of the sandwich circular plate under consideration on the values
of the dimensionless stresses are made. Note that these conclusions are formulated in the
text of the previous section and the main of them is the increase of the critical stresses as
a result of the piezoelectricity of the face layers materials and the great magnitude of this
increase in the “open-circuit” case than that in the “short-circuit” case.
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Abstract. Offers mathematical model of asymmetric crypto-code system based on McEliece
theoretical-code scheme, practical algorithms of cryptogram/codegram encryption/encoding and
decryption/decoding, analyze the expenses on software implementation of the information protec-
tion crypto-code means based on McEliece TCS.
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1. Introduction and analysis of the literature

Development of telecommunication systems and technologies, the rapid growth of com-
puter technology put forward new requirements for the basic quality of customer service
criteria (authorized users). The main indicators for the results of the analysis of stan-
dards in this area are ensuring authenticity of (reliability) transmitting data and ensuring
the security of the entire processing cycle and data storage [1, 2, 3]. To provide the
authenticity are used mechanisms of error-correcting coding, and to provide security -
cryptographic mechanisms based on the methods of symmetrical and asymmetrical cryp-
tography. Perspective direction, in our opinion, is the use of asymmetric cryptosystems
based on McEliece theoretical - code schemes, which provide integrated (one mechanism)
authenticity of indicators at the level of 29– 212 and cryptographic strength - 230 – 235of
group operations while it build over GF(210). Given cryptosystem has been widely used
with the development of computing capabilities and communication devices and their soft-
ware. In [4], the authors propose to use a cryptosystem McEliece Sequitur software, which
allows integrated to solve performance problems and security in the transmission of confi-
dential information. In [5, 6, 7] McEliece cryptosystem is offered to use for provide basic
security services: confidentiality and integrity in stegasystem based on MPEG Layer-III
or MP3 audio files, to ensure accessibility and digital signature while transferring con-
fidential medical information. At the same time, carried out in [8] analysis of program
realization of asymmetric crypto-code system on the Niederreiter TCS showed significant
implementation complexity that makes it difficult to use theoretical coding schemes for

http://www.cjamee.org 39 c© 2013 CJAMEE All rights reserved.
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the construction of asymmetric cryptographic systems. In [9] are considered the new
approaches to breaking the McEliece cryptosystem based on randomized concatenated
codes.

To provide the required indicators of cryptographic strength and increase volume of
transmitted data by the authors is proposed McEliece modified asymmetric crypto-code
system (MACCS) on the elongated elliptical codes, which is a promising direction in
solving this scientific and technical problems.

2. The aims and tasks of the research

The purpose of work is to consider the mathematical model of McEliece MACCS, al-
gorithms, encryption / decryption information MACCS, study their implementation com-
plexity, analysis of program realization costs of MACCS on modified (elongated) elliptic
codes.

To achieve this goal the following tasks were set:

– develop a method for masking McEliece MACCS on the elongated elliptical codes;

– consider the mathematical model and basic algorithms to transform information
McEliece MACCS on the elongated codes;

– carry out a study of tasks complexity encoding/decoding and encryption/ decryption
codegram/cryptogram when implemented in different levels of cryptographic resistance;

– analyze the costs of software implementation of the crypto-code means of information
security based on McEliece TCS.

3. Developing a method of masking McEliece elliptic codes MACCS

using curve parameters as secret data

Known methods for the modification of linear block codes more fully discussed in [10
– 14]. Fig. 1 shows the most common modification methods.
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Fig. 1. Means of linear block codes modification

Lengthening of (n, k, d) linear block code is to increase the length of the n + x by
adding new information symbols k + x. Expansion of (n, k, d) linear block code is to
increase the length of the n + x by adding new check symbols r + x. Punctuning (n, k, d)
of linear block code is to reduce the length of the n - x by decreasing of check symbols r - x.
Shortening (n, k, d) of linear block code is to reduce the length of the n - x by decreasing
of check symbols k – x. Filling (n, k, d) of linear block code is to increase the length of the
k + x information symbols without increasing the code length. Ejection (n, k, d) of linear
block code is to reduce the k – x information symbols without code length increasing.

Potential resistance of theoretical code schemes defined by the complexity of decoding
the random (n, k, d) block code. Hence, for the construction of a potentially persistent
theoretical code schemes should be used modification techniques that do not allow re-
ducing the minimum code distance. Methods of lengthening and shortening of the linear
block codes do not change the minimum distance and, therefore, allow us to construct
asymmetric crypto-code systems resistant to breaking [15].

Using the definition of elliptic codes [15, 16], we have the following properties:

Property 1. Elliptic (n, k, d) code over GF (q), built through projection ϕ : EC →
P k−1, connected with characteristics k + d ≥ n, where: n ≤ 2

√
q+q+1, k ≥ α, d ≥ n – α,

α = 3 . degF.

Property 2. Elliptic (n, k, d) code over GF (q), built through projection ϕ : EC →
P r−1, connected with characteristics k + d ≥ n, where n ≤ 2

√
q + q + 1, k ≥ n − α,

d ≥ α, α = 3 . degF .
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SupposeA - generating matrix of elliptic (n, k, d) code over GF(q) dimension ofM × n,
M = α, α=3. degF.

A =









F0(P0) F0(P1) ... F0(Pn−1)
F1(P0) F1(P1) ... F1(Pn−1)

... ... ... ...
FM−1(P0) FM−1(P1) ... FM−1(Pn−1)









= ‖Fj (Pi)‖n,M .

To reduce the amount of key data in code-theoretic scheme on elliptic codes use the
following features of the matrix A construction.

The generating matrix A is formed as a result of displaying elliptic curve points by
basis of generating functions. The generating matrix of the elliptic code is built on curve

y2z + a1xy + a3yz
2 = x3 + a2x

2z + a4xz + a6z
3,

ai ∈ GF(q), with the polynomial coefficients, which uniquely define the form of the curve
and, accordingly, multiplicity of projective points which construct elliptic code (its gener-
ating matrix). Following statement is true.

Statement 1. [15] Elliptic (n, k, d) code over GF(q) is uniquely defined by multiplicity
a1. . . a6, ∀ai ∈GF(q).

Proof. Consider an elliptic generating matrix of elliptic (n, k, d) code over GF(q):

A =









F0(P0) F0(P1) ... F0(Pn−1)
F1(P0) F1(P1) ... F1(Pn−1)

... ... ... ...
FM−1(P0) FM−1(P1) ... FM−1(Pn−1)









.

Each character of generating matrix is formed by calculating the value of the generating
function Fj in the point Pi of elliptic curve. The number M of generating functions is
determined by the design characteristics of an elliptic (n, k, d) code. Kind of functions
Fj is determined by degree a of curve points projection and, therefore, defined by code
design parameters.

Thus, if design (n, k, d) elliptic code characteristics is given, the uniqueness of the
generator matrix defines a multiplicity of points P1, P2, ..., Pn, which are computed
generator functions values. A specific multiplicity of points from space P2 is uniquely
determined by polynomial curve view i.e. multiplicity of coefficients a1. . . a6, ∀ai ∈GF(q).

Corollary 1. The volume of private key (in bits) in motivated crypto-code system
based on the theoretical - code McEliece scheme built on elliptical (n, k, d) code over
GF(2m) is determined by the sum of matrix elements X, P, D (in bits), and is given by

lK+
= 5× n2 × k2 ×m. (1)

Proof. Indeed, secret key in McEliece scheme - generating matrix A (generating code
matrix) and masking matrix X, P, D. In order to determine private key (in bits) of an
elliptic (n, k, d) code over GF(2m), according to 1, it is sufficient to define multiplicity
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of coefficients a1. . . a6, ∀ai∈GF(2m), and elements of masking matrixes. Total must be
stored lK+ = 5×n2× k2× m bits of secret key information.

Expression (1) enables to evaluate the amount of secret key data in motivated crypto-
code system based on McEliece theoretical-code scheme with elliptical codes. Fig. 2 shows
the dependence of the volume of key data on the dimension of GF(qm) field for a different
q = 2, 4, 16, 32. The figure also shows the time required for exhaustive search of key data
while performing of 1015 searches in second.

Thus, the proposed method of masking based on construction of the modified theoretical-
code schemes on elliptic codes, in which use the parameters of the elliptic curve as secret
data, can significantly reduce the amount of key data in compare to the classical McEliece
scheme. At the same time as a potentially resistant, are considered scheme with lK + > 80
bits. As follows from the above in Fig. 2 dependencies for building a theoretical code -
scheme should be used elliptical codes with code word length> 220 bits.

Fig. 2. The dependencies of the volume of secret key data in McEliece MACCS

The most simple and convenient method for modifying a linear block code, which
stores the minimum code distance and increases the amount of data transmitted is the
elongation of its length after forming initialization vector, by reducing the information
symbols. Let I = (I1, I2, . . . , Ik) - information vector of (n, k, d) block code. Choose a
subset h of the information symbols, |h| = x, x ≤1

2 k and form initialization vector.

We place an information vector I in a subset of zeros h, i.e. Ii = 0, ∀ Ii ∈ h. On
the other positions of the vector I put the information symbols. After in position of
initialization vector add information symbols. For the modification (lengthening) elliptic
codes will use reduction of the curve points multiplicity. The following statement is true.

Statement 2. Let EC - elliptic curve over GF (q), g = g (EC) - curve genus, EC
(GF (q)) - multiplicity of its points over a finite field, N = EC (GF (q)) - their number.
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Fix a subset h1 ⊆ h, |h1| = x1. Let an elliptic (n, k, d) code over GF(q) built through a
mapping in the form ϕ: X → Pk−1 is given. Then the parameters of the elongate on x1
symbols from GF(q) elliptic code built through mapping ϕ:(X∪h1) → Pk −1, are related
as follows : k ≥ α – x + x1, d ≥ n – α, α = 3 . degF.

Proof. If x1 < x, then the lengthening code on x1 is equivalent to shortening the source
code on the x - x1. Having substituted these parameters in the expression (1), we obtain
the result of corollary 1.

Corollary 2. If you know the type of elliptic curve (multiplicity a1. . . a6, ∀ai∈GF(q)),
the subset of h and h1 are completely determine the modified elliptical (n, k, d) codes
over GF(q), built through the mapping of the form:ϕ:X → Pk −1 and ϕ:(X∪h1) → Pk−1.

Proof. Multiplicity of coefficients a1. . . a6, ∀ai ∈GF(q) is uniquely defined form of the
elliptic curve, and, accordingly, multiplicity of its points EC(GF(q)). Using a mapping in
the form of ϕ: EC → PM and the results of statements 1-2, construct the elliptical (n, k,
d) code over GF(q). If you know the elongating symbols, then we construct the elongated
codes.

According to the statement 3, it are symbols from multiplicity h1, which completely
determine the modified elliptical (n, k, d) code over GF(q).

Statement 3. Fix a subset h1 ⊆ h, |h1 | = x1. Let an elliptic (n, k, d) code over
GF(q), built through a mapping of the form ϕ: X → Pr−1 is given. Then the elliptic code
parameters of the elongated on x1 characters from GF(q), built by mapping of the form
ϕ:(X∪h1) → Pr−1, will be connected by the relations: n = 2

√
q+q+1−x+x1, k ≥ n – α,

d ≥ α, α = 3 . degF.

Corollary 3. If you know the form of an elliptic curve (multiplicity a1. . . a6, ∀ai
∈GF(q)), the subset of h and h1 completely determine the modified elliptical (n, k, d)
codes over GF(q), built through the mapping of the form: ϕ:X → Pr−1 and ϕ:(X∪h1) → Pr−1.

Proof. The multiplicity of coefficients a1. . . a6, ∀ai ∈GF(q) uniquely defines form of
an elliptic curve, and, accordingly, multiplicity of its points EC(GF(q)). Using a mapping
of the form ϕ: EC → P? and results of statements 1 - 2, construct an elliptic (n, k, d)
code over GF(q). If you know the lengthening symbols, then we construct the elongated
codes. According to the statement 3, the symbols of the multiplicities h and h1, which
completely determine the modified elliptical (n, k, d) code over GF(q).

Results of statements 2, 3, and their corollaries allow us to construct modified (elon-
gated) elliptical (n, k, d) codes over GF(q). Define the following algorithm for constructing
modified elliptic codes.

Algorithm for constructing elongated elliptic codes.

Step 1. Fix an elliptic curve over GF(q). Find a lot of simple points of the curve
EC(GF(q)): (P1, P2, . . . , PN). Construct a shortened (n, k, d) code over GF(q) as a
result of mapping ϕ: X → PM .

Step 2. Fix a subset of points of the curve h1(GF(q)): (Px1, Px2, . . . , Pxx1), h1 ⊆ h,
|h1| = x1.

Step 3. Construct a mapping ϕ: (X∪h1) → PM . If M = k, we obtain an elongated
elliptical (n, k, d) code over GF(q) with the parameters, n = 2

√
q + q + 1 − x + x1,

k ≥ α – x + x1, d ≥ n – α, α = 3 . degF. (see Corollary of Statement 4). If M = r, we
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obtain an elongated elliptical (n, k, d) code over GF(q) with the following parameters:
n = 2

√
q+ q+1−x+x1, k ≥ n – α, d ≥ α, α = 3 . degF (see Corollary of Statement 3).

Using the result of Statement 2 and its corollaries, define a theoretical-code scheme on
the modified elliptic codes built by mapping of the form ϕ:X → Pk−1 and ϕ:(X∪h1) → Pk−1.
The following statement is true.

Statement 4. The elongated elliptical (n, k, d) code over GF(2m), built through the
mapping of the form ϕ:(X∪h1) → Pk−1, determines the modified theoretic-code scheme
with parameters:

- the dimension of secret key (in bits):

lK+ = (x− x1) · | log2 (2
√
q + q + 1) |; (2)

- the dimension of information vector (in bits):

lI = (α− x+ x1) ·m; (3)

- the dimension of cryptogram (in bits):

lS = (2
√
q + q + 1− x+ x1) ·m; (4)

- relative transmission rate:

R = (α− x+ x1)/ (2
√
q + q + 1− x+ x1) . (5)

Proof. According to the result of Statement 1, a modified crypto-code system based on
McEliece theoretical-code scheme built using the generating matrix of algebraic (n, k, d)
block of code over GF(2m), has the following parameters: the size of the secret key k×n
symbols from GF(2m); a vector of length k of information symbols from GF(2m); length
of codegram - n symbols from GF(2m); relative transmission rate - R = k / n.

Enumerate all the points of the curve. Number of them N ≤ 2
√
q+q+1. Consequently,

to enumerate the curve points it is necessary | log2
(

2
√
q + q + 1

)

| bits. If the subset
power of shortening symbols is | h| = x, then to denote all shortening symbols is needed
x · log2

(

2
√
q + q + 1

)

bit. These symbols are held in secret and set the amount of key
data - the expression (2). If the subset power of lengthening symbols is | h1 | = x1, then
to denote all modifications symbols is required (x− x1) · | log2

(

2
√
q + q + 1

)

| bit. These
symbols are held in secret and set the amount of key data - the expression (2).

Using the result of Statement 3 and its corollaries, define theoretical – code scheme on
the modified elliptic codes built by mapping in the form ϕ:X → Pr−1 and ϕ:(X∪h1) → Pr−1.
The following statement is true

Statement 5. The elongated elliptical (n, k, d) code over GF(2m), built through the
mapping of the form: ϕ:(X∪h1) → Pr−1 specifies the modified theoretic - code scheme
with parameters:

- the dimension of the secret key is defined by expression (2);
- the dimension of information vector (in bits):

lI = (2
√
q + q + 1− α) ·m; (6)
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- the dimension of codegram is defined by expression (3);

- the relative transmission rate:

R = (2
√
q + q + 1− α) / (2

√
q + q + 1− x+ x1) . (7)

Proof. According to the result of Statement 1, theoretical - code scheme is constructed
using the check matrix of algebraic block (n, k, d) code over GF(2m), has the following
parameters: an information vector of length k characters from GF(2m); codegram length -
n symbols from GF(2m); relative transmission rate - R = k / n. Substitute the parameters
of modified (shortened and elongated) elliptic (n, k, d) codes over GF(q), built through
the mapping of the form ϕ:X → Pr−1 and ϕ:(X∪h1) → Pr−1(see statement 3) obtain,
accordingly, the expression (6), (7).

Thus, the results of statements 2, 3 and their corollaries allow to build a modified
elongated elliptical (n, k, d) codes over GF(q). Statements 4 and 5 allow you to specify
a modified asymmetric crypto-code system on McEliece TCS on modified elliptic codes,
thereby providing the required cryptographic resistance.

Consider the formal description of a modified asymmetric crypto-code system of infor-
mation protection based on the use of modification methods.

4. Mathematical model and basic algorithms of information converting

in the proposed McEliece system on elongated codes

Mathematical model of modified asymmetric crypto-code information protection sys-
tem using algebraic block codes based on McEliece theoretic -code scheme based on elonga-
tion (information symbols increassng) is formally defined by combination of the following
elements:

- multiplicity of plaintexts

M = {M 1,M 2, ...,M qk}, whereMi = {I0, Ihr1
, .. Ihrj

, Ik−1}, ∀Ij ∈ GF (q), hj–information

symbols equal to zero, |h| = 1
2k, i.e. Ii = 0, ∀ Ii ∈ h; hr–information symbols of length-

ening k, |h| = 1
2k;

- multiplicity of closed texts (codegrams)

C = {C1, C2, ..., Cqk}, where Ci = (c∗X0
, c∗hr1

, ..., c∗hrj
, c∗Xn−1

), ∀c∗Xj
∈ GF (q);

- multiplicity of straight mappings (based on the use of generating matrix public key)

ϕ = {ϕ1,ϕ2, ...,ϕs}, where ϕi : M → Chr
, i = 1, 2, ..., s;

- multiplicity of reverse mappings (based on the use of masking matrix private key)

ϕ−1 = {ϕ−1
1 ,ϕ−1

2 , ...,ϕ−1
s }, where ϕ−1

i : Chr
→ M , i = 1, 2, ..., s;

- multiplicity of keys, parametrizing straight mapping (the public key of an authorized
user)

Ka1 = {K1a1
,K2a1

, ...,K1s1
} = {GX

EC1

a1
, GX

EC2

a1
, ..., GX

ECs
a1

},

whereGX
ECi
a1

-generating n×k matrix masked as a random albebra-geometric block (n, k, d)

code with elrments from GF (q), i.e. ϕi : M
Kia1−→ Chr

, i = 1, 2, ..., s.
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ai – multiplicity of coefficients of the polynomial curve a1. . . a6, ∀ai∈GF(q), uniquely
defining a specific set of curve points from the space P2.

- multiplicity of keys, parameterizing reverse mappings (personal (private) key of au-
thorized user)

K∗ = {K∗

1,K
∗

2, ...,K
∗

s} = {{X,P,D}1, {X,P,D}2, ..., {X,P,D}s},

{X,P,D}i = {Xi, P i,Di},
where Xi – masking nondegenerate randomly equiprobably formed by source of keys ma-
trix k × k with elements from GF (q); P i – permutational randomly equiprobably formed
by source of keys matrix n×n with elements from GF (q); Di – diagonal formed by source
of keys matrix n× n with elements from GF (q), i.e.

ϕ−1
i : C

K∗

i−→ M, i = 1, 2, ..., s.

Complexity of performing reverse mapping ϕ−1
i without knowledge a key K∗

i ∈ K∗ asso-
ciated with solution of theoretic complexity problems in random code decoding (generic
position code).

Initial data in the description of the considered asymmetric crypto-code information
protection systems are the parameters described in the previous model.

In asymmetric crypto-code system based on McEliece TCS modified (elongated) alge-
brogeometric (n, k, d) code Chr

with rapid decoding algorithm is masking random (n, k, d)
code Chr

* by multiplying generating matrix GEC of Ck−hj
code on the secret masking

matrices Xu, P u and Du, what provide formation of open key for authorized user:

GECu
X = Xu ·GEC · P u ·Du, u ∈ {1, 2, ..., s},

where GEC – generating n × k matrix of algebrogeometric (n, k, d) code with elements
from GF (q), built on the basis of using the polynomial curve coefficients a1. . . a6, ∀ai
∈GF(q), chose by user, uniquely defining a specific set of curve points from the space P 2.

Forming secret text Cj ∈ Chr
by the entered plaintext Mi ∈ M and given public

key GX
ECu
a1

, u ∈ {1, 2, ..., s} is performed by forming of shortened code word and then
elongation of masked code with adding to its randomly formed vector e = (e0, e1, ..., en−1):

Cj = ϕu (Mi, G
u
X) = Mi · (Gu

X)T + e.

For each formed secret text Cj ∈ Chr
the appropriate vector e = (e0, e1, ..., en−1) acts

as a single session key, i.e. for specific Ej , vector e is formed randomly, equiprobably and
independently of the other secret texts.

The channel receives C∗

j = Cj − Ck−hj
+Chr

.
On the receiving side, an authorized user who knows the rule of masking, the number

and location of zero information symbols can take advantage of a fast decoding algorithm
of algebrogeometric code (with polynomial complexity) to recover the plaintext:

Mi = ϕ−1
u

(

C∗

j , {X,P,D}u
)

.
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To recover the plaintext an authorized user replaces lengthening symbols on non-zero
information symbols

C∗

j = Chr
→ Ck−hj

,

from recovered secret text Cj reduces the effect of the secret of permutational and diagonal
matrices P u and Du:

C = C∗

j · (Du)−1 · (P u)−1 =
(

Mi · (Gu
X)T + e

)

· (Du)−1 · (P u)−1 =

=
(

Mi · (Xu ·G · P u ·Du)T + e
)

· (Du)−1 · (P u)−1 =

= Mi · (Xu)T · (G)T · (P u)T · (Du)T · (Du)−1 · (P u)−1 + e · (Du)−1 · (P u)−1 =

= Mi · (Xu)T · (G)T + e · (Du)−1 · (P u)−1 ,

decodes received vector with Berlekamp-Massey algorithm [10 – 14]:

C = Mi · (Xu)T ·
(

GEC
)T

+ e · (Du)−1 · (P u)−1 ,

i.e. get rid of the second term and from the multiplier
(

GEC
)

T in the first term at right
side of equation, and then reduces the effect of masking matrix Xu.

Received result of decoding M∗

i is need to be multiplied by (Xu)−1:

M∗

i · (Xu)−1 = Mi.

Received solution is plaintext Mi, to which are added lengthening symbols: Mj =
Mi + hr – the essence of sent message.

Consider the practical algorithms of codegram forming and decoding, and a block
diagram of communication protocol in a real time at developed McEliece ACCS.

The algorithm of codegram formation in modified McEliece asymmetric crypto-code
system with shortened modified code define by sequence of the following steps:

Step 1. Fix a definite field GF(q). Fix an elliptic curve y2z + a1xyz + a3yz
2 =

x3 + a2x
2z+ a4xz + a6z

3 and set of it points EC(GF(q)):(P1, P2, . . . , PN) over GF(q).
Fix subset of points h(GF(q)): (Px1, Px2, . . . , Pxx), h ⊆ EC(GF(q)), |h|=x and keep it
in secret.

Step 2. Form initialization vector IV=EC–hj, hj–information symbols equal to zero,
|h| =1

2k, i.e. Ii = 0, ∀ Ii ∈ h;

Step 3. By entering information vector I form the code word c. If (n, k, d) code over
GF(q) is given by its generating matrix in such case c = IG.

Step 4. Form the random vector of error e such, as w(e)≤t, t = b(d− 1)/2c . Add
formed vector to code word, receive the code word: c*=c+e.

Step 5. Form the codegram by initialization vector symbols deleting (shortening):
c∗X = c∗ − IV .

Fig. 3 shows algorithm of encoding in McEliece MACCS.
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Fig. 3. Algorithm of codegram formation in McEliece MACCS

Algorithm of codegram decoding in modified theoretical-code schemas on elliptic codes
define by sequence of the following steps:

Step 1. Entering codegram to be decoding. Entering the private key - generating and
/ or the elliptic code check matrix.

Step 2. Codegram - a code word with elliptic code errors. Error vector weight w(e)≤t.
Decoding codegram – find error vector.

Step 3. Form needed information vector.

Step 4. Add to information vector symbols of information packages from initialization
vector position.

Offered decoding algorithm on McEliece MACCS is shown on fig.4.

c∗X = c∗ + IV (hr).
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Fig. 4. Algorithm of codegram decoding in McEliece MACCS

Block diagram of information exchange protocol in a real time mode with the use of
asymmetric cryptosystems based on a modified McEliece TCS with modified (elongated)
elliptical codes is shown in Fig. 5.

Fig. 5. Protocol of information exchange in a real time mode with use of modified
McEliece TCS with elongated EC
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5. Evaluation of energy costs for program implementation and the

complexity of the proposed McEliece MACCS code transformation

To estimate time and speed parameters is common to use the unit of measurement cpb
where cpb (cycles per byte) - the number of processor cycles, which should be spent to
process 1 byte of incoming information. Algorithm complexity calculates from expression:

Per = Utl ∗ CPU clock/Rate

where Utl– utilization of the CPU core (%);

Rate – algorithm bandwidth (bytes/sec).

In table. 1 are shown dependency research results of code length sequence of algebro-
geometric code in McEliece and Niederraiter TCS from number of processor cycles due to
executing elementary operations in program realization of crypto-code systems.

Note:

* duration of 1000 operations in processor cycles: symbol reading – 27 cycles, string
comparing – 54 cycles, string concatenation – 297 cycles;

** for calculating is taken processor with a clock speed 2 GHz taking into account
operating system loading 5 %

Table 2 shows the investigation results for evaluating time and speed parameters of
procedures of forming and decoding information in the non-symmetric crypto-code systems
based on McEliece ACCS and MCCS.
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Analysis of table 1.2 shows that the use of modified (elongated) elliptic codes allows
to save the volume of transmitted in McEliece a crypto-code system data, but at the same
time provide the required level of cryptographic resistance during the implementation over
smaller field GF(26– 28) through the use of entropy of initialization vector hr.

Research information reliability and secrecy, which can be provided by modified crypto-
code systems on elliptic curves. Fix (n, k, d) elliptic code over GF(q). Define modified
crypto-code scheme on the basis of McEliece TCS on modified (elongated) codes. Define
the session key e – error vector, which adds to code word during codegram formation. Let
w(e) ≤ t, t = b(d− 1)/2c. Denote share of error vector weight e by symbol ρ = w(e) / t.
Then potential resistance of theoretical-code scheme with elliptic codes, will be determined
by ρ×t, interference resistance of transmitted codegrams by (1 – ρ) × t. The complexity
of hacking the proposed modified system define by the expression of the random code
decoding analysis complexity with commutation decoder:

IK+ = Nnokpnr,where Nnokp ≥
Ct
n

Ct
n−k

=
n (n− 1) ... (n− t− 1)

(n− k) (n− k − 1) ... (n− k − t− 1)

Interference resistance is defined by minimal ratio signal/noise, needed for providing
the required reliability. Fix the ratio signal/noise and modulation type. Suppose that
digital message transmission is carried out through discrete channel without memory, i.e.
errors in sequently transmitted code symbols happen independently with probability Po.
Then the probability of the error multiplicity i on the block length is equal [10 – 14]:

Pi = Ci
nP

i
o (1− Po)

n−i .

If the decoding procedure allows correcting t = b(d− 1)/2c errors, the probability of
an incorrect decoding is:

Pou =
n
∑

i=t+1

Pi =
n
∑

i=t+1

Ci
nP

i
o (1− Po)

n−i .
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At the integrated solution of problems of reliability and information secrecy of data
transmitting, modified crypto-code system will be correct (1 – ρ) × t happened errors,
hence:

Pou =

n
∑

i=(1−ρ)t+1

Pi =

n
∑

i=(1−ρ)t+1

Ci
nP

i
o (1− Po)

n−i .

Fix GF(210) and Po = 10−3.

Fig. 6 shows dependencies of theoretical-code scheme hacking complexity with per-
mutational decoder IK+ (ρ) while use of elliptic codes with relative speed R. Fig. 7 shows
dependencies of error decoding probability Pou (ρ) with an integrated solution of problems
of reliability and information secrecy.

As it is seen from the dependences shown in Fig. 6, 7, modified crypto-code system
based on McEliece TCS have high indexes of reliability and information secrecy. Increasing
index ρ leads on the one hand to increasing of circuit resistance and on the other side reduce
its noise resistance. Research integrated increasing of reliability and information secrecy
of data transmission with use of offered systems.

Fig. 8 summarizes dependencies of error decoding probabilities and complexity of
hacking theoretical-code scheme with elliptic codes under different R and ρ = 0, 9.
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As it is seen from the dependences shown in Fig. 8 proposed modified crypto-code
systems based on McEliece TCS provide high resistance and reliability indicators of the
processed and transmitted information. Their use will enable use open channels of IP-
networks for transmitting confidential (commercial) information in the real-time mode
thus providing required indexes of reliability and safety.

6. Conclusions

In a result of conducted researches:

1. Analyzed overall structure of the asymmetrical crypto-code systems construction
based on McEliece TCS enabling to provide integrated (with single device) the required
indicators for reliability, efficiency and data security. A major shortcoming of ACCS based
on McEliece TCS is big volume of key data, that constricts their use in different commu-
nication system areas (today cryptographic resistance on the level of provable resistance
model is provided while building ACCS in Galua field GF(213)). Using modified elongated
elliptic codes allows reducing the volume of key data while keeping the cryptographic re-
sistance requirements and transmission of big volume of information.

2. Offered mathematical model, practical algorithms of codegram encoding/decoding
in developed McEliece MACCS enable to implement high-speed information processing at
the real-time mode. The complexity of codegram formation and decoding is defined by
encoding/decoding complexity of modified (elongated) elliptic codes and a polynomially
depends on the code length and it correcting dependence.

3. Transferring the key sequence using a modified McEliece ACCS based on the short-
ened codes allows using open communication channels of communication systems and
significantly reducing the volume of the key sequences that are stored by users of the
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system. Evaluation software implementation complexity of information protection crypto-
code means based on McEliece TCS confirms the assumption if reducing the computing
costs to calculate cryptogram/codegram, necessity to store key data (public key) by au-
thorized user.

Performed researches of error vector ρ usage enable on the basis of the main indexes of
telecommunication system channels to enhance one of the integrated mechanisms indicator
– reliability or safety.
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Free Vibrations of Fluid-containing Spheres

F.A. Seyfullayev ∗, S.R. Agasiyev

Abstract. In the paper free vibrations of a spherical shell containing compressed fluid are studied.
Its natural frequencies of vibrations are determined under some values of the parameters of the
system, influence of geometrical and physical parameters of the system ”spherical shell-fluid” on
free vibrations of the sphere is studied.

Key Words and Phrases: spherical shell, frequency of free vibrations, potential motion, density

1. Introduction

Shells as elements of machines and constructions are widely used in aircraft and ship-
building, etc. Therefore, recently the researchers are interested in the issues associated
with dynamic behavior of thin-shelled constructions that in working conditions are in con-
tact with external medium. The problems of free vibrations of elastic thin shells contacting
with elastic medium and fluid, occupy important place among dynamical contact prob-
lems of shell theory. Filled shells may be used in practice for storage and transportation
of products. As the problems of strength and life of the shells of tanks are very actual in
connection with oil and gas recovery, necessity of storage, transportation and processing
of different chemical mixtures. Furthermore, the Earth may be considered as a special
shells with a filler.

Frequencies and forms of free vibrations of spherical and cylindrical shells contacting
with elastic and liquid medium are studied in [1]-[3]. Approximate simple formulas for
calculating frequency and determination of vibration forms of the systems under consid-
eration that restricts the use of the obtained results, as in a number of important cases it
excludes the possibility of conducting qualitative analysis of the studied processes, are ob-
tained by approximate methods. These investigations are connected with great difficulties
as it is necessary to solve transcendental system of equations.

Free vibrations of a thin-walled shell containing compressible fluid, are studied in [4]-
[6]. Under some values of the parameters of the system, its eigenvalues of the frequencies
of vibrations were determined, influence of geometrical and physical parameters of the
system ”cylindrical shell-fluid” on free vibrations of the cylinder is studied.

∗Corresponding author.
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In [7], a problem of free vibrations of a thin-walled elastic spherical shell containing
an elastic medium with different properties, usually with modulus of elasticity that is
significantly less than the elasticity modulus of the shell material, is studied.

Analysis of vibrations of fluid-containing sphere with regard to finite thickness differs
from the analysis of a very thin sphere with the fact that loads are not introduced into
the equation of motion, and in the equations of motion the terms containing derivatives
along the radius, are not ignored. The external load on the shell enters into the bound-
ary conditions. The results may be used when analyzing the tanks subjected to seismic
impacts, at transportation and also when studying the Earth vibrations.

In this connection, in this paper we consider free vibrations of a finitely-thickened
sphere of radius r1 and r2, respectively and filled with compressible fluid. The equation
of motion of a spherical shell is disconnected into two parts: the system describing the
potential motion, and the equation describing the vortex motion [8].
The first system is of the form:
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Here r is the distance from the center of the sphere, w is radial displacement, φ is
displacement potential, G is shear modulus, ν is Poisson’s ratio, q is density of the shell’s
material.

λ2 =
q

G
ω2,

ω is the frequency of vibrations.
p is the pressure on the inner boundary. ∆0 is an operator:
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. (3)
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According to the problem under consideration the solutions are represented by means
of spherical harmonics Yn:

w = ωnYn, φ = φnYn, p = pnYn. (4)

Then
∆0w = −n (n+ 1)w, ∆0φ = −n (n+ 1)φ, (n = 0, 1, 2) ,

equations (1) and (2) take the form:
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For the case of potential motion, the pressure of the compressed fluid is determined as
follows [10]:

p = −ρ
∂Π

∂t
(6)

where ρ is the fluid density, Π is velocity potential satisfying the equation:

a2∆Π = ∂2Π/∂t2 (7)

∆ is the Laplace operator, a is the velocity of perturbation propagation.
Radial velocity of the shell and potential of fluid’s velocity on the contact surface are

connected with the relations:
∂w

∂t
=

∂Π

∂r
, (8)

where:
Π = Πωie

ωit, w = wωe
iωt, p = pωe

iωt.
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Taking into account that under vibrations the relations (6) and (8) take the form:

ωwω =
∂Πω
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(9)

pω = ρωΠω.

Equation (7) turns into the Helmholtz equation. Then the solution of the problem
under consideration will have the form:
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here n = 2, then
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z cos z (z2 − 6)− 3 sin z (z2 − 2)
.

Having integrated the first two equations in (5) within r1 and r2 and assuming that
the thickness of the solid body of the sphere is small compared with the radius, we get:
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Here the values of quantities without indication of the limit, are average.
Connect the deformation in radial direction with inner pressure p, assuming the layer

as centrally-symmetric static. Then preserving in the first equation of the system (5) two
terms, we have:
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r
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or
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2
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here εin is deformation.
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From the third and fourth equations of the system (5) it follows:
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Under the conditions stipulated above, the second equation of the system (5) gives:
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The equation of the system (24) is a system of homogeneous linear equation with respect
to variables wn and φn. For nontrivial solution, its determinant should equal zero. Then
the frequency equation has the form:
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In this case we use the following denotation:
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Then (27) takes the form:
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This expression shows dependence of mω frequency of unfilled sphere on the ω fre-
quency of the system.

The graphs of dependences were constructed for different values of parameters. Dif-
ferent parameters of the sphere’s thickness were taken into account (fig.1., fig. 2., fig. 3.,
fig. 4.)

When calculating, the following parameters were taken into account:

γ = ω = 0, 3; n = 2; r = 100 m; ρ = 1000
kg

m3
; a = 1400

m

sec.
.
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Fig. 1. h = 0, 2m

Fig. 2. h = 0, 5m
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Fig. 3. h = 1m

Fig. 4. h = 5m

As is seen from the graphs, the frequency of the system for the first mode is linearly
connected with the frequency of the empty shell. The system’s frequency reaches approx-
imately 30 hertz.

However, for different thicknesses h of the shell for greater thickness, the frequency
of the empty shell has the least value (for h = 0, 3m, ω0 = 37hertz, for h = 5m,
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ω0 = 27hertz). At the end of the mentioned interval, the system’s frequency asymp-
totically approaches to the constant value. Passage to the second mode is accompanied
by the “failure” 30 hertz. Then with the same interval the picture of the first mode is
repeated. At the ends of the second interval, the system’s frequency passes to the constant
value.
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(Lp, Lq)-boundedness of the Fractional Integral Operator
with Rough Kernels on Heisenberg Groups

G.A. Dadashova

Abstract. Let Ω is an homogeneous of degree zero function on Heisenberg group Hn, integrable
to a power s > 1 on the unit sphere generated by the corresponding Heisenberg metric. We study
Lp(Hn)-boundedness of the maximal operator MΩ with rough kernels Ω in Heisenberg groups and
the

(
Lp(Hn), Lq(Hn)

)
-boundedness of the fractional maximal and integral operators MΩ,α and

IΩ,α, 0 < α < Q with rough kernels.

Key Words and Phrases: fractional maximal function, fractional integral, Heisenberg group.

2010 Mathematics Subject Classifications: Primary: 42B25, 42B35, 43A15.

1. Introduction

The Heisenberg group [3, 4, 7, 9] appears in quantum physics and many fields of
mathematics, including harmonic analysis, the theory of several complex variables and
geometry. In this paper, we establish the norm inequalities for the maximal operator
on the Heisenberg group in Lebesgue spaces. We begin with some basic notation. The
Heisenberg group Hn a non-commutative nilpotent Lie group with the product spaces
R2n+1 that have the multiplication

xy =
(
x′ + y′, x2n+1 + y2n+1 + 2

n∑
k=1

xkyn+k − xn+kyk

)
,

where x = (x′, x2n+1), and y = (y′, y2n+1). By the definition, the identity element on Hn

is 0 ∈ R2n+1, while the inverse element of x = (x′, t) is x−1 = (−x′,−t).
The corresponding Lie algebra is generated by the left-invariant vector fields:

Xj =
∂

∂xj
+ 2xn+j

∂

∂x2n+1
, j = 1, . . . , n,

Xn+j =
∂

∂xn+j
− 2xj

∂

∂x2n+1
, j = 1, . . . , n,
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X2n+1 =
∂

∂x2n+1
.

The only non-trivial commutator relations are[
Xj , Xn+j

]
= −4X2n+1, j = 1, . . . , n.

The non-isotropic dilation on Hn is defined as δt(x
′, x2n+1) = (tx′, t2x2n+1) for t > 0.

The Haar measure dx on this group coincides with the Lebesgue measure on R2n+1. It is
easy to check that

d
(
δtx
)

= rQdx.

In the above, Q = 2n+ 2 is the homogeneous dimension of Hn.
The norm of x = (x′, x2n+1) ∈ Hn is given by

|x|h = (|x′|4 + x2
2n+1)1/4,

where |x′|2 =
2n∑
k=1

x2
k. The norm satisfies the triangle inequality and leads to the left-

invariant distance d(x, y) = |xy−1|h. With this norm we define the Heisenberg ball,

B(x, r) = {y ∈ Hn : |xy−1| < r},

where x is the center and r is the radius. The volume of B(x, r) is Cnr
2n+2, where Cn is

the volume of the unit ball B1 ≡ B(e, 1), i.e.,

Cn =
2πn+ 1

2 Γ
(

1
2

)
(n+ 1)Γ(n)Γ

(
n+1

2

) .
Let SH = {x ∈ Hn : |x|h = 1} be the unit sphere in Hn equipped with the normalized

Haar surface measure dσ and Ω be δt-homogeneous of degree zero, i.e. Ω(δtx) ≡ Ω(x),
x ∈ Hn, t > 0. The fractional maximal function MΩ,αf and the fractional integral IΩ,αf
by with rough kernels, 0 < α < Q of a function f ∈ Lloc

1 (Hn) are defined by

MΩ,αf(x) = sup
t>0
|B(x, t)|−1+ α

Q

∫
B(x,t)

|Ω(y−1x)| |f(y)|dy,

Iαf(x) =

∫
Rn

Ω(y−1x) f(y)∣∣y−1x
∣∣Q−α
h

dy.

If Ω ≡ 1, then Mα ≡ M1,α and Iα ≡ I1,α are the fractional maximal operator and
the fractional integral operator, respectively. If α = 0, then MΩ ≡ MΩ,0 is the maximal
operator with rough kernel. It is well known that the fractional maximal operator on
Heisenberg groups play an important role in harmonic analysis (see [4, 8]).

The boundedness of classical operators of the real analysis, such as the maximal oper-
ator and singular integral operators etc, from one Lebesgue space to another one is well
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studied by now, and there are well known various applications of such results in partial
differential equations. In this paper, we study the Lp-boundedness of the maximal opera-
tor with rough kernels in Heisenberg groups, including also the case of weak boundedness.
Also we obtain

(
Lp(Hn), Lq(Hn)

)
-boundedness of the fractional maximal and integral op-

erators MΩ,α and IΩ,α, 0 < α < Q with rough kernels.
Throughout the paper, for a measurable set E, |E| denotes the normalized Haar mea-

sure of E, i.e., |B1| =
∫
B1
dx = 1. By A . B we mean that A ≤ CB with some positive

constant C independent of appropriate quantities. If A . B and B . A, we write A ≈ B
and say that A and B are equivalent. For a number p, p′ denotes the conjugate exponent
of p. d B are equivalent.

2. Boundedness of the fractional integral
operators in the spaces Lp(Hn)

In this section we prove the Lp(Hn)-boundedness of the operatorMΩ and the
(
Lp(Hn), Lq(Hn)

)
-

boundedness of the operators IΩ,α and MΩ,α.

Theorem 1. Let Ω ∈ Ls(SH), 1 < s ≤ ∞, be δt-homogeneous of degree zero. Then the
operator MΩ is bounded in the space Lp(Hn), p > s′.

Proof.
In the case s =∞ the statement of Theorem 1 is known and may be found in [2] and

[8]. So we assume that 1 < s <∞.
Note that

‖Ω(·−1x)‖Ls(B(x,t)) =
(∫

B(0,t)
|Ω(y)|sdy

)1/s

=
(∫ t

0
rQ−1dr

∫
SH

|Ω(ω)|sdσ(ω)
)1/s

(1)

= c0 ‖Ω‖Ls(SH) |B(x, t)|1/s,

where c0 =
(
QvH

)−1/s
and vH = |B(0, 1)|.

The case p =∞ is easy. Indeed, making use of (1), we get

‖MΩf‖L∞(Hn) ≤ ‖f‖L∞(Hn) sup
t>0
|B(x, t)|−1+ 1

s′ ‖Ω(·−1x)‖Ls(B(x,t))

≤ c0 ‖Ω‖Ls(SH) ‖f‖L∞(Hn).

So we assume that s′ < p <∞. Applying Hölder’s inequality, we get

MΩf(x) ≤ sup
t>0
|B(x, t)|−1‖Ω(·−1x)‖Ls(B(x,t)) ‖f‖Ls′ (B(x,t)). (2)

Then from (2) and (1) we have

MΩf(x) ≤ c0 ‖Ω‖Ls(SH) sup
t>0
|B(x, t)|−1+1/s ‖f‖Ls′ (B(x,t))
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= c0 ‖Ω‖Ls(SH)

(
sup
t>0
|B(x, t)|−1‖|f |s′‖L1(B(x,t))

)1/s′

= c0 ‖Ω‖Ls(SH)

(
M(|f |s′)(x)

)1/s′

. (3)

Therefore, from (3) for 1 ≤ s′ < p <∞ we get

‖MΩf‖Lp(Hn) ≤ c0 ‖Ω‖Ls(SH)

∥∥(M(|f |s′)(·)
)1/s′∥∥

Lp(Hn)

= c0 ‖Ω‖Ls(SH)

∥∥M(|f |s′)∥∥1/s′

Lp/s′ (Hn)
. ‖|f |s′‖1/s

′

Lp/s′ (Hn) = ‖f‖Lp(Hn).

We prove the boundedness of the fractional maximal and integral operators MΩ,α, IΩ,α

with rough kernel from Lp(Hn) to Lq(Hn), 1 < p < q < ∞, 1/p − 1/q = α/Q, and from
the space L1(Hn) to Lq(Hn), 1 ≤ q <∞, 1− 1/q = α/Q.

Theorem 2. Suppose that 0 < α < Q and the function Ω ∈ L Q
Q−α

(SH) is δt-homogeneous

of degree zero. Let 1 ≤ p < Q
α and 1/p − 1/q = α/Q. Then the fractional integration

operator IΩ,α is bounded from Lp(Hn) to Lq(Hn) for p > 1 and from L1(Hn) to WLq(Hn)
for p = 1.

Proof. We denote

K(x) :=
Ω(x)

|x|Q−αh

for brevity, and may assume that K(x) ≥ 0. We have∣∣∣{x ∈ Hn : IΩ,αf(x) > λ}
∣∣∣ ≤ ∣∣∣{x ∈ Hn : IΩ,αf(x) > C−1

Q,αλ}
∣∣∣ ≤ I1 + I2,

where

I1 :=
∣∣∣{x ∈ Hn : |K1

µ ∗ f(x)| > λ

2

}∣∣∣, I2 :=
∣∣∣{x ∈ Hn : |K2

µ ∗ f(x)| > λ

2

}∣∣∣,
K1
µ(x) = (K(x)− µ)χ

E(µ)
(x) and K2

µ(x) = K(x)−K1
µ(x),

µ > 0 and E(µ) = {x ∈ Hn : |K(x)| > µ}. Note that

|E(µ)| ≤ Bµ
Q

Q−α . (4)

where B = 1
α‖Ω‖

Q
Q−α
L Q
Q−α

(SH) as seen from the following estimation:

|E(µ)| ≤ 1

µ

∫
E(µ)

|Ω(x)|
|x|Q−αh

dx

=
1

µ

∫
SH

Ω(x′)dσ(x′)

∫ ( |Ω(x′)|
µ

) 1
Q−α

0
rα−1dr = Bµ

Q
Q−α .
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By means of (4) we can prove the estimate

‖K2
µ‖Lp′ (Hn) ≤

(Q− α
Q

Bq
) 1
p′
µ

Q
(Q−α) q , 1 ≤ p < Q

α
.

For p = 1 it easily follows from (4), and for p > 1 we have∫
Rn
|K2

µ(x)|p′dx = p′
∫ µ

0
tp
′−1|E(t)|dt

≤ p′B
∫ µ

0
t
p′−1− Q

Q−αdt

=
Q− α
Q

Bqµ
Q

Q−α
p′
q .

Then by the Young inequality we obtain

‖K2
µ ∗ f‖L∞(Hn) ≤ ‖K2

µ‖Lp′‖f‖Lp(Hn) ≤
(Q− α

Q
Bq
) 1
p′
µ

Q
(Q−α) q ‖f‖Lp(Hn).

Now for a λ > 0, we choose µ such that(Q− α
Q

Bq
) 1
p′
µ

Q
(Q−α) q ‖f‖Lp(Hn) =

λ

2
,

then ∣∣∣{x ∈ Hn : |K2
µ ∗ f(x)| > λ

2

}∣∣∣ = 0.

Thus ∣∣∣{x ∈ Hn : IΩ,αf(x) > λ}
∣∣∣ ≤ ∣∣∣{x ∈ Hn : |K1

µ ∗ f(x)| > λ

2

}∣∣∣
≤
( 2

λ
‖K1

µ ∗ f‖Lp(Hn)

)p
. (5)

The following estimations take (4) into account:∫
Hn
|K1

µ(x)|dx =

∫
E(µ)

(
|K(x)| − µ

)
dx

≤
∫ ∞

0
|E(t+ µ)|dt

≤ B
∫ ∞
µ

t
− Q
Q−αdt (6)

=
αB

Q− α
µ
− α
Q−α .
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For all f ∈ L∞(Hn) and x ∈ Hn, from (6) it follows that

|K1
µ ∗ f(x)| ≤ ‖f‖L∞(Hn)

∫
Hn
|K1

µ(x)|dx ≤ αB

Q− α
µ
− α
Q−α ‖f‖L∞(Hn). (7)

For all f ∈ L1(Hn), from (6) follows

‖K1
µ ∗ f‖L1(Hn) ≤

∫
Hn

∫
Hn
|K1

µ(x− y)||f(y)|dxdy

≤ αB

Q− α
µ
− α
Q−α ‖f‖L1(Hn). (8)

Thus from (7) and (8) follows that the operator T1 : f → K1
µ∗f is of (∞,∞) and (1, 1)-

type. Then by the Riesz-Thorin theorem the operator T1 is also of (p, p)-type, 1 < p <∞,
and

‖T1f‖Lp(Hn) ≤
αB

Q− α
µ
− α
Q−α ‖f‖Lp(Hn). (9)

From (5) and (9) we get∣∣∣{x ∈ Hn : IΩ,αf(x) > λ}
∣∣∣ ≤ ( 2

λ
‖K1

µ ∗ f‖Lp(Hn)

)p
≤ C

( 1

λ
‖f‖Lp(Hn)

)q
, (10)

where C is independent of λ and f .

To finish the proof, i.e. prove that the operator IΩ,α is bounded from Lp(Hn) to Lq(Hn)

for 1 < p < Q
α and 1/p − 1/q = α/Q, observe that the inequality (10) tells us that IΩ,α

is bounded from L1(Hn) to WLq(Hn) with 1 − 1/q = α/Q. We choose any p0 such that

p < p0 <
Q
α , and put 1

q0
= 1

p0
− α
Q . By (10) the operator IΩ,α is of weak (p0, q0)-type. Since

it is also of weak (1, q)-type by the Marcinkiewicz interpolation theorem, we conclude that
IΩ,α is of

(
Lp, Lq

)
-type.

Corollary 1. Under the assumptions of Theorem 2, the fractional maximal operator MΩ,α

is bounded from Lp(Hn) to Lq(Hn) for p > 1 and from L1(Hn) to WLq(Hn) for p = 1.

Proof. It suffices to refer to the known fact that

MΩ,αf(x) ≤ CQ,αIΩ,αf(x), CQ,α = |B(0, 1)|
Q−α
Q ,
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Global Bifurcation from Zero and Infinity in Nonlinear
Beam Equation with Indefinite Weight

R.A. Huseynova

Abstract. We consider a nonlinear eigenvalue problem for the beam equation with an indefinite
weight function. We investigate the bifurcation from zero and infinity for this problem and prove
the existence of unbounded continua bifurcating from the principal eigenvalues of the corresponding
linear problem contained in the classes of positive and negative functions.

Key Words and Phrases: nonlinear eigenvalue problem, bifurcation point, principal eigenvalues,
global continua, indefinite weight.
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1. Introduction

We consider the following fourth order boundary value problem

(`u)(t) ≡ (p(t)u′′(t))′′(t)− (q(t)u′(t))′ = λg(t)f(u(t)), t ∈ (0, 1), (1)

u′(0) cosα− (pu′′)(0) sinα = 0,
u(0) cosβ + Tu(0) sinβ = 0,
u′(1) cos γ + (pu′′)(1) sin γ = 0,
u(1) cos δ − Tu(1) sin δ = 0,

(2)

where λ ∈ R is a spectral parameter, Ty ≡ (pu′′)′−qu′, p ∈ C2[0, 1] with p(t) > 0, t ∈ [0, 1],
q ∈ C1[0, 1] with q(t) ≥ 0, t ∈ [0, 1], g ∈ C[0, l] is a sign-changing weight function (i.e.
meas{t ∈ (0, 1) : σu(t) > 0} > 0 for each σ ∈ {+ , −}) and α, β, γ, δ ∈ [0, π2 ] with
except the cases α = γ = 0, β = δ = π /2 and α = β = γ = δ = π /2. The nonlinear
term f ∈ C(R;R) and satisfies the conditions: tf(t) > 0 for t ∈ R\{0} and there exist
f0, f∞ ∈ (0, +∞) such that

f0 = lim
|t|→0

f(t)

t
, f∞ = lim

|t|→∞

f(t)

t
. (3)

It is well known that fourth-order problems arise in many applications (see [8, 24]
and the references therein); problem (1)-(2) in particular, is often used to describe the
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deformation of an elastic beam, which is subject to axial forces (see [8]). Problems with
sign-changing weight arise from population modeling. In this model, weight function g
changes sign corresponding to the fact that the intrinsic population growth rate is positive
at same points and is negative at others, for details, see [10, 15].

The purpose of this work is to study the global bifurcation of solutions of problem
(1)-(2) in the classes of positive and negative functions, emanating from the zero and
infinity.

It should be noted that the nonlinear problem (1)-(2) is closely related to the following
linear eigenvalue problem

(p(t)u′′(t))′′(t)− (q(t)u′(t))′ = λg(t)u(t), t ∈ (0, 1),
u ∈ B.C. , (4)

where by B.C. we denote the set of boundary conditions (2). The nonlinear problem
(1)-(2) and linear problem (4) in the case p ≡ 1, q ≡ 0 and α = γ = π

2 , β = δ = 0 was
previously considered in [23] the results of which contain gaps.

The problems (4) and (1)-(2) in the case when the first condition in (3) is satisfied
are studied in [18], where, in particular, it was shown that there exist two positive and
negative principal eigenvalues, λ1 and λ−1, respectively, of the linear problem (4) and
the corresponding eigenfunctions have no zeros in (0, 1); moreover, also proved that for
each k ∈ { 1 , −1 } and each ν ∈ {+ , −} there exists a continuum (connected closed set)
Lνk of solutions of problem (1)-(2) bifurcating from the point (λk, 0), which is unbounded
in R × C3[0, 1], and ν sgn y(x) = 1, x ∈ (0, 1) for each (λ, y) ∈ Lνk. Note that, similar
problems have been considered before in, for example, [10] and [30], but the results of
these works are not true (see [4]).

In Section 2, a family of sets to exploit oscillatory properties of eigenfunctions of prob-
lem (4) and their derivatives is introduced. The existence of global continua of solutions of
the problem (1)-(2) bifurcating simultaneously from the zero and infinity, and contained
in these sets is proved in Section 3. Here we give the application of global bifurcation
technique to the study of positive or negative solutions for the some nonlinear boundary
value problems.

2. Preliminary

In [23] the authors note that there are few papers discussing the existence and multi-
plicity of positive solutions to (4), the main reason of which is that the spectrum of the
linear eigenvalue problem is not clear. They showed that the problem (4) has exactly two
principal eigenvalues, one positive and one negative, and the corresponding eigenfunctions
do not change its sign on (0, 1). But it should be noted that in the proof of this fact, the
authors did not give a correct reference to the work [16]. However until recently there no
results on the multiplicities of the first m (m > 2) (for the definition of m, see [19, 21])
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eigenvalues and on the oscillatory properties for the corresponding eigenfunctions of the
following problem

(p(t)u′′(t))′′(t)− (q(t)u′(t))′ + h(t)u(t) = µu(t), t ∈ (0, 1),
u ∈ B.C. , (5)

where h ∈ C([0, 1];R). In [19, 21] it was shown that, in the case of h(t) not identically
vanishing on any subinterval of [0, 1], the eigenvalues of problem (5) are real, and simple,
except, possibly, the first m eigenvalues, and the corresponding eigenfunctions with num-
bers larger than m have the Sturm oscillation properties, i.e. the eigenfunction has only
simple nodal zeros and the number of zeros of the eigenfunction is equal to the serial num-
ber of the corresponding eigenvalue increased by 1. But, in [23], the authors in proving
Theorem 2.1 recall the work [16] and claim that the eigenfunction, corresponding to the
first eigenvalue of the problem (5), has no zeros in the interval (0, 1). Unfortunately in
[16] oscillatory properties of eigenfunctions of the problem (4) were not studied. Recently,
in [3] (see also [5, 6]) it was established that all eigenvalues of the problem (5) are simple
and the corresponding eigenfunctions have the Sturm oscillation properties.

For the linear eigenvalue problem (4) we have the following result.

Theorem 1. [18, Theorem 2.1] . The spectral problem (4) has two sequences of real
eigenvalues

0 < λ+1 ≤ λ+2 ≤ ... ≤ λ+k 7→ +∞,

and

0 > λ−1 ≥ λ−2 ≥ ... ≥ λ−k 7→ −∞

and no other eigenvalues. Moreover, λ+1 and λ−1 are simple principal eigenvalues, i.e. the
corresponding eigenfunctions u+1 (t) and u−1 (t) have no zeros in the interval (0, 1).

Similar problems have been considered in [9, 13, 14, 17, 22].

Let E be the Banach space of all continuously three times differentiable functions
on [0, 1] which satisfy the conditions B.C. and is equipped with its usual norm ||u||3 =
||u||∞ + ||u′||∞ + ||u′′||∞ + ||u′′′||∞, where ||u||∞ = max

t∈[0,1]
|u(t)|.

Let

S = S1 ∪ S2,

where

S1 = {u ∈ E : u(i)(t) 6= 0, Tu(t) 6= 0, t ∈ [0, 1], i = 0, 1, 2 }

and

S2 = {u ∈ E : there exists i0 ∈ {0, 1, 2} and t0 ∈ (0, 1) such that u(i0)(t0) = 0,
or Tu(t0) = 0 and if u(t0)u

′′(t0) = 0, thenu′(t)Tu(t) < 0 in a neighborhood of t0,
and if u′(t0)Tu(t0) = 0, thenu(t)u′′(t) < 0 in a neighborhood of t0}.
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Note that if u ∈ S then the Jacobian J = ρ3 cosψ sinψ (see [1-3, 5, 6, 20]) of the Prüfer-
type transformation 

u(x) = ρ(x) sinψ(x) cos θ(x),
u′(x) = ρ(x) cosψ(x) sinϕ(x),
(pu′′)(x) = ρ(x) cosψ(x) cosϕ(x),
Tu(x) = ρ(x) sinψ(x) sin θ(x),

(6)

does not vanish on (0, 1).

For each u ∈ S we define ρ(u, t), θ(u, t), ϕ(u, t) , w(u, t) to be the continuous functions
on [0, 1] satisfying

ρ(u, t) = u2(t) + u′2(t) + (p(t)u′′(t))2 + (Tu(t))2,

θ(u, t) = arctg
Tu(t)

u(t)
, θ(u, 0) = β − π/2 ,

ϕ(u, t) = arctg
u′(t)

(pu′′)(t)
, ϕ(u, 0) = α ,

w(u, t) = ctgψ(u, t) =
u′(t) cos θ(u, t)

u(t) sinϕ(u, t)
, w(u, 0) =

u′(0) sinβ

u(0) sinα
,

and ψ(u, t) ∈ (0, π/2), t ∈ (0, 1), in the cases of u(0)u′(0) > 0; u(0) = 0; u′(0) =
0 and u(0)u′′(0) > 0, ψ(u, t) ∈ (π/2, π), t ∈ (0, 1), in the cases u(0)u′(0) < 0; u′(0) =
0 and u(0)u′′(0) < 0; u′(0) = u′′(0) = 0, β = π/2 in the case ψ(u, 0) = 0 and α = 0 in the
case ψ(u, 0) = π/2.

It is apparent that ρ, θ, ϕ, w : S × [0, 1]→ R are continuous.

Remark 3.1. By (7) for each u ∈ S the function w(u, t) can be determined by one of
the following relations

a) w(u, x) = ctgψ(u, x) =
(pu′′)(x) cos θ(u, x)

u(x) cosϕ(u, x)
, w(u, 0) =

(pu′′)(0) sinβ

u(0) cosα
,

b) w(u, x) = ctgψ(u, x) =
(pu′′)(x) sin θ(u, x)

Tu(x) cosϕ(u, x)
, w(u, 0) = −(pu′′)(0) cosβ

Tu(0) cosα
,

c) w(u, x) = ctgψ(u, x) =
u′(x) sin θ(u, x)

Tu(x) sinϕ(u, x)
, w(u, 0) = − u′(0) cosβ

Tu(0) sinα
.

For each ν ∈ {+ , −} let Sν1 denotes the subset of such u ∈ S that:

1) θ(u, 1) = π/2− δ, where δ = π/2 in the case ψ(u, 1) = 0 ;

2) ϕ(u, 1) = 2π − γ or ϕ(u, 1) = π − γ in the case ψ(u, 0) ∈ [0, π/2); ϕ(u, 1) = π − γ
in the case ψ(y, 0) ∈ [π/2, π), where γ = 0 in the case ψ(y, l) = π/2 ;

3) for fixed u, as t increases from 0 to 1, the function θ(u, t) (ϕ(u, t)) strictly increasingly
takes values of mπ/2, m ∈ {−1, 0, 1} (sπ, s ∈ {0, 1, 2}) ; as t decreases from 1 to 0,
the function θ(u, t) (ϕ(u, t)), strictly decreasing takes values of mπ/2, m ∈ {−1, 0, 1}
(sπ, s ∈ {0, 1, 2}) ;
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4) the function νu(t) is positive in a neighborhood of t = 0.

By [2; Theorem 4.4], [6; Theorem 1.1], [7; Lemma 2.2, Theorems 5.1, 5.2, 6.1, 6.3-
6.5] and Theorem 2.1 we have u+1 , u

−
1 ∈ S1, i.e the sets S+

1 and S−1 are nonempty. It
immediately follows from the definition of these sets that they are disjoint and open in E.
Moreover, by [2; Lemma 2.2] if u(t) ∈ ∂Sν1 ∩ C4[0, 1], ν ∈ {+ , −}, then u(t) has at least
one zero of multiplicity 4 in (0, 1).

Let u+1,+ (u−1,+) denote the unique eigenfunction of (4) corresponding to the eigenvalue

λ+k (λ−k ) such that u+1,+ ∈ S
+
1 (u−1,+ ∈ S

+
1 ) and ||u+1,+||3 = 1 (||u−1,+||3 = 1).

Lemma 1. (see [1, 2]) If (λ, u) ∈ R×E is a solution of (1)-(2) and u ∈ ∂Sν1 , ν ∈ {+ , −},
then u ≡ 0.

3. Global bifurcation from zero and infinity for the problem (1)-(2)

It should be noted that in order to prove the existence of at least one solution of
the problem (1)-(2) in the class of positive functions, in [23], the authors used global
bifurcation results (see [23, p. 6598]) which also contains gaps. This result is similar to
that for the nonlinear Sturm-Liouville problems which has been obtained by Rabinowitz
[26]. In the nonlinear Sturm-Liouville problem considered in [26] nodal properties are
preserved on the continuous branch of nontrivial solutions emanating from bifurcation
points and this prevents the first alternative in part (ii) of [29; Lemma 2.6] occurring. But
for the nonlinear fourth order eigenvalue problem nodal properties need not be preserved,
so we must considered this alternative. Therefore, in the study of nonlinear fourth-order
eigenvalue problem there is a need to study the following questions: to construct the
classes of functions that preserve the oscillation properties of eigenfunctions of the linear
problem (4) and their derivatives, such that if the solution of the nonlinear problem is
contained on the boundary of this set, then this must be identically zero (if means that
continuous branch of solutions can not go from the boundary of this set). This question
was solved in a recent paper [3] (see also [2]), in which global bifurcation from zero of
solutions of the nonlinear eigenvalue problems for ordinary differential equations of fourth
order was studied.

Let L denotes the closure of the set of nontrivial solutions of (1)-(2).

Theorem 2. For each k ∈ {−1, 1} and each ν ∈ {− , + } there exists a continuum Lνk

of solutions of problem (1)-(2) in (R× S1) ∪
{(

λsgnk1
f0

, 0

)}
∪
{(

λsgnk1
f∞

,∞
)}

which meets(
λsgnk1
f0

, 0

)
and

(
λsgnk1
f∞

,∞
)

in Rsgnk × E, where Rsgnk = {χ ∈ R : 0 < χsgnk ≤ +∞}.

Proof. By virtue of (3) there exists the functions τ ∈ C(R,R) and ε ∈ C(R,R) such
that

f(u) = f0u+ τ(u), f(u) = f∞u+ ε(u), (7)
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and

lim
|u|→ 0

τ(u)

u
= 0, lim

|u|→+∞

ε(u)

u
= 0. (8)

It follows from (7) that the problem (1)-(2) can be rewritten in the following form

(`u)(t) = λf0g(t)u(t) + λg(t)τ(u(t)), t ∈ (0, 1),
u ∈ B.C. (9)

or
(`u)(t) = λf∞g(t)u(t) + λg(t)ε(u(t)), t ∈ (0, 1),
u ∈ B.C. . (10)

Since λ = 0 is not eigenvalue of the linear problem (5) for h ≡ 0 it follows that the
problems (9) and (10) are equivalent to the following integral equations

u(t) = λf0

1∫
0

K(t, s)g(s)u(s)ds+λ

1∫
0

K(t, s) g(s) τ(u(s)) ds, (11)

u(t) = λf∞

1∫
0

K(t, s)g(s)u(s)ds+λ

1∫
0

K(t, s) g(s) ε(u(s)) ds, (12)

respectively, where K(t, s) is a Green’s function of differential expression `(u) with respect
to the B.C. .

Define L : E → E by

(Lu)(t) =

1∫
0

K(t, s) g(s)u(s) ds

F : R× E → E by

(F(u))(t) =

1∫
0

K(t, s) g(s) τ(u(s)) ds.

and G : R× E → E by

(G(u))(t) =

1∫
0

K(t, s) g(s) ε(u(s)) ds.

It is easily seen that the operator L is compact in E and the operators F : R×E → E
and G : R× E → E are completely continuous. Thus problems (11) (or (9)) and (12) (or
(10)) can be rewritten in the following equivalent forms

u = λf0Lu+ λF(u) (13)
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and

u = λf∞Lu+ λG(u). (14)

By (3) we have

F(u) = o(||u||3) as ||u||3 → 0, (15)

and

G(u) = o(||u||3) as ||u||3 → +∞ . (16)

By virtue of (15) and (16) the linearization of (13) at u = 0 and of (14) at u = ∞ are
spectral problems

u = λf0Lu (17)

and

u = λf∞Lu, (18)

respectively. Obviously, the problem (17) and (18) are equivalent to the spectral problems

`u(t) = λf0g(t)u(t), t ∈ (0, 1),
u ∈ B.C. (19)

and
`u(t) = λf∞g(t)u(t), t ∈ (0, 1),
u ∈ B.C. , (20)

respectively.

The principal eigenvalues
λsgnk1
f0

, k ∈ {−1, 1}, of problem (19) are the characteristic
values of problem (17) and are simple. Hence all the conditions of Theorem 1.3 from [26]
are satisfied and there exists a continua L

λ
sgnk
1
f0

≡ Lk, k ∈ {−1, 1}, of the set of solutions

of problem (13), as in Theorem 1.3 in [26]. By virtue of [3, Theorem 1.1] (see also [12,
Theorem 2]) continua Lk, k ∈ {−1, 1}, decomposes into two subcontinua L−k and L+

k with

meets

(
λsgnk1
f0

, 0

)
, are contained in (R×S−1 ) ∪

{(
λsgnk1
f0

, 0

)}
and (R×S+

1 ) ∪
{(

λsgnk1
f0

, 0

)}
,

respectively, and both are unbounded in Rsgnk × E.

On the other hand, since the principal eigenvalues
λsgnk1
f∞

, k ∈ {−1, 1}, of problem
(20) are the characteristic values of problem (18) and are simple, by the discussion above
and [25; Theorem 2.4] (see also [27, 28]) for each k ∈ {−1, 1} there exists an unbounded

component D
λ
sgnk
1
f∞

≡ Dk ⊂ Rsgnk × E of L which contains

(
λsgnk1
f∞

,∞
)

. In addition, if

Λ ⊂ Rsgnk is an interval such that Λ ∩ σ(L, g) =
λsgnk1
f∞

(σ(L, g) is a set of eigenvalues of

problem (4)) andM is a neighborhood of

(
λsgnk1
rf∞

,∞
)

whose projection on Rsgnk lies in Λ

and whose projection on E is bounded away from 0, then either

(i) Dk\M is bounded in Rsgnk × E, in which case Dk\M meets Rsgnk × {0}, or
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(ii) Dk\M is unbounded; if additionally Dk\M has a bounded projection on Rsgnk,

then Dk\M contains
(
λsgnkm
f∞

,∞
)

, where m ∈ N and m > 1.

Moreover, Dk, k ∈ {− , + }, can be decomposed into two subcontinua D−k , D+
k and

there exists a neighborhood Q ⊂ M of

(
λsgnk1
f∞

,∞
)

such that (λ, u) ∈ D−k (D+
k ) ∩ Q and

(λ, u) 6=
(
λsgnk1
f∞

,∞
)

implies

(λ, u) = (λ, susgnk1,+ + w),

where
s < 0 (s > 0) and |λ− λk1| = o(1), w = o(|s|) at |s| =∞.

Consequently,
if (λ, u) ∈ Dνk\Q, then (λ, u) ∈ Rsgnk × Sν1 . (21)

Let
(λn, un) ∈ Lνk and |λn|+ ||un||3 →∞ as n→∞.

We note that λnsgnk > 0 for all n ∈ N, since L ∩ ({ 0} × E\{ 0}) = ∅. As in the proof of
Theorem 1.1 from [23] we can prove that there exists a positive constant M such that

|λn| ≤M, n ∈ N,

which implies
||un||3 →∞ as n→∞.

It is obvious that
un = λnf∞Lun + λnG(un). (22)

Let vn = un
||un||3 . Then by (22) vn satisfies the relations

vn = λnf∞Lvn + λn
G(un)

||un||3
(23)

By virtue of completely continuity of operators L and G, and the boundedness of {λn}∞n=1

it follows from (23) that there exists a subsequence of the sequence {(λn, vn)}∞n=1 (which
we will relabel as {(λn, vn)}∞n=1) which is convergent to (λ̃, v) in Rsgnk×E, with ||v||3 = 1,
v ∈ Sν1 and

v = λ̃f∞Lv. (24)

Then by Theorem 2.1 it follows from (24) that

λ̃ =
λsgnk1

f∞
.

Hence

(λn, un)→

(
λsgnk1

f∞
,∞

)
as n→∞ ,
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which by (21) implies that

Dνk\Q ⊂ Lνk. (25)

Moreover, it follows from the proof of [25; Corollary of Theorem 2.4] that Dνk contains a
subcontinuum Dν

k lying in R × Sν1 such that either Dν
k\Q is unbounded or intersects the

line R = {(λ, 0) ∈ R× E} of trivial solutions at

(
λsgnk1
f0

, 0

)
. Consequently, by (25) we

have Lνk = Dν
k. The proof of this theorem is complete.

Corollary 1. Let r be a real constant such that

r ∈

(
λsgnk1 sgnk

f∞
,
λsgnk1 sgnk

f0

)
or

r ∈

(
λsgnk1 sgnk

f0
,
λsgnk1 sgnk

f∞

)
, k = −1 or k = 1.

where f0 6= f∞. Then the problem

(`u)(t) = rg(t)f(u(t)), t ∈ (0, 1),
u ∈ B.C.

has at least one negative and one positive solutions.
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1. Introduction

Let f(z) =
∞∑
0
anz

n be an integer

M(r) = max
|z|=r
|f(z)|, µ(r) = max

n
|an|ru, µ(r)→∞, M(r)→∞, r →∞.

The estimation µ(r) ≤ M(r) is always true. But it is very important to get the esti-
mation M(r) from above by µ(r). In the papers of Wiman [1] and Valiron, the estimation
of the following form

M(r) ≤ µ(r)(logµ(r))
1
2

+ε

that is fulfilled out of some set E ⊂ (0,∞) of finite logarithmic measure, was established. In
1966, Rosenbloom [3] established more general result: for some class of functions ϕ(y) > 0,
y > 0 the estimation of type

M(r) ≤ µ(r)
√
ϕ(logM(r)) (1)

is fulfilled out of some set of weighted measure. In 1966, Kovari [4] established similar
results for power series with finite radius of convergence. In the author’s (see [5]) theory
of Wiman-Valiron-Rosenbloom type estimations was constructed for evolution equations
in Hilbert space. In the present paper we establish estimations of type (1) for evolution
(parabolic) equations containing pseudo-differential operator of the Hormander class.

∗Corresponding author.
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2. Problem statement

Let us consider the equation

u′ (t) +A (t)u (t) , (2)

where A (t) ∈ Lmp,δ is a positive self-adjoint pseudo-differential (2) operator with a discrete
spectrum. Let on D (t) the strong derivative A′ (t) be determined and for U ∈ D (A) the
condition of the form(

A′ (t)u, u
)
≤ k (t) (A (t)u, u) , 0 < k (t) ∈ L1 (0,∞) (∗)

be fulfilled.
Denote byN (λ) the amount of all eigen values λk (t) of the operator A (t) not exceeding

λ (with regard to multiplicity). The following lemma was proved in the paper (see [5], p.
84) of the author.

Lemma 1. The following differential inequality

e2g(t) ≤ µ (t)P
(
g′, g′′

)
, (3)

where 0 < t < T , g (t) = 1
2 log (u (t) , u (t)) the u (t) is solution of equation (2),

µ (t) = max
k
|(u (t) , ϕk (t))| ,

P (a; b) = N
(
a+ C

√
b+ k (t) a

)
−N

(
a− C

√
b+ k (t) a

)
. (4)

(Here and in the sequel denotes C absolute an constant, but not always identical). We
briefly note the basic idea (fragments) of the method of proof based on probability. This
method was constructed by us and is a very significant and strong modification of Rosem-
bloom’s problem constructed by him only for entire functions.

Associate to the function u (t) some random variable ξ whose range of values is the set
of eigen-values λk (t) of the operator A (t), and distribution of probabilities (dependent on
parameter t) we define by the

Pk = P (ξ = λk (t)) = Ck (t)2 ‖u (t)‖2 ,

where Ck (t) ≡ (u (t) , ϕk (t)) are the Fourier coefficients of the function u (t) with respect
to orthonormed system {ϕk (t)} of eigen functions of the operator A (t).

Having calculated the mathematical expectation Mξ, and variance Dξ, we find:

Mξ = −g′ (t) , Dξ ≤ g′′ (t) k (t) g′ (t) .

Applying the Chebyshev known inequality from probability theory

P (|ξ −Mξ| > ε) ≤ Dξ| ε2,
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we get (take ε = C
√
Dξ)∣∣∣−P (∣∣ξ + g′

∣∣ ≤ C√Dξ) ≤ C√Dξ ≤ 1
∣∣∣C2.

Hence we have

1− 1

C2
≤ P

(∣∣ξ + g′
∣∣ ≤ ε) =

∑
k∈I

pk =
T

‖u‖2
∑
k∈I

C2
k ,

where I = {k : |λk + g′| ≤ ε}. Consequently, we have:

‖u (t)‖2 ≤ Cµ (t)2
∑
k∈I

1 (5)

It is clear that by (4),∑
k∈I

1 = N
(∣∣g′∣∣+ C

√
g′′ + k (t) g′

)
−N

(∣∣g′∣∣− C√g′′ + k (t) g′
)
≡

≡ P
(∣∣g′∣∣ , g′′) .

Then, (5) yields the estimation of the form

‖u (t)‖2 ≤ Cµ (t)2 P
(∣∣g′∣∣ , g′′) . (6)

If we find a function Ψ (y), y > 0 such that in some sense the inequality of following
form

P
(∣∣g′∣∣ , g′′ (t)) ≤ Ψ (g (t)) , (7)

is valid, then, from (6) we get that it holds the estimation of type

‖u (t)‖ ≤ Cµ (t)
√
ψ (log ‖u (t)‖),

that is Riman-Valiron type estimation for evolution equation (2). The conditions under
which inequalities of type (8) are fulfilled, were studied in the papers (see [5]).

In the following theorem there is an assumption on asymptotic behavior of the func-
tion N (λ), and Wiman-Valiron-Rosenbloom type estimations for solving equation (2) are
established on its bases.

Theorem 1. Let the function N (λ) for the operator A ∈ Lmp,δ (Ω) of the Hormander class
satisfy the following conditions:

N (λ) ≤ Cλs+1 lnλ, s+ 1 > 0, C > 0 (8)

and for λ > δ > 0, λ→∞ the inequality of type (0 ≤ ν ≤ 1):

∆N (λ, δ) ≡ N (λ+ δ)−N (λ− δ) ≤ Cδλs (1 + λν) (1 + lgλ). (9)
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Let the function ϕ (y) > 0, y > 0 do not decrease and be such that for some α > 0,
following the condition be fulfilled

∞∫  y∫
ϕ (t) dt

−α dy < +∞. (10)

Then, out of possibly some certain set EC (0,∞) of finite measure, the following
Wiman-Valirob type estimation is valid:

‖u (t)‖ ≤ Cµ (t) 4
√
ϕ (log ‖u (t)‖). (11)

Proof. We immediately note that conditions (9) and (10) satisfy the function, for
example, of type:

N (λ) = λp lnλ, N (λ) = λ
m
n +O

(
λ

n−1
m

)
, N (λ) = λpl (λ) ,

where l (λ) is a slowly growing function, i.e. lim
λ→∞

λ l
′(λ)
l(λ) = 0. For example, the functions

l (λ) = lnλ, l (y) = ln lnλ, l (λ) = (lnλ)2, α > 0 and others are this type functions.
Introduce a change of variables:

ξ (t) =

t∫
0

Φ (p) dρ, (12)

where

Φ (ρ) =

t∫
ρ

k (τ) dτ.

For any function h (t) denote h̃ (ξ) = h (t (ξ)), where t (ξ) is determined from the
relation (13). We get:√

g′′ (t) + k (t) g′ (t) =
√
g̃′′ (t)Φ (t) , g̃′′ > 0.

From condition (10) we get an inequality of the form
(
λ = g̃′, δ =

√
g̃′′
)

:

∆N (λ, δ) ≤ C
√
g̃′′g̃′s

(
1 + g̃′ν

)
. (13)

Thus, the problem is reduced to the fact that it is necessary to find such a function
ϕ (y) that the inequality (in the sequel, instead of g̃ we simply write g):√

g′′g′
(
1 + g′ν

)
≤
√
ϕ (g) (14)

is fulfilled.
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Thus, we get the system of differential inequalities{ √
g′′g′s+ν ≤ α

√
ϕ (g)√

g′′g′s ≤ β
√
ϕ (g)

(α+ β ≤ 1) . (15)

Let E =
{√

g′′g′s+ν > α
√
ϕ (g)

}
. Consider the first inequality of the system:

g′′g′2(s+ν)+1 ≤ α2ϕ (g) g′(
g′p
)′ ≤ Cϕ (g) g′, p = 2 (s+ ν) + 2,

g′ ≤

C g∫
ϕ (t) dt

1/p

≡ ψ1 (g) .

Then
E =

{
g′ (t) > ϕ1 (g)

}
.

From condition (11) we have

mesE =

∫
E

dt <

∫
E

g′ (t) dt

ϕ1 (g)
≤
∫
g(E)

dg

ϕ1 (g)
≤
∞∫
0

dg

ϕ1 (g)
=

∞∫ ∞∫ ϕ (t) dt

− 1
p

dg <∞.

Thus, subject to the condition (11), out of the set E, mesE < ∞ the first inequality
of the system (16) is fulfilled. In the similar way, we obtain that the second inequality of
this system is also fulfilled out of some set of finite measure. Consequently, the system (1)
is true out of E, mesE <∞. Then the inequality (15) is fulfilled out of E. Consequently,
∆N (g′, g′′) ≤ ϕ (g).

Then, by Lemma 1, estimation (12) is valid.

Theorem 2. Let for λ > δ > 0, λ→∞ the condition of the form

∆N (λ, δ) ≤ Cλn/m
(
δ + λ−

1
m

)
(1 + lnλ) (16)

be fulfilled. Then estimation of type (12) is valid. The proof is similar.

Remark 1. The condition of type (12) appears when for differential operator A ∈ Lmp,δ (Rn)
of order m in Rn, the function N (λ) grows as λ → ∞ faster than power λ, for example
as λp lnλ.

In Shubin’s monograph [p. 130], there is an example of the operator for which the
function N (λ) grows faster than power λ

N (λ) = Cλk0 (lnλ)l , λ→∞,

where k0 > 0 while l is a natural number that is equal to the order of the pole at the point
z = −k0 of zeta function

ζ (z) =

∞∫
0

tzdN (t) .
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For a self-adjoint positive elliptic operator of order m, Hormander [see [7], p. 134]
obtained for N (λ) [see also [8]-[10]] the exact formula of the form

N (λ) = Cλn/m +O
(
λ

n−1
m

)
.

In Shubin’s papers this result was proved by the original method owing to which this
formula was developed.

In the book [[7], p. 134] for a self-adjoint elliptic operatorA ∈ Lmp,δ (Ω) on n-dimensional
closed manifold Ω ⊂ Rn such that its main symbol am (x, ξ) is positive, for the function
N (λ) it was established the following formula with the unimproved residue

N (λ) = V (λ)
(

1 +O
(
λ−

1
m

))
, λ→∞ (17)

where the function V (λ) is determined by the main symbol am (x, ξ) of the equality

V (λ) =
1

(2π)n

∫
am(x,ξ)<λ

dxdξ, λ→∞.

In this case, as λ→∞ the asymptotics

N (λ) = V (λ) = Cλn/m,

where

C =
1

(2π)n

∫
am(x,ξ)<λ

dxdξ.

But if the operator A ∈ Lmp,δ is a general pseudo-differential operator of order m with main
symbol am (x, ξ) > 0, then as was shown in [7], the asymptotics of the function N (λ),
determined by formula (18), may also have a not power growth, for example as λn/m lnλ.
Just in such cases a condition of type (17) appears on N (λ).

In formula (18) assume V (λ) = λp lnλ, ν = −1/m and consider the difference

∆N (λ, δ) = (λ+ δ)p ln (λ+ δ)− (λ− δ)p ln (λ− δ) +

+C (λ+ δ)p−ν ln (λ+ δ)− (λ− δ)p−ν ln (λ− δ) = A+B;

A = λp
{(

1 +
δ

λ

)p [
lnλ+ ln

(
1 +

δ

λ

)]
−
(

1− δ

λ

)p [
lnλ+ ln

(
1− δ

λ

)]}
=

= λp
{(

1 + p
δ

λ

)(
lnλ+

δ

λ

)
−
(

1− p δ
λ

)(
lnλ− δ

λ

)}
=

2δλp−1 (1 + lnλ) .

Similarly, B = 2δλp−1−ν (1 + lnλ).
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Consequently: for ∆N (λ, δ) we get an inequality of type

∆N (λ, δ) ≤ εδλ
n
m
−ν−1 (1 + λν) (1 + lnλ) . (18)

If we assume λ = g′, δ =
√
g′′, then obtain g′′ ≤ Cg′2 (out of the set of finite measure).

Thus, for the function ∆N we get an inequality of the form

∆N
(
g′, g′′

)
≤ C

√
g′′g′s

(
1 + g′ν

) (
1 + ln g′

)
, 0 < ν < 1, s =

n

m
− 1− ν.

Let A ∈ Lmp,δ be an elliptic operator with the main symbol am (x, ξ) > 0. Consider the
function

V (t) =
1

(2π)n

∫
am(x,ξ)<λ

dxdξ. (19)

The following statement was established in the paper [7, p. 206].

Proposition 1. Let at some ε > 0, δ > 0, c > 0 for V (t) the condition of type

V
(
t+ Ct1−ε

)
− V (t)

V (t)
= O

(
t−δ
)
, t→ +∞

be fulfilled. Then for the function N (λ) the asymptotic formula

N (λ) = V (λ)
(
t+O

(
λ−δ

))
, t→ +∞ (20)

is valid.

Using the method of the paper [7, p. 206] we can formulate a proposition more
convenient for application.

Proposition 2. Let V (t) > 0 grow for t > t0 and for some 0 ≤ α, ν ≤ 1 the condition of
type

V ′ (t) |V (t) = O
(
Etα+ν

)
, t→ +∞ (21)

be fulfilled.

Then for the function N (λ) the asymptotic formula

N (λ) = V (λ)
(
1 +O

(
λ−ν

))
(22)

is valid.

Indeed, we denote ϕ (t) = V ′ (t)|V (t). Integrating, we get

V (t+ atα)− V (t)

V (t)
= exp

t+Ct2∫
t

ϕ (τ) dτ − 1. (23)
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As |ϕ (t)| ≤ C1t
−(α+ν), then for a+ ν 6= 1 we have (γ = 1− (a+ ν))

t+Ct2∫
t

ϕ (τ) dτ ≤ C1t
γ
[(

1 + Ctα−1
)γ − 1

]
= C1t

γ
[
Ctα−1

]
= C2t

−ν .

The same estimation is obtained for λ+ ν = 1 as well.
Since eλ − 1˜X as X → 0 nC2t

−ν → 0 then from (24) we get

V (t+ Ctα)− V (t)

V (t)
= O

(
t−ν
)
, t→ +∞.

Hence, formula (23) follows from the above mentioned result of the paper [7].
Note that the asymptotic function N (λ) determined from formula (23) may have also

a not power series. For example, for the function V (t) = tp ln t we have

V ′ (t)

V (t)
=
p

t
+

1

t ln t
= O

(
t−1
)
, t→ +∞.

Consequently, in proposition 2, a + ν = 1. Then by virture of this proposition, for
N (λ) we get a formula of the form

N (λ) = λp lnλ
(
1 +O

(
λ−ν

))
. (24)

Let us consider a simpler example. Then V (t) = tpl (t), where l (t) > 0 is a slowly
growing function, i.e.

lim
t→∞

t
l′ (t)

l (t)
= 0. (25)

For this function we get
V ′ (t)

V (t)
=
p

t
+
l′ (t)

l (t)
.

Taking (26) into account, hence we find V ′(t)
V (t) = O

(
t−1
)
, i.e. in proposition 2 we have

α+ ν = 1. Consequently, for N (λ) the following formula is valid

N (λ) = λpl (λ)
(
1 +O

(
λ−ν

))
.

Remark 2. Let the symbol a (x, ξ) of the operator A ∈ Lmp,δ satisfy the conditions of the
form

1) a (y)→ +∞ as |y| → +∞, where y = (x, ξ), x, ξ ∈ Rn
2) a (y)1−α ≤ C |(y,∇a (y))|as |y| ≥ N , C > 0, 0 ≤ α ≤ 1, where ∇ is the gradient of

the function a (y).

Then from the results of the paper [7] (theorem 28.3) we have the estimation of the
form

V ′ (t)

V (t)
= O

(
tα−1

)
, t+∞.
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Herewith, if a (y) is an elliptic polynomial with respect to y and of power m, then we
can take α = 0.

From [7, p. 206] for α < ν < 1 we have:

V
(
t+ ct1−ν

)
− V (t)

V (t)
= O

(
tα−ν

)
, → +∞.

Then the estimations of the form

N (λ) = V (λ)
(
1 +O

(
λα−1

))
, t→∞ (26)

hold.

In particular, for α = 0 we get

V ′ (t)
∣∣V (t) = O

(
1

t

)
, N (λ) = V (λ)

(
1 +O

(
λ−ν

))
, 0 < ν < 1.

Thus, for pseudo-differential operator A ∈ Lmp,δ (Rn) with properties 1 and 2, the
estimations (21) and (22) are valid, where the function N (λ) possibly grows in not power
way and theorems 1,2 are applicable in such situations.

In conclusion, let us consider as an application the results obtained in the paper, for
example, the solutions of head conductivity equation in the domain (0, T )×Ω, Ω ⊂ Rn is a
bounded domain with smooth boundary with homogeneous Dirichlet boundary condition
on the plane (0, T )× ∂Ω in the space L2 (Ω):

∂u

∂t
= ∆xu, u|(0,T )×∂Ω = 0, u|t=0 = u0 (x) . (27)

Let (u0, ϕn) =
√
n, λn = n

2 . Then we get

‖u (t, ·)‖2 =
∑

(u0, ϕn)2 e−2tλk =
∑

ne−nt = − d

dt

∑
ent = − d

dt

1

1− e−t
=

e−t

(1− e−t)2

It is easy to see that e−t

(1−e−t)2
˜ 1
t2,

t→ 0, we have ‖u (t)‖2 ˜ 1
t2
, t→ 0, indeed,

lim
t→0

e−t

(l − e−t)2 = lim
t→0

t2e−t

1− 2e−t + e−2t
= lim

t→0

t2

et − 2 + e−t
= lim

t→0

2t

et − e−t
=

= lim
t→0

2

et + e−t
= 1.

Consequently, e−t

(1−e−t)2
˜ 1
t2

.

Calculate µ (t). Since

µ2 (x) = max
n
ne−nt = max

n
ψ (x) ,
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where ψ (x) = xe−xt. Then ψl = e−xt − t × e−xt = 0, 1 − xt = 0, x = 1
t , ψ

(
1
t

)
= 1

t e
−1.

Consequently µ (t)2 = 1
et , µ (t) = 1√

et
. Then we get

‖u (t, ·)‖2 =
1

t
=

√
e√
t
µ (t) = µ (t)2

i.e.

‖u (t, ·)‖ = µ (t) =
1√
t
, t→ 0.
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