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About Econometric Analysis of Factors Affecting the Change
in the USD/AZN Rate

E.G. Orudzhev, L.M. Mamedova, O.E. Suleymanov∗

Abstract. In the study, on the basis of real indicators covering the period from 01.01.2013 to
10.01.2017 [10], an econometric analysis of changes in the USD/AZN rate was conducted. As a
result of study, the dependence of several factors provided a serious influence on the change in
the USD/AZN rate and the relationship of interdependence with their endogenous variability were
gained by carrying out empirical analysis. Verification of the optimality and adequacy of the model
is tested using the tools of the software package Eviews. To build a regression equation for the
model and test its coefficient of determination, F-Fisher statistics, t – Student criterion, etc., the
execution of the Quick→ Equation order of the Eviews software package is considered, to check the
stationarity of factors, the execution of the test order Quick → Series statistics → Unit root and
as a result, conclusions were drawn and recommendations were made for a predictive-analytical
computing system.
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The exchange rate in the system of international economic relations is a tool of de-
pendence on the value indicators of world and national markets. The exchange rate, as
an important component of the world monetary system, is one of the factors affecting the
macroeconomic position of each country. The dynamics of the exchange rate, amplitude
and frequency of its changes are clear evidence of the economic and political stability of the
country. Formation of the exchange rate is a multifactorial process. These factors can be
predictable and unpredictable internal and external factors, structural and opportunistic
factors. The factors shaping exchange rates are fairly mobile, and their mutual influence
can either strengthen or even neutralize the effect on the exchange rate. It should be noted
that multifactor dependencies and other macroeconomic processes relevant to the case re-
search were studied in relation to some fundamental economic indicators (for example, [7,
8, 9]). However, for the first time, an analysis of the correlation-regression dependence of
the influence of factors with delay on the change in the USD / AZN exchange rate and
the construction of the corresponding models are being studied.
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To build an econometric optimal model for changes in the USD / AZN exchange rate,
at first each of the factors that can influence it was considered separately, and a general
regression equation was established (Table 1).

Table 1

Table 1 summarizes both its own grades and the probable grades of several tests. Let’s
analyze some tests in the table separately. As you can see, the coefficient of determination
(R-squared) and the adjusted coefficient of determination (Adjusted R-squared) are very
large. This means that the factor signs of the coefficients of the established regression
equation can explain 96–97% of the signs of the result. Let’s take a look at the F -Fisher
test. Since the probability value (F-statistic = 104.6, the probability value p = 0) is much
less than α = 0.05, we can consider the factors of the model as valid. Let’s take a look
at the Durbin-Watson test (DW = 2.54). If we compare the results obtained here with
tabular prices, we must say that the existence of negative autocorrelation of residuals
(dl = 0.79, du = 2.044, 4− dl = 2.21 and 4− du = 1.956; 4− dl < 2.54 < 4) accepted.

As a result of the study, let’s analyze the question of whether the model in Table 2
was the optimal model that was established with the introduction of the Least Squares
Method.
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Table 2

The analytical form of the model is as follows:

yt = 0.0005− 1.28x1,t−1 + 0.23x2,t−1 + 0.051x3,t−1 + 0.0037x4,t − 0.0037x4,t−1.

Here: x1 is the first difference in the course of the EUR / USD exchange rate, x2 is
the 1st difference FED, x3 is the first difference of inflation, and x4 is the indicator of oil
prices. In addition, t represents the value of the indicator itself, and t − 1 represents the
value of the delay from the 1st power.

Let us explain the results obtained in Table 2. If we look at the t-Student criteria
for each of the factors of the model individually, we will see that the probability of all
factors outside the constant c is less than 5%. This means that the model is individually
significant for each factor. In general, let’s look at the F-Fisher test statistics to check
the importance of the model. As you can see, the probability is close to 0, which means
that the model is usually considered important. In addition, since the Durbin Watson test
model is close to 2, it can be said that there is no autocorrelation model (other tests were
considered to check for the presence of autocorrelation). The coefficient of determination
(R2 = 79.8188%) means the disclosure of about 80% of the model, which is not considered
to be quite important. The main reason for this is that there is another factor that can
affect fluctuations in the exchange rate of the US dollar / manat. Whether the constructed
model is optimal is tested by the following tests.
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The correlation coefficients of all factors were calculated in the multicollinearity test,
and the following results were obtained as a result of the Quick → Group statistics →
Correlations command of the Eviews software test (Table 3):

Table 3

Let’s explain the results. In (Table 3), the highest value is the correlation coefficient
of interest rates with repo percentage. That is, these indicators explain 99% of each
other. The high correlation coefficient is evidence of the multicollinearity problem in the
embedded model, demonstrating a strong correlation between the indicators. To eliminate
multicollinearity, at least one of these factors should be excluded. To do this, review the
t-Student values for both indicators in (Table 1). Note that among these two factors, the
value of the t-Student criterion is higher at the repo rate. Therefore, this factor should
be excluded from the model. Once the factor was removed, the model was re-modeled,
and the results were closer to the results in Table 1. Thus, this rule excludes several other
factors from the model.

Stationarity. One of the most important tasks is to test the stationarity of an optimal
econometric model. Thus, for each factor, the stationary test in the Eviews software
package was checked by the Quick → Series statistics → Unit root tests command to
determine that several factors (including FED, Inflation, EUR / USD, etc.), are considered
to be non- stationary , oil (at the level of 10% significance) and the trade balance are
considered stationary.

Granger test. The overall result, including all factors included in the regression
equation, was first used to process this test for a computer package. The main goal here
is to check, with the removal of multicollinearity, whether Granger is the cause of the
USD / AZN indicators of all factors, including the excluded factors. The Eviews software
package revealed Granger’s causal relationship for 5 factors that directly or indirectly
affect the change in the USD / AZN exchange rate, so the test results can be compiled in
the following table (Table 4) compactly. The (+) sign is a causal link, and (-) indicates
the absence of this link).
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Table 4

Note that the check of this test is carried out on the basis of the probable value
of α (prob) and is estimated by the probability α = 5%. If we look at the values of the
probabilities, we get that FED (α = 0.13%), Oil (α = 4.64%), Inflation (α = 1, 256·10−9%)
can be counted as a Granger-cause of USD / AZN. In addition, we note that the oil
exchange rate (α = 0.69%) and the EUR / USD exchange rate are the Granger-cause of
oil (α = 0.23%) and inflation (α = 4.51%).

Testing heteroscedasticity. Let’s look at the implementation of the White test [3,
pp. 386-387] to test heteroscedasticity (Table 5).

Table 5
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The model is considered to be homoscedastic, since the significance level of trial prices
in the upper right-hand corner of the table exceeds 5% significance level.

To test the autocorrelation of the residual model, 2 tests are used for the Q-statistical
(AR) and Serial Lm tests (MA). To verify the accuracy of the hypothesis of the absence
of autocorrelation, consider the following tables (Tables 6 and 7):

Table 6

Table 7

Here, the null hypothesis is that there is no autocorrelation, and an alternative hy-
pothesis is the existence of autocorrelation.

Table 6 shows that this model was tested for an autoregressive model with 20 lags
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and received more than 5% for each lag (the lowest probability was observed at the 6th
delay α = 67.9% ). This means that the model we establish indicates acceptance of the
null hypothesis as a result of the Q-statistical test (i.e. there is no autocorrelation in the
model we established).

Now let’s explain the results of Table 7. Here the null hypothesis is the absence of au-
tocorrelation of residuals, and the alternative hypothesis is the existence of autocorrelation
of residues. Remind that the results of this test, as a rule, are checked with 5% probable
accuracy. To verify the test, 4 lag cases were considered. When choosing the optimal
variant, the condition is assumed that the probable value, like the Q-statistical test, will
be more than 5%. As can be seen from the table, the probable values are rather large
than the 5% probability values. If we specify the result with the hypothesis, the results
will be the adoption of the null hypothesis and the failure of the alternative hypothesis.
That is, there is no autocorrelation of residuals on the model.

To determine which lags are included in the model, the VAR is selected in the Eviews
software package instead of the Equation tool, and by executing the Lag sturucture →
Lag length criteria command in an open window, a new table is formed (Table 8).

Table 8

4th of the star symbols indicate an inevitable delay to the 1st degree, and 1 to a delay
to the 5th degree. Since the first lag is taken basic by the 4th criteria, the model was
re-estimated using the least squares method, introducing the 1st lag (Table 9).
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Table 9

Although the results are considered normal by many criteria, the results of the t-
Student test are not considered acceptable. To eliminate this drawback, we need to remove
some factors from the model. After subtracting the negative factors, we get the results of
the optimal model, i.e. Table 2.

Forecasting. The following operations must be performed sequentially to make pre-
dictions through the built model:

First, the regression equation for the model is again set. The main difference between
this regression equation and the original regression equation is that the equation is not
executed for all observed moments, but from the time it starts to the moment when the
observation prices at that moment are used for forecasting. The results for the newly
created regression equation are shown below (Table 10):

Table 10
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Analysis of the results shows that there have been some changes in the values of the
indicators. This change is a result of the difference in moments when the moments used
in the model were not used in the prediction.

Now let’s look at the prediction results for the remaining moments:

Table 11

Each test interval is two times longer than the standard error (σ2 ≈ 0, 08). Note that
the closer the standard error is to zero, the more accurate the model prediction can be.

Now let’s look at the following chart to compare the forecast of the USD / AZN
exchange rate curve (Chart 1):

Chart 1



108 E.G. Orudzhev, L.M. Mamedova, O.E. Suleymanov

Here, the USD / AZN exchange rate curve is shown in blue, and the projected exchange
rate curve is shown in red.

As you can see, the curve model obtained using the forecast was located at some
distance from the curve itself. This difference is due to the fact that the model is not fully
explained by the factors mentioned.

Conclusion

Thus, as a result of comparative testing of many tests using the Eviews software pack-
age, the optimal regression model was tested, which shows that the model covering the
time segment 01.01.2013-01.10.2017 changed significantly depending on four factors. A
separate analysis of the results of each test shows that the model residues are homoscedas-
tic, do not depend on autocorrelation, and can be considered to be generally significant.
At the end of the model, the most optimistic version was predicted.
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1. Introduction

In the paper, we introduce a generalized Nikolski-Morrey type spaces

n⋂
i=0

L<l
i>

pi,ϕ,β(Gϕ). (1)

and help of method inetgral representation we study differential-difference properties of
functions from this spaces. Let G ⊂ Rn;1 ≤ pi < ∞; li ∈ (0,∞)n,i = 0, 1, . . . , n;
l0j ≥ 0, lij ≥ 0(i 6= j = 1, 2, . . . , n), lii ≥ 0(i = 1, 2, . . . , n); β ∈ [0, 1]n; [t]1 = min {1, t} ,
and let vector-functions ϕ(t) = (ϕ1(t), . . . , ϕn(t)), with Lebesgue measurable functions
ϕj(t) > 0, (t > 0), lim

t→+0
ϕj(t) = 0, lim

t→+∞
ϕj(t) = L ≤ ∞, j = 1, 2, . . . , n. Denote by

A the set of vector functions ϕ. Let m0 = (m0
1, . . . ,m

0
n),m0

j ∈ N0(j = 1, . . . , n), mi =

(mi
1, . . . ,m

i
n),mi

j ∈ N0(i 6= j = 1, . . . , n),mi
i ∈ N(i = 1, . . . , n) k0 = (k01, . . . , k

0
n), kij ∈

N0(j = 1, . . . , n, i = 1, . . . , n).

Definition 1. The space type
n⋂
i=0

L<l
i>

pi,ϕ,β
(Gϕ) we denote the spaces of all functions f ∈

Lloc(G) (mi
j > lij − kij ≥ 0, i 6= j = 1, . . . , n;mi

i > lii − kii ≥ 0, i = 1, 2, ..., n) with the finite
norm

‖f‖ n⋂
i=0

L<l
i>

pi,ϕ,β
(Gϕ)

=
n∑
i=0

sup
0<h<h0

∥∥∆mi
(
ϕ (h) , Gϕ(h)

)
Dkif

∥∥
pi,ϕ,β

n∏
j=1

ϕj (h)l
i
j−kij

, (2)
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where
‖f‖pi,ϕ,β;G = |f |Lpi,ϕ,β(G) = sup

x∈G,t>0

(
|ϕ ([t]1)|−β ‖f‖pi,Gϕ(t)(x)

)
, (3)

∣∣ϕ ([t]1)
∣∣−β =

n∏
j=1

(ϕj ([t]1))
−βj , ∆mi

(
ϕ (h) , Gϕ(h)

)
f =?, h0 it is positive fixed number,

and let for any x ∈ Rn

Gϕ(t) (x) = G ∩ Iϕ(t) (x) = G ∩
{
y : |yj − xj | <

1

2
ϕj(t), j = 1, 2, ..., n

}
,

For any t > 0,suppose |ϕ ([t]1)| ≤ C, then the embeddings
n⋂
i=0

L<l
i>

pi,ϕ,β
(Gϕ)→

n⋂
i=0

L<l
i>

pi
(Gϕ)

and hold, i.e.
‖f‖ n⋂

i=0
L<l

i>

pi
(Gϕ)

≤ c‖f‖ n⋂
i=0

L<l
i>

pi,ϕ,β
(Gϕ)

, (4)

Note that the spaces
n⋂
i=0

L<l
i>

pi,ϕ,β
(Gϕ) and is Banach space. The space (1) when l0 =

(0, . . . , 0), li = (0, . . . , 0, li, 0, . . . , 0), pi = p(i = 0, 1, . . . , n) coincides with the space
H l
p,ϕ,β (Gϕ) introduced and studied in [1], in the case βj = 0 (j = 1, ..., n) it coincides with

generalized Nikolski space
n⋂
i=0

L<l
i>

pi
(Gϕ).The spaces of such type with different norms

introduced and studied [3]-[13].

Lemma 1. Let G ⊂ Rn, 1 ≤ pi ≤ ∞, and f ∈
n⋂
i=0

L<l
i>

pi
(Gϕ). Then we can construct

the sequence hs = hs(x) (s = 1, 2, . . .) of infinitely differentiable finite in Rn functions for
which

lim
s→∞

‖f − hs‖ n⋂
i=0

L<l
i>

pi
(Gϕ)

= 0. (5)

Proof. Let G =
M⋃
λ=1

Gλ and for obtaining equality (5) we estimate the norm

‖f − hs‖ n⋂
i=0

L<l
i>

pi
(Gϕ)

=

n∑
i=0

ωl
i

i (f − hs). (6)

ωl
i

i (f − hs) = sup
0<h<h0

∥∥∆mi
(
ϕ (h) , Gϕ(h)

)
Dkif

∥∥
pi,ϕ,β

n∏
j=1

ϕj (h)li−ki
(7)

The sequence hs(x) (s = 1, 2, . . .) is determined by the equality

hs(x) = F (x, ϕ(t))|t= 1
s

=
M∑
λ

ηλ(x)fϕλ(t)(x),
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here the averaging functions are determined as follows:

fϕλ(t)(x) =

∫
Rn

f(x+ ϕλ(t)y)Kλ(y)dy,

where Kλ(y) ∈ C∞0 (Rn) (λ = 1, 2, . . . ,M) sup pKλ(·) ⊂ [−1; 1]∫
Rn

Kλ(y)dy = 1,

the functions ηλ = ηλ(x) (λ = 1, 2, . . . ,M) determine the expansion of a unit in the domain
G, i.e.

1)1 ≤ ηλ(x) ≤ 1 in Rn;

2) ηλ(x) = 0 in G \Gλ for all λ = 1, 2, . . . ,M ;

3) |Dαηλ(x)| ≤ Cλ, Cλ = const for all λ = 1, 2, . . . ,M and α ≥ 0.

Obviously,

‖f(·)− hs(·)‖ n⋂
i=0

L<l
i>

pi
(Gϕ)

≤
M∑
λ

‖ηλ(·)(f(·)− fϕλ(t)(·))‖ ≤

≤ C
M∑
λ

‖(f(·)− fϕλ(t)(·))‖ n⋂
i=0

L<l
i>

pi
(Gϕ)

, (8)

As much as small for rather small, t, as a consequence of continuity of Lp- average func-
tions, belonging to the space Lp(G

λ
ϕ),from (6),(7) and (8) it follows

‖f(·)− hs(·)‖ n⋂
i=0

L<l
i>

pi
(Gϕ)

< ε,

in other words,

lim
s→∞

‖f − hs‖ n⋂
i=0

L<l
i>

pi
(Gϕ)

= 0.

Assuming that ϕj(t) (j = 1, 2, ..., n) are also differentiable on [0, T ], we can show that

for f ∈
n⋂
i=0

L<l
i>

pi
(Gϕ) determined in n- dimensional domains, satisfying the condition of

flexible ϕ-horn, it holds the following integral representation (∀x ∈ U ⊂ G)

Dνf (x) = (−1)|ν|+|l
0|

n∏
j=1

(ϕj(T ))−νj−1
∫
Rn

+∞∫
−∞

K
(ν)
0

(
y

ϕ(T )
,
ρ (ϕ (T, x))

ϕ(t)

)

× ζi
(

u

ϕi(T )
,
ρi (ϕi (T, x))

ϕi(t)
,
1

2
ρ′i (ϕ(T ), x)

)
∆m0

i (ϕi (δ)u)
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× f (x+ y + u1 + . . .+ un) dydu+
n∑
i=1

(−1)|ν|+|l
i|

T∫
0

∫
Rn

+∞∫
−∞

K
(ν)
i ×

×
(

y

ϕ(t)
,
ρ (ϕ (t, x))

ϕ(t)

)
ζi

(
u

ϕi(t)
,
ρi (ϕi (t, x))

ϕi(t)
,
1

2
ρ′i (ϕ(t), x)

)
∆mi

i (ϕi (δ)u)

× f (x+ y + u1 + . . .+ un) dydu
n∏
j=1

(ϕj(t))
−νj−2 ϕ

′
i(t)

ϕi(t)
dtdudy, (9)

Let Φi (·, y) ∈ C∞0 (Rn) be such that

S (ψi) ⊂ Iϕ(t) =

{
y : |yj | <

1

2
ϕj(t), j = 1, 2, ..., n

}
.

for any 0 < T ≤ 1 assume that

V =
⋃

0<t≤T

{
y :

y

ϕ(t)
∈ S (ψi)

}
.

It is clear that V ⊂ Iϕ(t) and suppose that U + V ⊂ G.

Lemma 2. Let 1 ≤ pi ≤ p ≤ r ≤ ∞; 0 < η, t < T ≤ 1, ν = (ν1, ν2, ..., νn), νj ≥ 0 are

integers, j = 1, 2, ..., n; ∆mi
i (h) ∈ Lpi,ϕ,β(G) and let

F (x) =

n∏
j=1

(−1)|νj |−1
∫
Rn

+∞∫
−∞

K
(ν)
0

(
y

ϕ(t)
,
ρ (ϕ(t), x)

ϕ(t)

)

×ζi
(

u

ϕi(t)
,
ρi (ϕi(t), x)

2ϕi(t)
,
1

2
ρ′i (ϕi(t), x)

)
×∆m0

(ϕi (δ)u) f (x+ y + u) dxdudy (10)

F iη (x) =

η∫
0

Li (x, t)
n∏
j=1

(ϕj(t))
−νj−2

∏
j∈mi

ϕ′j(t)

ϕj(t)
dt (11)

F iηT (x) =

T∫
η

Li (x, t)
n∏
j=1

(ϕj(t))
νj−2

∏
j∈mi

ϕ′i(t)

ϕi(t)
dt (12)

QiT =

T∫
0

n∏
j=1

(ϕj(t))
−νj−(1−βjp)

(
1

pi
− 1
p

)∏
j∈li

ϕ′i(t)

(ϕi(t))
1−li

dt <∞

where

Li (x, t) =

∫
Rn

+∞∫
−∞

M
(ν)
i

(
y

ϕ(t)
,
ρ (ϕ(t), x)

ϕ(t)

)
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× ζi
(

u

ϕi(t)
,
ρi (ϕi(t), x)

2ϕi(t)
,
1

2
ρ′i (ϕi(t), x)

)
∆mi
i (ϕi (δ)u) f (x+ y + uei) dudy (13)

Then for any x ∈ U the following inequalities are true

sup
x∈U
‖F‖qUψ(ξ)(x)

≤ C1

∥∥∥∥∥∥
n∏
j=1

(ϕi(t))
−l0j ∆m0 (

ϕi(T ), Gϕ(T )
)
f

∥∥∥∥∥∥
p0,ϕ,β;G

×
n∏
j=1

(ϕj(t))
−νj−(1−βjp)

(
1

pi
− 1
p

) n∏
j=1

(ψj ([ξ]1))
βj

p
q , (14)

sup
x∈U

∥∥F iη∥∥qUψ(ξ)(x)
≤ C2

∥∥∥∥∥∥
n∏
j=1

(ϕi(t))
−lij ∆mi

(
ϕi(T ), Gϕ(T )

)
f

∥∥∥∥∥∥
pi,ϕ,β;G

×|QiT |
n∏
j=1

(ψj ([ξ]1))
βj

pi

p , (15)

sup
x∈U

∥∥F iηT∥∥qUψ(ξ)(x)
≤ C3

∥∥∥(ϕi(t))
−lij ∆mi

(
ϕi(t), Gϕ(t)

)
f
∥∥∥
pi,ϕ,β;G

×
∣∣QiηT ∣∣ n∏

j=1

(ψj ([ξ]1))
βj

pi

p , (16)

is hold, where Uψ(ξ) (x) =
{
x : |xj − xj | < 1

2ψj (ξ) , j = 1, 2, ..., n
}

and ψ ∈ A, C1, C2 are
the constants independent of ϕ, ξ, η and T .

Corollary 1.

‖F‖p,ψ,β1;U ≤ C
′
1

∥∥∥∥∥∥
n∏
j=1

(ϕi(t))
−l0j ∆m0 (

ϕi(t), Gϕ(t)
)
f

∥∥∥∥∥∥
p0,ϕ,β;G

, (17)

∥∥F iη∥∥p,ψ,β1;U
≤ C ′2

∥∥∥∥∥∥
n∏
j=1

(ϕi(t))
−lij ∆mi

(
ϕi(t), Gϕ(t)

)
f

∥∥∥∥∥∥
pi,ϕ,β;G

. (18)

∥∥F iη,T∥∥p,ψ,β1;U
≤ C ′3

∥∥∥∥∥∥
n∏
j=1

(ϕi(t))
−lij ∆mi

(
ϕi(t), Gϕ(t)

)
f

∥∥∥∥∥∥
pi,ϕ,β;G

. (19)

The proof is similar to the proof of Lemma 2 in [1].
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2. Main results

Prove two theorems on the properties of the functions from the space
n⋂
i=0

L<l
i>

pi,ϕ,β
(Gϕ).

Theorem 1. Let G ⊂ Rn satisfy the condition of flexible ϕ-horn, 1 ≤ pi ≤ p ≤ ∞,
ν = (ν1, ν2, .., νn), νj ≥ 0 be entire j = 1, 2, ..., n, QiT < ∞ (i = 1, 2, ..., n) and let

f ∈
n⋂
i=0

L<l
i>

pi,ϕ,β
(Gϕ). Then the following embeddings hold

Dν :
n⋂
i=0

L<l
i>

pi,ϕ,β(Gϕ)→ Lq,ψ,β1(G)

i.e. for f ∈
n⋂
i=0

L<l
i>

pi,ϕ,β
(Gϕ) there exists a generalized derivative Dνf and the following

inequalities are true
‖Dνf‖p,G ≤

≤ C1

n∑
i=1

∣∣QiT ∣∣ sup
0<t<t0

∥∥∥∥∥∥
n∏
j=1

(ϕi(t))
lij ∆mi

(
ϕi(t), Gϕ(t)

)
f

∥∥∥∥∥∥
p,ϕ,β;G

, (20)

‖Dνf‖q,ψ,β1;G ≤ C2 ‖f‖ n⋂
i=0

L<l
i>

pi,ϕ,β
(Gϕ)

, pi ≤ p <∞. (21)

In particular, if

QiT,0 =

T∫
0

n∏
j=1

(ϕj(t))
−νj−(1−βjp) 1p

∏
j∈li

ϕ′i(t)

(ϕi(t))
1−li

dt <∞,

then Dνf (x) is continuous on G, i.e.

sup
x∈G
|Dνf(x)| ≤

n∑
i=1

∣∣QiT,0∣∣ sup
0<t<t0

∥∥∥∥∥∥
n∏
j=1

(ϕi(t))
lij ∆mi

(
ϕi(t), Gϕ(t)

)
f

∥∥∥∥∥∥
pi,ϕ,β;G

(22)

0 < T ≤ min {1, T0}, T0 is a fixed number; C1, C2 are the constants independent of f , C1

are independent also on T .

Proof. At first note that in the conditions of our theorem there exists a generalized
derivative Dνf on G. Indeed, from the condition QiT <∞ for all (i = 1, 2, ..., n) it follows

that for f ∈
n⋂
i=0

L<l
i>

pi,ϕ,β
(Gϕ)→

n⋂
i=0

L<l
i>

pi
(Gϕ), there exists Dνf ∈ Lp(G) and for it integral

representation (9) with the same kernels is valid.
Based around the Minkowsky inequality, from identities (9) we get

‖Dνf‖q,G ≤ ‖F‖q,G +

n∑
i=1

‖Fi‖p,G . (23)
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By means of inequality (14) for U = G, Mi = Ki
i , t = T we get

‖F‖p,G ≤ C1|Q0
T |

∥∥∥∥∥∥
n∏
j=1

(ϕi(t))
−l0j ∆m0 (

ϕi(t), Gϕ(t)
)
f

∥∥∥∥∥∥
p0,ϕ,β;G

, (24)

and by means inequality (15) for η = T , Mi = Ki
i , U = G, we get

‖Fi‖q,G ≤ C2|QiT |

∥∥∥∥∥∥
n∏
j=1

(ϕi(t))
−lij ∆mi

(
ϕi(t), Gϕ(t)

)
f

∥∥∥∥∥∥
pi,ϕ,β;G

, (25)

Substituting (25) and (24) in (23), we get inequality (20). By means of inequalities
(17), (18) and (19) for η = T we get inequality (21).

Now let conditions QiT < ∞ (i = 1, 2, ..., n) be satisfied, then based around identities
(9) from inequality (23) we get

∥∥∥Dνf − f (ν)ϕ(T )

∥∥∥
∞,G
≤ C

n∑
i=1

∣∣QiT,0∣∣ sup
0<t<t0

∥∥∥∥∥∥∥∥∥
∆mi

(
ϕi(t), Gϕ(t)

)
f

n∏
j=1

(ϕi(t))
lij

∥∥∥∥∥∥∥∥∥
pi,ϕ,β;G

.

As T → 0, the left side of this inequality tends to zero, since f
(ν)
ϕ(T ) (x) is continuous on G

and the convergence on L∞(G) coincides with the uniform convergence. Then the limit
function Dνf is continuous on G.

Theorem 1 is proved.
Let γ be an n-dimensional vector.
Theorem 2. Let all the conditions of theorem 1 be fulfilled. Then for QiT < ∞

(i = 1, 2, ..., n) the derivative Dνf satisfies on G the Holder generalized condition, i.e. the
following inequality is valid:

‖∆ (γ,G)Dνf‖q,G ≤ C‖f‖ n⋂
i=0

L<l
i>

pi,ϕ,β
(Gϕ)
· |H (|γ| , ϕ;T )| , (26)

where C is a constant independent of f , |γ| and T .
In particular, if QiT,0 <∞, (i = 1, 2, . . . , n) , then

sup
x∈G
|∆ (γ,G)Dνf (x)| ≤ C‖f‖ n⋂

i=0
L<l

i>

pi,ϕ,β
(Gϕ)
· |H0 (|γ| , ϕ, T )| . (27)

whereH (|γ| , ϕ, T ) = max
i

{
|γ| , Qi|γ|, Q

i
|γ|,T

} (
H0 (|γ| , ϕ, T ) = max

i

{
|γ| , Qi|γ|,0, Q

i
|γ|,T,0

})
Proof. According to lemma 8.6 from [2] there exists a domain

Gω ⊂ G (ω = ζr (x) , ζ > 0 r (x) = ρ (x, ∂G) , x ∈ G)
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and assume that |γ| < ω, then for any x ∈ Gω the segment connecting the points x, x+ γ
is contained in G. Consequently, for all the points of this segment, identities (9) with the
same kernels are valid. After same transformations, from (9) and (4) we get

|∆ (γ,G)Dνf (x)| ≤ C1

n∏
j=1

(ϕj(t))
−1−νj ×

×
∫
Rn

+∞∫
−∞

∣∣∣∣K(ν)
0

(
y − γ
ϕ(t)

,
ρ (ϕ(t), x)

2ϕ(t)

)
−K(ν)

0

(
y

ϕ(t)
,
ρ (ϕ(t), x)

2ϕ (T )

)∣∣∣∣ dydz×
× |∆m0

(ϕ(δ)u) (x+ y + u1 + . . .+ un) | · |ζ0
(

u

ϕi(t)
,
ρi (ϕi(t), x)

2ϕi(t)
,
1

2
ρ′i (ϕi(t), x)

)
|dudy+

+ C2

n∑
i=1


|γ|∫
0

∫
Rn

+∞∫
−∞

∣∣∣∣ζi( u

ϕi(t)
,
ρi (ϕi (t, x))

ϕi(t)
,
1

2
ρ′ (ϕ(t), x)

)∣∣∣∣×−
×
∣∣∣∆mi (ϕi (δ)u) f (x+ y + u1 + . . .+ un)

∣∣∣ n∏
j=1

(ϕj(t))
νj−2

∏
j∈mi

ϕ′i(t)

ϕi(t)
dydudt

+

T∫
|γ|

∫
Rn

+∞∫
−∞

∣∣∣∣K(ν)
i

(
y

ϕ(t)
,
ρ (ϕ (t, x))

ϕ(t)

)∣∣∣∣ ∣∣∣∣ζi( u

ϕi(t)
,
ρi (ϕi (t, x))

ϕi(t)
,
1

2
ρ′i (ϕ(t), x)

)∣∣∣∣
×

1∫
0

∣∣∣∆mi (ϕi (δ)u) f (x+ y + u1 + . . .+ unγ)
∣∣∣ n∏
j=1

(ϕj(t))
νj−2

∏
j∈mi

ϕ′i(t)

ϕi(t)
dvdudydt

 .

= C1F (x, γ) + C2

n∑
i=1

(
F1 (x, γ) + F i2 (x, γ)

)
, (28)

where 0 < T ≤ {1, T0} we also assume that |γ| < T . Consequently, |γ| < min (ω, T ). If
x ∈ G \Gω then by definition

∆ (γ,G)Dνf (x) = 0.

Based around (28) we have

‖∆ (γ,G)Dνf‖q,G ≤
∥∥F i1 (·, γ)

∥∥
q,Gω

+
n∑
i=1

(
‖E (·, γ)‖q,Gω +

∥∥F i2 (·, γ)
∥∥
q,Gω

)
, (29)

F (x, γ) ≤
n∏
j=1

(ϕj(t))
−νj−2

|γ|∫
0

dζ

∫
Rn

∫
Rn

|f (x+ y + u1 + . . .+ un)|
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×
∣∣∣∣DjK

(ν)

(
y

ϕ (T )
,
ρ (ϕ(t), x)

2ϕ(t)

)
Ω(ν)

(
z

ϕ (T )
,
ρ (ϕ(t), x)

2ϕ(t)

)∣∣∣∣ dydz.
Taking into account ξeγ+Gω ⊂ G, based around the generalized Minkowsky inequality,

from inequality (19) for U = G, we have

‖F (·, γ)‖p,Gϑ ≤ C1|γ|

∥∥∥∥∥∥
n∏
j=1

(ϕi(t))
−l0j ∆m0 (

ϕi(t), Gϕ(t)
)
f

∥∥∥∥∥∥
pi,ϕ,β;G

(30)

By means of inequality (16), for U = G, η = |γ| we get

∥∥F i1 (·, γ)
∥∥
q,Gω

≤ C2

∣∣∣Qi|γ|∣∣∣
∥∥∥∥∥∥
n∏
j=1

(ϕi(t))
−lij ∆mi

(
ϕi(t), Gϕ(t)

)
f

∥∥∥∥∥∥
pi,ϕ,β;G

(31)

and by means of inequality (10) for U = G, η = |γ| we get

∥∥F i2 (·, γ)
∥∥
q,Gω

≤ C3

∣∣∣Qi|γ|,T ∣∣∣
∥∥∥∥∥∥
n∏
j=1

(ϕi(t))
−lij ∆mi

(
ϕi(t), Gϕ(t)

)
f

∥∥∥∥∥∥
pi,ϕ,β;G

. (32)

From inequalities (29) -(32) we get the required inequality.

Now suppose that |γ| ≥ min (ω, T ). Then

‖∆ (γ,G)Dνf‖p,G ≤ 2 ‖Dνf‖p,G ≤ C (ϑT ) ‖Dνf‖p,G |H (|γ| , ϕ;T )| .

Estimating for ‖Dνf‖p,G by means of inequality (20), in this case we get estimation
(26).

Theorem 2 is proved.
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Boundedness of the Fractional Maximal Operator in Lo-
cal and Global Morrey-type Spaces on the Heisenberg
Group

F.A. Alizade

Abstract. We study the boundedness of the fractional maximal operator Mα on the Heisenberg
group Hn in local and global Morrey-type spaces LMpθ,w(Hn) and GMpθ,w(Hn), respectively. We
give a characterization of strong and weak type boundedness for the operator Mα in local Morrey-
type spaces LMpθ,w(Hn).

Key Words and Phrases: fractional maximal operator, local Morrey-type space, Heisenberg
group.
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1. Introduction

In this paper, we establish the norm inequalities for the fractional maximal operator
in local Morrey-type spaces on Heisenberg group. The Heisenberg group [6, 7, 15, 17]
appears in quantum physics and many fields of mathematics, including harmonic analysis,
the theory of several complex variables and geometry. We begin with some basic notation.
The Heisenberg group Hn a non-commutative nilpotent Lie group with the product spaces
R2n+1 that have the multiplication

xy =
(
x′ + y′, x2n+1 + y2n+1 + 2

n∑
k=1

xkyn+k − xn+kyk

)
,

where x = (x′, x2n+1), and y = (y′, y2n+1). By the definition, the identity element on Hn

is 0 ∈ R2n+1, while the inverse element of x = (x′, t) is x−1 = (−x′,−t).
The corresponding Lie algebra is generated by the left-invariant vector fields:

Xj =
∂

∂xj
+ 2xn+j

∂

∂x2n+1
, Xn+j =

∂

∂xn+j
− 2xj

∂

∂x2n+1
, X2n+1 =

∂

∂x2n+1
, j = 1, . . . , n.

http://www.cjamee.org 120 c© 2013 CJAMEE All rights reserved.
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The only non-trivial commutator relations are[
Xj , Xn+j

]
= −4X2n+1, j = 1, . . . , n.

The non-isotropic dilation on Hn is defined as δt(x
′, x2n+1) = (tx′, t2x2n+1) for t > 0.

The Haar measure dx on this group coincides with the Lebesgue measure on R2n+1. It is
easy to check that d

(
δtx
)

= rQdx. In the above, Q = 2n+2 is the homogeneous dimension

of Hn. The norm of x = (x′, x2n+1) ∈ Hn is given by |x|H = (|x′|4 + x2
2n+1)1/4, where

|x′|2 =
∑2n

k=1 x
2
k. The norm satisfies the triangle inequality and leads to the left-invariant

distance d(x, y) = |xy−1|H . With this norm we define the Heisenberg ball, B(x, r) = {y ∈
Hn : |xy−1|H < r}, where x is the center and r is the radius. The volume of B(x, r) is
dnr

2n+2, where dCn is the volume of the unit ball B1 ≡ B(e, 1). Let SH = {x ∈ Hn :
|x|H = 1} be the unit sphere in Hn equipped with the normalized Haar surface measure
dσ.

The fractional maximal function Mαf , 0 < α < Q on the Heisenberg groups of a
function f ∈ Lloc

1 (Hn) is defined by

Mαf(x) = sup
t>0
|B(x, t)|−1+ α

Q

∫
B(x,t)

|f(y)|dy.

If α = 0, then M ≡ M0 is the maximal operator on the Heisenberg groups. It is well
known that the fractional maximal operator on the Heisenberg groups play an important
role in harmonic analysis (see [7, 16]).

The main purpose of [10] is to give some sufficient conditions for the boundedness of
fractional integral operators and singular integral operators defined on homogeneous Lie
groups G in local Morrey-type space LMpθ,w1(G). In a series of papers by Burenkov V.,
Guliyev H. and Guliyev V. etc. (see, for example [2, 3, 4]) be given some necessary and suf-
ficient conditions for the boundedness of fractional maximal operators, fractional integral
operators and singular integral operators in local Morrey-type spaces LMpθ,w1(Rn).

In this paper, we study the boundedness of the fractional maximal operator Mα on
the Heisenberg group Hn in local Morrey-type spaces LMpθ,w(Hn). Also we give a charac-
terization of strong and weak type boundedness for the operator Mα in local Morrey-type
spaces LMpθ,w(Hn).

By A . B we mean that A ≤ CB with some positive constant C independent of
appropriate quantities. If A . B and B . A, we write A ≈ B and say that A and B are
equivalent. For a number p, p′ = p/(p− 1) denotes the conjugate exponent of p.

2. Local and global Morrey-type spaces on the Heisenberg group

Let 0 < p, θ ≤ ∞. Denote by Ωθ a set of all non-negative measurable functions w(r) on
(0,∞) such that w(t) 6= 0 on the set of positive measure and ‖w(r)‖Lθ(t1,∞) <∞ for some

t1 > 0. The set Ωp,θ consists of the functions w(r) ∈ Ωθ such that ‖w(r)rQ/p‖Lθ(0,t2) <∞
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for some t2 > 0 (see [2]). Let w1 ∈ Ωθ, w2 ∈ Ωθ,p. Recall that in 1994 the doctoral thesisis
[10] (see also [11]) by Guliyev introduced the local Morrey-type space LMpθ,w1 and in [1]
(see also [2, 3, 4]) by Burenkov, Guliyev introduced the global Morrey-type space GMpθ,w1 .

Definition 1. Let 0 < p, θ ≤ ∞ and let w be a non-negative measurable function on (0,∞).
We denote by LMpθ,w(Hn), GMpθ,w(Hn), the local Morrey-type spaces, the global Morrey-
type spaces on the Heisenberg group respectively, the spaces of all functions f ∈ Lloc

p (Hn)
with finite quasinorms

‖f‖LMpθ,w(Hn) =
∥∥w(r)‖f‖Lp(B(0,t))

∥∥
Lθ(0,∞)

,

‖f‖GMpθ,w(Hn) = sup
x∈Hn

∥∥w(r)‖f‖Lp(B(x,t))

∥∥
Lθ(0,∞)

respectively.

Note that
‖f‖LMp∞,1(Hn) = ‖f‖GMp∞,1(Hn) = ‖f‖Lp(Hn).

Furthermore, GMp∞,r−λ/p(Hn) ≡Mp,λ(Hn), 0 ≤ λ ≤ Q.
For a measurable set Hn and a function v non-negative and measurable on Hn, let

Lp,v(Hn) be the weighted Lp-space of all functions f measurable on Hn for which ‖f‖Lp,v(Hn) =
‖vf‖Lp(Hn) <∞.

If 0 < p ≤ θ ≤ ∞, then ‖f‖LMpθ,w(Hn) ≤ ‖f‖Lp,W (Hn), and if 0 < θ ≤ p ≤ ∞, then
‖f‖Lp,W (Hn) ≤ ‖f‖LMpθ,w(Hn), where for all x ∈ Hn W (x) = ‖w‖Lθ(|x|H ,∞).

In particular, for 0 < p ≤ ∞ ‖f‖LMpp,w(Hn) = ‖f‖Lp,V (Hn), where for all x ∈ Hn

V (x) = ‖w‖Lp(|x|H ,∞)(Hn).
We shall use the following theorem stating necessary and sufficient conditions for the

validity of the following inequality

‖Mαf‖Lp2,v2 (Hn) ≤ c‖f‖Lp1,v1 (Hn) (1)

where v1 and v2 are functions non-negative and measurable on Hn and c > 0 is independent
of f (see [5, 14]).

Given a set Ω ⊂ Hn, χΩ will denote the characteristic function of Ω.

Theorem 1. Let 0 ≤ α < Q, 1 < p1 ≤ p2 < ∞. Moreover, let v1, v2 be non-negative
and measurable on Hn. Then inequality (1) holds if, and only if, the following equivalent
conditions are satisfied

J = sup
B⊂Hn

|B|
α
n
−1
∥∥v−1

1

∥∥
Lp′1

(B)
‖v2‖Lp2 (B) <∞ (2)

and

sup
B⊂Hn

∥∥∥Mα

(
χBv

p1/(1−p1)
1

)∥∥∥
Lp2,v2 (B)

∥∥∥v1/(1−p1)
1

∥∥∥−1

Lp1 (B)
<∞. (3)

Moreover, the sharp (minimal possible) constant c∗ in (1), satisfies the inequality cJ ≤
c∗ ≤ cJ , where c, c∗ > 0 are independent of v1 and v2.
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3. Boundedness of the fractional maximal operator in local Morrey-type
spaces on Heisenberg group

Let 0 < p, θ ≤ ∞. Denote by Ωθ a set of all non-negative measurable functions w(r)
on (0,∞) such that w(t) 6= 0 on the set of positive measure and ‖w(r)‖Lθ(t1,∞) < ∞ for
some t1 > 0. Let w1 ∈ Ωθ, w2 ∈ Ωθ,p. Recall that in 1994 the doctoral thesisis [10] (see
also [11]) by Guliyev V.S. introduced the local Morrey-type space LMpθ,w1(Hn) is given
by

‖f‖LMpθ,w1
(Hn) = ‖w1(r)‖f‖B(0,r)‖Lθ(0,∞).

To obtain necessary and sufficient conditions on w1 and w2 under which Mα is bounded
for other parameter values and to obtain simpler conditions for the case p = θ1 = θ2 we
reduce the problem of the boundedness of Mα in the local Morrey-type spaces to the
problem of the boundedness of the Hardy operator in weighted Lp-spaces on the cone of
non-negative non-increasing functions.

Lemma 1. Let 0 ≤ α < Q, 1 < p1 ≤ p2 <∞ and −∞ < γ <∞. Then the inequality

‖Mαf‖Lp2 (B(0,r)) ≤ c(r)‖f‖Lp1,(|x|H+r)γ (Hn), (4)

where c(r) > 0 is independent of f holds for all f ∈ Lloc
p1 (Hn) if and only if

γ ≥ −Q
p2

and Q

(
1

p1
− 1

p2

)
≤ α ≤ Q

p1
+ γ. (5)

If (5) holds, then the minimal constant c(r) in (4) satisfies

c(r) � rα−Q(1/p1−1/p2)−γ .

Proof. We apply Theorem 1 to the pair of functions v2(x) = χB(0,r)(x), v1(x) =
(|x|H + r)γ . Then

I(v1, v2) = sup
R>0

Rα−Q
(∫ R

0
tQ−1χ(0,r)(t)dt

)1/p2 (∫ R

0
tQ−1 (t+ r)−γp

′
1 dt

)1/p′1

= rQ/p2+Q/p′1−γ sup
R>0

Rα−Q

(∫ R
r

0
τQ−1χ(0,1)(τ)dτ

)1/p2 (∫ R
r

0
τQ−1(τ + 1)−γp

′
1dτ

)1/p′1

= rα+Q/p2−Q/p1−γ sup
ρ>0

ρα−Q
(∫ ρ

0
τQ−1χ(0,1)(τ)dτ

)1/p2 (∫ ρ

0
τQ−1(τ + 1)−γp

′
1dτ

)1/p′1

≡ rα+Q/p2−Q/p1−γK,

where K = max{K1,K2},

K1 = sup
0<ρ≤1

ρα−Q
(∫ ρ

0
τQ−1χ(0,1)(τ)dτ

)1/p2 (∫ ρ

0
τQ−1(τ + 1)−γp

′
1dτ

)1/p′1
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and

K2 = sup
1<ρ≤∞

ρα−Q
(∫ ρ

0
τQ−1χ(0,1)(τ)dτ

)1/p2 (∫ ρ

0
τQ−1(τ + 1)−γp

′
1dτ

)1/p′1
.

Next,
K1 <∞⇔ sup

0<ρ≤1
ρα+Q/p2−Q/p1 <∞⇔ α+Q/p2 −Q/p1 ≥ 0.

Moreover,

K2 <∞⇐⇒ sup
1<ρ<∞

ρα−Q
(∫ ρ

1
τQ−1−γp′1dτ

)1/p′1
<∞.

If γ > Q/p′1, then
∫∞

1 τQ−1−γp′1dτ <∞ and K2 <∞ since α < Q.
If γ = Q/p′1, then K2 < ∞ ⇔ sup

1≤ρ<∞
ρα−Q ln ρ < ∞. Therefore again K2 < ∞ since

α < Q.
If γ < Q/p′1, then

K2 <∞⇐⇒ sup
1≤ρ<∞

ρα−Q+Q/p′1−γ <∞⇐⇒

α−Q+
Q

p′1
− γ ≤ 0⇐⇒ γ ≥ α− Q

p1
.

Inequality α < Q, implies that αp1 −Q < Q(p1 − 1). Hence K2 <∞ ⇔ γ ≥ α−Q/p1.

Corollary 1. Let 1 < p1 < ∞, 0 < p2 < ∞ and Q (1/p1 − 1/p2)+ ≤ α < Q. Then there
exists c > 0 such that

‖Mαf‖Lp2 (B(0,r)) ≤ crQ/p2
(∫

Hn

|f(x)|p1
(|x|H + r)Q−αp1

dx

) 1
p1

, (6)

for all r > 0 and for all f ∈ Llocp1 (Hn).

Proof. In the case 1 < p1 ≤ p2 <∞ (6) follows by Lemma 1 with γ = α−Q/p1.
If 0 < p2 < p1 <∞, by Hölder’s inequality and (6) for p2 = p1 we have

‖Mαf‖Lp2 (B(0,r)) ≤ (dnr
Q)1/p2−1/p1 ‖Mαf‖Lp1 (B(0,r)) ≤ cr

Q/p2 ‖Mαf‖Lp1 (B(0,r)) ,

where dn is the volume of the unit ball in Hn and c > 0 depends only on Q, p1 and p2.

The following lemma was proved in [2].

Lemma 2. Let β > 0 and ϕ be a function non-negative and measurable on Hn. Then for
all r > 0

β 2−β
∫ ∞
r

(∫
B(0,t)

ϕ(x)dx

)
dt

t1+β
≤
∫
Hn

ϕ(x)dx

(|x|H + r)β
≤ β

∫ ∞
r

(∫
B(0,t)

ϕ(x)dx

)
dt

t1+β
.
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Corollary 2. Let 1 < p1 < ∞, 0 < p2 < ∞ and Q (1/p1 − 1/p2)+ ≤ α < Q/p1. Then
there exists c > 0 such that

‖Mαf‖Lp2 (B(0,r)) ≤ crQ/p2
(∫ ∞

r

(∫
B(0,r)

|f(x)|p1dx

)
dt

tQ−αp1+1

)1/p1

(7)

for all r > 0 and for all f ∈ Llocp1 (Hn).

Proof. Inequality (7) follows from inequality (6) and Lemma 2.

Corollary 3. Let 1 < p1 < ∞, 0 < p2 < ∞ and Q (1/p1 − 1/p2)+ ≤ α ≤ Q/p1, then
there exists c > 0 such that

‖Mαf‖Lp2 (B(0,r)) ≤ crα−Q(1/p1−1/p2)‖f‖Lp1 (Hn) (8)

for all r > 0 and for all f ∈ Lp1(Hn).

Proof. If 0 < p2 < ∞, inequality (8) follows by inequality (6). For 0 < p2 ≤ ∞ and
α = Q/p1 it also follows directly from the definition of Mαf. Indeed, Hölder’s inequality
implies that

‖MQ/p1f‖L∞ ≤ ‖f‖Lp1 (Hn).

Hence

‖MQ/p1f‖Lp2 (B(0,r) ≤ d1/p2
n rQ/p2‖f‖Lp1 (Hn).

Let H be the Hardy operator

Hg =

∫ r

0
g(t)dt, 0 < r <∞.

Lemma 3. Let 1 < p1 <∞, 0 < p2 <∞, Q (1/p1 − 1/p2)+ ≤ α < Q/p1, 0 < θ ≤ ∞ and
w ∈ Ωθ. Then there exists c > 0 such that

‖Mαf‖LMp2θ,w
≤ c‖Hg‖1/p1Lθ/p1,v(0,∞)

for all f ∈ Lloc
p1 (Hn), where

g(t) =

∫
B(0,t1/(αp1−Q))

|f(y)|p1dy (9)

and

v(r) =
[
w
(
r1/(αp1−Q)

)
r(Q/p2+1/θ)/(αp1−Q)−1/θ

]p1
. (10)
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Proof. By Corollary 2

‖Mαf‖LMp2θ,w
=
∥∥∥w(r)‖Mαf‖Lp2 (B(0,r))

∥∥∥
Lθ(0,∞)

≤ c

∥∥∥∥∥∥w(r)rQ/p2

(∫ ∞
r

(∫
B(0,t)

|f(x)|p1dx

)
dt

tQ−αp1+1

)1/p1
∥∥∥∥∥∥
Lθ(0,∞)

= c(Q− αp1)−1/p1

∥∥∥∥∥∥w(r)rQ/p2

(∫ rαp1−Q

0

(∫
B(0,τ1/(αp1−Q))

|f(x)|p1dx

)
dτ

)1/p1
∥∥∥∥∥∥
Lθ(0,∞)

= c(Q− αp1)−1/p1

∫ ∞
0

(
w(r)rQ/p2

)θ(∫ rαp1−Q

0
g(τ)dτ

)θ/p1
dr

 1
θ

= c

(∫ ∞
0

(
w
(
ρ1/(αp1−Q)

)
ρQ/(p2(αp1−Q))

)θ
ρ1/(αp1−Q)−1

(∫ ρ

0
g(τ)dτ

)θ/p1
dρ

) 1
θ

= c‖Hg‖1/p1Lθ/p1,v(0,∞),

where c > 0 depends only on Q, p1, p2 and α.

Corollary 4. Let 1 < p1 < ∞, 0 < p2 < ∞, Q (1/p1 − 1/p2)+ ≤ α < Q/p1, 0 < θ ≤ ∞
and w ∈ Ωp1,θ. Then there exists c > 0 such that

‖Mαf‖GMp2θ,w
≤ c sup

x∈Hn
‖H (g(x, ·)) ‖1/p1Lθ/p1,v(0,∞)

for all f ∈ Lloc
p1 (Hn), where v is defined by (10) and

g(x, t) =

∫
B(x,t1/(αp1−Q))

|f(y)|p1dy =

∫
B(0,t1/(αp1−Q))

|f(y−1 · x)|p1dy. (11)

Theorem 2. Let 1 < p1 < ∞, 0 < p2 < ∞, Q (1/p1 − 1/p2)+ ≤ α < Q/p1, 0 <
θ1, θ2 ≤ ∞, w1 ∈ Ωθ1 , w2 ∈ Ωθ2 . Assume that H is bounded from Lθ1/p1,v1(0,∞) to
Lθ2/p1,v2(0,∞) on the cone of all non-negative functions ϕ non-increasing on (0,∞) and
satisfying lim

t→∞
ϕ(t) = 0, where

v1(r) =
[
w1

(
r1/(αp1−Q)

)
r1/((αp1−Q)θ1)−1/θ1

]p1
, (12)

v2(r) =
[
w2

(
r1/(αp1−Q)

)
r(Q/p2+1/θ2)/(αp1−Q)−1/θ2

]p1
. (13)

Then Mα is bounded from LMp1θ1,w1(Hn) to LMp2θ2,w2(Hn) and from GMp1θ1,w1(Hn)
to GMp2θ2,w2(Hn). (In the latter case we assume that w1 ∈ Ωp1,θ1 , w2 ∈ Ωp2,θ2.)
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Proof. By Lemma 3 applied to LMp2θ2,w2(Hn)

‖Mαf‖LMp2θ2,w2
(Hn) ≤ c‖Hg‖

1/p1
Lθ2/p1,v2 (0,∞),

where c > 0 is independent of f .
Since g is non-negative, non-increasing on (0,∞) and limt→+∞ g(t) = 0 and H is

bounded from Lθ1/p1,v1(0,∞) to Lθ2/p1,v2(0,∞) on the cone of functions containing g, we
have

‖Mαf‖LMp2θ2,w2
(Hn) ≤ c‖g‖

1/p1
Lθ1/p1,v1 (0,∞),

where c > 0 is independent of f.
Hence

‖Mαf‖LMp2θ2,w2
(Hn) ≤ c

(∫ ∞
0

v1(t)θ1/p1‖f‖θ1
Lp1(B(0,t1/(αp1−Q)))

dt

)1/θ1

= cQ
1
θ1

(∫ ∞
0

v1(rαp1−Q)θ1/p1rαp1−Q−1‖f‖θ1Lp1 (B(0,r))dr

)1/θ1

= cQ
1
θ1

(∫ ∞
0

(
w1(r)‖f‖Lp1 (B(0,r))

)θ1
dr

)1/θ1

= cQ
1
θ1 ‖f‖LMp1θ1,w1

(Hn),

where c > 0 is independent of f.

In order to obtain explicit sufficient conditions on weight functions ensuring the bound-
edness of Mα, first we shall apply the following statement.

Lemma 4. [2] Let 0 < θ1 ≤ ∞, 0 < θ2 ≤ ∞, v1 and v2 be functions positive and
measurable on (0,∞). Then the condition∥∥∥v2(r)

∥∥∥t−(1−θ1)+/θ1v−1
1 (t)

∥∥∥
Lθ1/(θ1−1)+

(0,r)

∥∥∥
Lθ2 (0,∞)

<∞ (14)

is a sufficient conditions for the boundedness of H from Lθ1,v1(0,∞) to Lθ2,v2(0,∞) in the
case 1 ≤ θ1 ≤ ∞ and the boundedness H from Lθ1,v1(0,∞) to Lθ2,v2(0,∞) on the cone of
all non-negative functions ϕ non-increasing on (0,∞) in the case 0 < θ1 <∞.

If θ1 = ∞, then condition (14) is also necessary for the boundedness of H from
L∞,v1(0,∞) to Lθ2,v2(0,∞).

Theorem 2 and Lemma 4 imply a sufficient condition for the boundedness of Mα from
LMp1∞,w1(Hn) to LMp2θ2,w2(Hn).

Theorem 3. Let 1 < p1 < ∞, 0 < p2 < ∞, Q (1/p1 − 1/p2)+ ≤ α < Q, 0 < θ2 ≤ ∞,
w2 ∈ Ωθ2.

1. For α < Q/p1, let w1 ∈ Ωθ1 and∥∥∥∥w2(r)rQ/p2
∥∥∥w−1

1 (t)tα−Q/p1−1/min{p1,θ1}
∥∥∥
Ls(r,∞)

∥∥∥∥
Lθ2 (0,∞)

<∞. (15)



128 F.A. Alizade

where s = p1θ1/(θ1 − p1)+. (If θ1 ≤ p1, then s = ∞.) Then Mα is bounded from
LMp1θ1,w1(Hn) to LMp2θ2,w2(Hn).

2. For α = Q/p1, let

w2(r)rα−Q(1/p1−1/p2) ∈ Lθ2(0,∞). (16)

Then Mα is bounded from Lp1(Hn) to LMp2θ2,w2(Hn).

Corollary 5. Let 1 < p1 <∞, 0 < p2 <∞, Q (1/p1 − 1/p2)+ ≤ α < Q/p1, 0 < θ2 ≤ ∞,
w1 ∈ Ω∞, w2 ∈ Ωθ2 and let∥∥∥∥∥w2(r)rQ/p2

(∫ ∞
r

dt

wp11 (t)tQ+1−αp1

)1/p1
∥∥∥∥∥
Lθ2 (0,∞)

<∞. (17)

Then Mα is bounded from LMp1∞,w1(Hn) to LMp2θ2,w2(Hn) and from GMp1∞,w1(Hn) to
GMpθ2,w2(Hn). (In the latter case we assume that w1 ∈ Ωp1,∞, w2 ∈ Ωp2,θ2.)

Corollary 6. Let 1 < p1 < ∞, 0 < p2 < ∞, Q (1/p1 − 1/p2)+ ≤ α < Q/p1, w1 ∈ Ω∞,
w2 ∈ Ω∞ and let for some c > 0 for all r > 0∫ ∞

r

dt

wp11 (t)tQ+1−αp1
≤ c

wp12 (r)r
Qp1
p2

. (18)

Then Mα is bounded from LMp1∞,w1(Hn) to LMp2∞,w2(Hn) and from GMp1∞,w1(Hn) to
GMp2∞,w2(Hn). (In the latter case we assume that w1 ∈ Ωp1,∞, w2 ∈ Ωp2,∞.)

Remark 1. Note that, the Corollary 6 was proved in [8], see also [9, 12, 13].

For the majority of cases the necessary and sufficient conditions for the validity of

‖Hϕ‖L θ2
p1
,v2

(0,∞) ≤ c‖ϕ‖L θ1
p1
,v1

(0,∞), (19)

where c > 0 is independent of ϕ, for all non-negative decreasing functions ϕ are known, for
detailed information see [18], [19]. Application of any of those conditions gives sufficient
conditions for the boundedness of the fractional maximal operator from LMp1θ1,w1(Hn) to
LMp2θ2,w2(Hn) and from GMp1θ1,w1(Hn) to GMp2θ2,w1(Hn).

However, there is no guarantee that the application of the necessary and sufficient
conditions on v1 and v2 ensuring the validity of (19) implies the necessary and sufficient
conditions for the boundedness of Mα from LMp1θ1,w1(Hn) to LMp2θ2,w2(Hn).

Fortunately for certain values of the parameters this is the case, namely for 1 < p1 <∞,
0 < p2 <∞, Q (1/p1 − 1/p2)+ ≤ α < Q/p1, 0 < θ1 ≤ θ2 <∞, θ1 ≤ p1.

Note that in this case the necessary conditions (coinciding with the sufficient ones) for
the validity of inequality (19) for decreasing functions are obtained by taking ϕ = χ(0,t)

with an arbitrary t > 0.
Since in the proof of Theorem 2 inequality (19) is applied to the function ϕ = g,

where g is given by (9), it is natural to choose, as test functions, functions ft, t > 0, for
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which
∫
B(0,u1/(αp1−Q)) |ht(y)|p1dy is equal or close to B(t)χ(0,t)(u), u > 0, where B(t) is

independent of u. The simplest choice of f satisfying this requirement is

ft(x) = χB(0,2t)\B(0,t)(x), x ∈ Hn, t > 0. (20)

Note that,

‖ft‖Lp1 (B(0,r)) = 0, 0 < r ≤ t, ‖ft‖Lp1 (B(0,r)) ≤ ct
n/p1 , t < r <∞, (21)

where c > 0 depends only on Q and p1.

For functions F,G defined on (0,∞) × (0,∞) we shall write F � G if there exist
c, c′ > 0 such that cF (r, t) ≤ G(r, t) ≤ c′F (r, t) for all r, t ∈ (0,∞).

Lemma 5. If 0 ≤ α < Q, 0 < p <∞, then

‖Mαft‖Lp(B(0,r)) � t
αrQ/p


(

t
r+t

)min{Q−α,Q/q}
, p 6= Q

Q−α ,(
t
r+t

)Q/p
ln
(
e+ r

t

)
, p = Q

Q−α .

Theorem 1. (1) Let 1 < p1 ≤ ∞, 0 < p2 ≤ ∞, 0 ≤ α < Q, 0 < θ1, θ2 ≤ ∞,
w1 ∈ Ωθ1 and w2 ∈ Ωθ2. If Mα is bounded from LMp1θ1,w1(Hn) to LMp2θ2,w2(Hn), then
there exists a constant C1 > 0 such that for all t > 0,

t
α− Q

p1
+min(Q−α,Q/p2)

∥∥∥ w2(r)rQ/p2

(t+ r)min(Q−α,Q/p2)

∥∥∥
Lθ2 (0,∞)

≤ C1‖w1‖Lθ1(t,∞)
.

(2) Let 1 < p1 <∞, 0 < p2 <∞, 0 < θ1 ≤ θ2 ≤ ∞, θ1 ≤ p1, Q
(

1
p1
− 1

p2

)
+
≤ α < Q

p1
,

w1 ∈ Ωθ1, w2 ∈ Ωθ2 and the equality
∥∥∥ w2(r)rQ/p2

(t+r)Q/p1−α

∥∥∥
Lθ2(0,∞)

≤ C2‖w1‖Lθ1(t,∞)
(C2 > 0) be

true for all t > 0; then Mα is bounded from LMp1θ1,w1(Hn) to LMp2θ2,w2(Hn). If also
w1 ∈ Ωp1,θ1 , w2 ∈ Ωp2,θ2 , then Mα is bounded from GMp1θ1,w1(Hn) to GMp2θ2,w2(Hn).

(3) In particular, for 1 < p1 < ∞, 0 < p2 < ∞, 0 < θ1 ≤ θ2 ≤ ∞, θ1 ≤ p1,
Q
(

1
p1
− 1
p2

)
≤ α < Q

p1
, w1 ∈ Ωθ1, w2 ∈ Ωθ2 the operator Mα is bounded from LMp1θ1,w1(Hn)

to LMp2θ2,w2(Hn) if and only if for all t > 0,

‖w2(r)rQ/p2(t+ r)−Q/p2‖Lθ2(0,∞)
≤ C3‖w1‖Lθ1 (t,∞).

Here the constant C3 > 0 is independent of t.

Note that, in the Euclidean setting Theorem 1 was proved in [2].

Proof. Sufficiency. It is known [19] that for θ1 ≤ θ2 ≤ ∞ the necessary and sufficient
condition for the validity of (19) for all non-negative decreasing on (0,∞) functions ϕ has
the form: for some c > 0

‖v2(r) min{t, r}‖Lθ2/p1 (0,∞) ≤ c‖v1(r)‖Lθ1/p1 (0,t)



130 F.A. Alizade

for all t > 0. Applying this condition to the functions v1 and v2 given by (12) and (13)
we obtain ∥∥∥∥∥w2(r)

rQ/p2

(t+ r)Q/p1−α

∥∥∥∥∥
Lθ2 (0,∞)

≤ c‖w1‖Lθ1 (t,∞). (22)

Indeed, taking into account equalities (12) and (13) and replacing r
− p2
Q by ρ and t

− p2
Q

by τ, we get that for some c > 1∥∥∥w2(ρ)ρQ/p2 min{τα−Q/p1 , ρα−Q/p1}
∥∥∥
Lθ2 (0,∞)

≤ c ‖w1‖Lθ1 (τ,∞)

for all τ > 0.

Hence (22) follows since

ρQ/p2 min{τα−Q/p1 , ρα−Q/p1} � ρQ/p2

(ρ+ τ)Q/p1−α
.

Necessity. Assume that, for some c > 0 and for all f ∈ LMp1θ1,w1(Hn)

‖Mαf‖LMp2θ2,w2
(Hn) ≤ c‖f‖LMp1θ1,w1

(Hn). (23)

In (23) take f = ft, where ft is defined by (20). Then by (21) the right-hand side of
(23) does not exceed a constant multiplied by tQ/p1‖w1‖Lθ1 (t,∞). Furthermore by Lemma

5 the left-hand side of inequality (23) is greater than or equal to a constant multiplied by

tα+min{Q−α,Q/p2}

∥∥∥∥∥w2(r)
rQ/p2

(t+ r)min{Q−α,Q/p2}

∥∥∥∥∥
Lθ2 (0,∞)

.

This works foe the case α = n
p′2

too, since ln(e+ r
t ) ≥ 1.
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in Commercial Banks
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Abstract. In this article, Risk of Open Currency Position which the banks are most commited
and Value at Risk method which is used to measure market risk are investigated. Variance -
Covariance and Historical Simulation Methods used in calculating risk expense were thoroughly
investigated and analyzed its effects on banks.
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1. Open Currency Position Risk

If the bank has a disparity between the total balance sheet assets and the total of the
balance sheet liabilities in one currency, then the bank’s balance position in that currency
is open. If the balance sheet assets in the currency exceed the total amount of the total
liabilities, then the bank position will be long in that currency, in the contrary, if the
balance sheet liabilities in the currency exceed the total amount of the total assets, then
the bank position becomes short.

If the position of the bank in one currency is long, then the bank will suffer losses as
a result of a decrese of exchange rate. On the contrary, if the position in one currency is
short, then exchange rate of that currency will lead to the bank loss. If the position of the
bank in any currency is open to the likelihood of an event that could lead to loss, then
there would be a currency risk. This currency risk is called the Open Currency Position
risk and this risk arises from an open position on the balance of the currency. Open
Currency Position risk is one of the most exposed risks of banks.

2. Value at Risk Method

Banks open currency position either cumpulsorily or voluntarily in different currencies.
Hence, banks are exposed to risks due to their open position. It is very important for banks
to predict the effects of changes in exchange rates on the currency position within a certain
period of time. The Bank should calculate to what extent it will expose its open position,

http://www.cjamee.org 3 c© 2013 CJAMEE All rights reserved.
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and hence to what extent the exposure to risk. The method used to measure the open
currency position risk is called the Value at Risk Method. Value at Risk is the maximum
exposure to probable loss of a certain amount during the valuation period. Exposure to
Risk is a method that measures the maximum loss of volatility in the financial markets,
i.e. fluctuations in volatility.

As we mentioned, a value at risk is an expected maximum loss with a certain confidence
level in a certain period of time As it is seen from the definition, Value at Risk includes
two factors, such as the Time Span and the Level of Confidence. The time interval is a
period it takes to close the position. Degree of precision of curency posiotn risk depends
on confidence level. Degree to which extend a real risk exposure is less than calculated
Value at risk is determined by confidence level. Here, the normal distribution and the
features of this distribution are important.

Normal distribution is such a distribution that is symmetrically average, and the aver-
age, median and mod are equal. These values are crossed at the same point as indicated
by a curve. Mode is the most frequently number in a series. The median is the number
in the middle of a sequence of numbers when it is put in order from smaller or larger
in series. As noted above, the right and left sides of the intersection of the curve of the
normal distribution are symmetric to each other. The normal distribution curve infinitly
stretches to the left and right but does not cut the bottom line. Below is a schedule of
normal distribution:

The standard deviation is taken at ”0” at the hinge point of the normal distribution
curve.



Open Currency Position Risk and Value at Risk Analysis in Commercial Banks 5

The standard distribution is such a distribution that the average value for that distri-
bution is ”0” and the variance is ”1”. 68%, 95% and 99% of values in normal distribution
fall accordingly within (-1,+1), (-3,+3) and, (-2,+2) standard deviation:

Different levels of confidence are selected for estimating Value at Risk. The volatility
of the market should be taken into consideration when selecting the level of confidence.
In emerging economies, financial markets are highly volatile, thus the level of confidence
should be taken higher in these countries, as the financial markets are less volatile in de-
veloped countries, so the level of confidence should be lower. However, the 99% confidence
level is selected as a standard. The Basel Committee recommends that the level of confi-
dence should be chosen as high as possible. The higher the risk level, the higher the value
at risk.
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The methods for calculating the value at risk are divided into two classes, including
parametric and nonparametric methods. The Variance-Covariance method is used in the
parametric method, however the Historical Simulation method is in the non-parametric
method. parametric methods depend on the degree of confidence under the hypothesis
that revenue is normally distributed. In non-parametric method, income is not dependent
on any parameter. In other words, revenue is not based on any hypothesis. We will stay
on these two methods which are commonly used to measure value at risk.

3. Parametric method: Variance - Covariance method

This method determines the parameters affecting the currency position and calculates
the maximum loss value from the fluctuations that occur at a certain level of confidence.

Let’s assume that the bank’s total assets are 3,750,000 EUR and total liabilities are
5,730,000 EUR. Euro currency position is open and short. The open position is -1,980,000
EUR. Therefore, there will be loss as a result of the increase in exchange rate of the Euro.

We need exchange rates of at least two months to calculate value at risk with para-
metric method. We obtain the latest two-month euro exchange rate on the Central Bank’s
website. In order to apply the Variance-Covariance method it is important that the dis-
tribution of the exchange rates ought to be normal. Otherwise, the value at risk will yield
an erronous result. We’ll use skewness and kurtosis to detect whether the distribution is
a normal distribution. Skewness is a number that shows the symmetry of distribution.
If skewness is equal to zero the distribution will be symmetric, if it is smaller than zero,
ie negative numbers, the distribution will be right-handed and ultimately, if it is more
than zero, that is, positive numbers, the distribution will be left-handed. The number of
kurtosis is a value associated with the sharpness or the cavity of the distribution.If the
kurtosis is 3, then the distribution will be a normal distribution, if the distribution is less
than 3 then distribution will be spike and if it is greater than 3 then it will be concave.
In order to calculate skewness, we can use SKEW in the Excel program and KURT to
calculate kurtosis. If we calculate the skewness and kurtosis values, we get the following:

Date Rate Skewness Kurtosis Mode Median Average

03.09.2018 1.9729 -0.080875 -0.685801 1.972900 1.967050 1.965113

04.09.2018 1.9727

05.09.2018 1.9712

06.09.2018 1.9778

07.09.2018 1.9770

10.09.2018 1.9630

11.09.2018 1.9722

12.09.2018 1.9699

13.09.2018 1.9762
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Date Rate Skewness Kurtosis Mode Median Average

14.09.2018 1.9883

17.09.2018 1.9781

18.09.2018 1.9876

19.09.2018 1.9848

20.09.2018 1.9852

21.09.2018 2.0024

24.09.2018 1.9967

25.09.2018 1.9960

26.09.2018 1.9996

27.09.2018 1.9976

28.09.2018 1.9799

01.10.2018 1.9712

02.10.2018 1.9668

03.10.2018 1.9681

04.10.2018 1.9494

05.10.2018 1.9567

08.10.2018 1.9571

09.10.2018 1.9546

10.10.2018 1.9561

11.10.2018 1.9655

12.10.2018 1.9729

15.10.2018 1.9635

16.10.2018 1.9673

17.10.2018 1.9649

18.10.2018 1.9550

19.10.2018 1.9479

22.10.2018 1.9570

23.10.2018 1.9474

24.10.2018 1.9496

25.10.2018 1.9398

26.10.2018 1.9325

29.10.2018 1.9366

30.10.2018 1.9348

31.10.2018 1.9281

01.11.2018 1.9284

02.11.2018 1.9396

05.11.2018 1.9353

As you can see, skewness is -0.080875 and kurtosis -0.685801. Skewness is different
from ”0” and kurtois is ”3”. At the same time, we have noted that in normal distribution
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the average, median and mod are equal. Here, all of the values are different from each
other. Given all this, we can say that distribution is not a normal distribution. Neverthe-
less, we can normalize this distribution. We use the NORMDIST function in the Excel
program. This function converts distribution to a normal distribution with a specified
average value (standard average) and standard deviation. However, each distribution can
not be converted to a normal distribution. In order to use the NORMDIST function, we
need to calculate the average value and standard deviation values. To calculate the aver-
age, we sum up these amounts and divide them into their number. The average number
is calculated by the following formula:

r =

∑n
i=1

ri
n

Where, n – number of values, ri - values and r- average of the values. After obtaining the
mean, we need to calculate the variance to calculate the standard deviation. Variance is a
statistical value that shows how far each of these exchange rates is from the average. To
calculate the variance, we calculate the sum of the squares of the differences from average
of all the rates and then divide their number to one minus. The following formula is used
to calculate variance:

σ2 =

∑n
i=1

(ri − r)2

n− 1

Where, σ2- the variance of these rates. Then we need to calculate the standard deviation.
Standard deviation indicates a deviation of the estimated figure from from the mean of
the set of values Standard deviation is the root of the variance and is calculated by the
following formula:

σ =

√

∑n
i=1

(ri − r)2

n− 1

Where, σ- the standard deviation of given rates. The detailed description of the calculation
is as follows:



Open Currency Position Risk and Value at Risk Analysis in Commercial Banks 9

Date Rate Average Square of
deviation

Variance Standard
deviation

03.09.2018 1.9729 1.965113 0.000061 0.000388 0.019710

04.09.2018 1.9727 0.000058

05.09.2018 1.9712 0.000037

06.09.2018 1.9778 0.000161

07.09.2018 1.977 0.000141

10.09.2018 1.963 0.000004

11.09.2018 1.9722 0.000050

12.09.2018 1.9699 0.000023

13.09.2018 1.9762 0.000123

14.09.2018 1.9883 0.000538

17.09.2018 1.9781 0.000169

18.09.2018 1.9876 0.000506

19.09.2018 1.9848 0.000388

20.09.2018 1.9852 0.000403

21.09.2018 2.0024 0.001390

24.09.2018 1.9967 0.000998

25.09.2018 1.996 0.000954

26.09.2018 1.9996 0.001189

27.09.2018 1.9976 0.001055

28.09.2018 1.9799 0.000219

01.10.2018 1.9712 0.000037

02.10.2018 1.9668 0.000003

03.10.2018 1.9681 0.000009

04.10.2018 1.9494 0.000247

05.10.2018 1.9567 0.000071

08.10.2018 1.9571 0.000064

09.10.2018 1.9546 0.000111

10.10.2018 1.9561 0.000081

11.10.2018 1.9655 0.000000

12.10.2018 1.9729 0.000061

15.10.2018 1.9635 0.000003

16.10.2018 1.9673 0.000005

17.10.2018 1.9649 0.000000
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Date Rate Average Square of
deviation

Variance Standard
deviation

18.10.2018 1.955 0.000102

19.10.2018 1.9479 0.000296

22.10.2018 1.957 0.000066

23.10.2018 1.9474 0.000314

24.10.2018 1.9496 0.000241

25.10.2018 1.9398 0.000641

26.10.2018 1.9325 0.001064

29.10.2018 1.9366 0.000813

30.10.2018 1.9348 0.000919

31.10.2018 1.9281 0.001370

01.11.2018 1.9284 0.001348

02.11.2018 1.9396 0.000651

05.11.2018 1.9353 0.000889

We can calculate variance and standard deviation by using Excel functions, VAR and
STDEV. Let us Normalize distribution with NORMDIST function:

Rate Normalization

1.9281 3.567192

1.9284 3.667930

1.9325 5.246246

1.9348 6.294925

1.9353 6.537772

1.9366 7.192703

1.9396 8.821054

1.9398 8.934681

1.9474 13.486201

1.9479 13.786019

1.9494 14.670538

1.9496 14.786353

1.9546 17.418853

1.955 17.600747

1.9561 18.073221

1.9567 18.312725

1.957 18.427399

1.9571 18.464853

1.963 19.907433
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Rate Normalization

1.9635 19.954187

1.9649 20.018521

1.9655 20.015891

1.9668 19.948059

1.9673 19.899468

1.9681 19.796030

1.9699 19.450303

1.9712 19.107172

1.9712 19.107172

1.9722 18.792848

1.9727 18.620038

1.9729 18.548090

1.9729 18.548090

1.9762 17.149081

1.977 16.756785

1.9778 16.347095

1.9781 16.189329

1.9799 15.201675

1.9848 12.289117

1.9852 12.045393

1.9876 10.591266

1.9883 10.173373

1.996 6.022602

1.9967 5.699944

1.9976 5.300748

1.9996 4.478074

2.0024 3.476943

The distribution table will be as follows:
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With The Variance-Covariance Method (VAR) The Value at Risk is calculated as
follows:

V AR = Open Position ∗ σ ∗ α

Where, σ – standard deviation, α – the level of assurance. Here, α is equal to 1,645, at
95% confidence level in normal distribution, as noted. Similarly, the value that corresponds
to 99% confidence level in normal distribution is 2,326. In our case, the open position is
-1,980,000 EUR and standard deviation is 0.019710. Therefore,

V AR95% = 64196.55 and V AR99% = 90772.75

The Value at Risk we obtained means that the maximum amount of our loss at 99%
confidence level within 1 day will be AZN 90 772.75. The probability exceeding of our
loss from this amount is 1%. If we multiply the calcaulated Value at Risk for 1 day by the
square root of holding period we will get a value at risk for that period The formula will
be:

V AR = Open position ∗ σ ∗ α ∗
√
t

Where, t – time interval, or, in other words, a retention period.

4. Non-parametric method: Historical Simulation method

This method is based on the assumption that the history repeats itself. This method
uses Historical Values to calculate Value at Risk. That is, we can calculate the amount of
loss for tomorrow by using the prior days’ rates and losses, assuming that tomorrow will
be like the days we left behind. There will also be a level of confidence.

Suppose that the total assets of the Bank is 9,750,000 GBP and the total liabilities is
7,350,000 GBP. Pound currency position is open and long. The open position is 2,400,000
GBP. Therefore, there will be loss as a result of the decrease of the exchange rate of the
Pound.

With a Historical Simulation Method, we need exchange rates for at least the last
two months to calculate the value at risk. We obtain the latest two-month exchange rate
currencies from the Central Bank’s website. Then we calculate the daily fluctuations of
these exchange rates. The following formula is used to calculate the change:

(ratecurrent day − ratethe day before) /ratethe day before

Then the open position is re-evaluated by multiplying to the change of these exchange
rates. These re-evaluations are then sorted from large to small. After the rankings the
total rows are multiplied by 95% or 99%. There are 45 rows in our example. If we multiply
this figure to 95% or 99%, we’ll get approximately 43 and 44 respectively. The amount
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in row 43 with probability 95%, and the amount in row 44 with probability 99% are The
Value at Risk. The detailed illustration of the calculation is as follows:

Date Rate Change Impact Ranking Open
posi-
tion

Value at Risk
(95%)

-20201.66

03.09.2018 2.1980 2400000

04.09.2018 2.1865 -
0.523%

-
12556.87

28795.16 Value at Risk
(99%)

05.09.2018 2.1861 -
0.018%

-439.06 25884.10 -22608.31

06.09.2018 2.1953 0.421% 10100.18 23178.90

07.09.2018 2.1984 0.141% 3389.06 22331.57

10.09.2018 2.1951 -
0.150%

-3602.62 18663.53

11.09.2018 2.2163 0.966% 23178.90 15288.02

12.09.2018 2.2116 -
0.212%

-5089.56 14071.80

13.09.2018 2.2172 0.253% 6077.05 13381.90

14.09.2018 2.2302 0.586% 14071.80 12606.06

17.09.2018 2.2239 -
0.282%

-6779.66 11263.58

18.09.2018 2.2363 0.558% 13381.90 10234.31

19.09.2018 2.2354 -
0.040%

-965.88 10100.18

20.09.2018 2.2354 0.000% 0.00 8782.47

21.09.2018 2.2562 0.930% 22331.57 6077.05

24.09.2018 2.2236 -
1.445%

-
34677.78

5705.83

25.09.2018 2.2275 0.175% 4209.39 5229.47

26.09.2018 2.2392 0.525% 12606.06 5047.88

27.09.2018 2.2364 -
0.125%

-3001.07 4209.39

28.09.2018 2.2243 -
0.541%

-
12985.15

3389.06

01.10.2018 2.2141 -
0.459%

-
11005.71

2882.82

02.10.2018 2.2157 0.072% 1734.34 2643.05

03.10.2018 2.2094 -
0.284%

-6824.03 1734.34



14 A. Huseynov

Date Rate Change Impact Ranking Open
posi-
tion

Value at Risk
(95%)

04.10.2018 2.1978 -
0.525%

-
12600.71

0.00

05.10.2018 2.2118 0.637% 15288.02 -439.06

08.10.2018 2.2290 0.778% 18663.53 -965.88

09.10.2018 2.2278 -
0.054%

-1292.06 -1292.06

10.10.2018 2.2373 0.426% 10234.31 -2715.05

11.10.2018 2.2478 0.469% 11263.58 -3001.07

12.10.2018 2.2505 0.120% 2882.82 -3602.62

15.10.2018 2.2293 -
0.942%

-
22608.31

-5060.27

16.10.2018 2.2346 0.238% 5705.83 -5089.56

17.10.2018 2.2393 0.210% 5047.88 -6779.66

18.10.2018 2.2267 -
0.563%

-
13504.22

-6824.03

19.10.2018 2.2135 -
0.593%

-
14227.33

-
11005.71

22.10.2018 2.2216 0.366% 8782.47 -
12489.16

23.10.2018 2.2029 -
0.842%

-
20201.66

-
12556.87

24.10.2018 2.2077 0.218% 5229.47 -
12600.71

25.10.2018 2.1907 -
0.770%

-
18480.77

-
12985.15

26.10.2018 2.1793 -
0.520%

-
12489.16

-
13504.22

29.10.2018 2.1817 0.110% 2643.05 -
14227.33

30.10.2018 2.1771 -
0.211%

-5060.27 -
18409.81

31.10.2018 2.1604 -
0.767%

-
18409.81

-
18480.77

01.11.2018 2.1837 1.079% 25884.10 -
20201.66

02.11.2018 2.2099 1.200% 28795.16 -
22608.31

05.11.2018 2.2074 -
0.113%

-2715.05 -
34677.78
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As mentioned above, the Value at Risk that we have obtained likewise means that the
maximum amount of loss we will have is 22 608.31 AZN at 99% confidence level within 1
day. The probability of the loss exceeding this amount is 1%.
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Abstract. A boundary value problem for a first order elliptic type equation with nonlocal bound-
ary conditions in a rectangular domain is considered. The problem statement is such that four
points of the boundary simultaneously move along the boundaries( every point is situated in one
of sides of the rectangle). These points move so that the Carleman conditions are fulfilled, i.e.
the neighboring points either move away from one boundary point or they approach to one of the
boundary points. Carleman has called such problems the well-psed problems.
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1. Introduction

As is known from the course of mathematical functions equations and partial equations,
boundary value problems with local conditions are mainly considered for elliptic type
equations [7], [8], [10],[11] .

Further, a boundary value problem with local boundary conditions Dirichlet condition
was considered for a first order elliptic type equation (Cauchy-Riemann equation) though
such problems are ill-posed [2],[4].

Note that for an ordinary linear differential equation, the number of both initial and
boundary conditions coincide with the order of the equation under consideration [12],[5],
while for a partial equation the number of initial conditions coincides with the highest
order of time derivative contained in the considered equation. As for a local boundary
condition (if the number of space variables is greater than a unit with arbitrary boundaries)
their number coincides with the half of higher derivatives in space variables contained in
the considered equations [9],[6].

Note that linear local boundary conditions with global addends (integrals) are also
encountered in the the paper [6], while nonlocal ones in our case [14](with sewing of

∗Corresponding author.
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boundary values) for many-dimensional boundary value problems are encountered in [3].
Note that [14] contains over 250 works devoted mainly to boundary value problems.

In [14] one can find boundary value problems both for elliptic ( both of even and odd
orders), parabolic type equations and also for mixed and composite type equations.

There are also boundary value problems for fractional derivative ordinary and partial
equations.

Finally, note that we considered both the Cauchy problem and a boundary value
problem for a linear differential equation with continuously alternating order of derivative
[1].

2. Problem statement

Let us consider the following boundary value problem:

∂u(x)

∂x2
+ i

∂u(x)

∂x1
= f(x), x2 ∈ (ak, bk), k = 1, 2; (1)

αj1(t)u(a1 + t(b1 − a1), a2) + αj2(t)(b1, b2 + t(a2 − b2)) + αj3(t)u(b1 + t(a1 − b1), b2)

+αj4(t)u(a1, a2 + t(b2 − a1)) = αj(t), j = 1, 2; t ∈ [0, 1], (2)

where x = (x1, x2), bk > ak > 0, k = 1, 2; i =
√
−1 f(x) for xk ∈ (ak, bk), k =

1, 2; αjk(t) αj(t) for j = 1, 2; k = 1, 4 are continuous functions and boundary conditions
(2) that are linear independent.

Remark 1. As is seen from the statements of of problems(1)-(2) the Carleman conditions
[3] are fulfilled i.e. on the boundary four points move simultaneously and the neighboring
points move away from one boundary point or they approach to one boundary point.

Remark 2. We show that if simultaneously more than point move along the boundary,
i.e. the Carleman conditions are not fulfilled, then the problem is ill-posed, i.e. may have
no solution or have a non-unique solution.

Main relations: As is known, the fundamental solution of the Caushy-Riemann
equation (1) has the form ([13]: )

U(x− ξ) =
1

π

1

x2 − ξ2 + i(x1 − ξ1)
. (3)

For determining the main relation, we multiply equation (1) by fundamental solution (3),
integrate with respect to the domain D = {x = (x1, x2) : xk ∈ (ak, bk), k = 1, 2 apply the
Ostrogradsky-Gauss formula and have:∫

D

∂u(x)

∂x2
U(x− ξ)dx+ i

∫
D

∂u(x)

∂x1
U(x− ξ)dx =

∫
D

f(x)U(x− ξ)dx

∫
u

Γ

(x)U(x− ξ) [cos(ν, x2) + i cos(ν, x1)] dx
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−
∫
D

f(x)U(x− ξ)dx =

{
u(ξ), ξ ∈ D,
1
2u(ξ), ξ ∈ Γ,

(4)

where Γ = ∂D is the boundary of the domain D, ν is the external normal to the boundary
Γ of domain D.

The basic relation (4), consists of two parts. The first part corresponding to ξ ∈
D gives the general solution of equation (1) determined in domain D, the second part
corresponding to ξ ∈ Γ is a necessary condition.

For giving necessary conditions at first we write the main relation (4) in the expanded
form, i.e.

− 1

2π

1∫
0

u(a1 + τ(b1 − a1), a2)

a2 − ξ2 + i(a1 − τ(b1 − a1)− ξ1)
dτ +

i

2π

1∫
0

u(b1, b2 + τ(a2 − b2))

b2 + τ(a2 − b2)− ξ2 + i(b1 − ξ1)
dτ

+
1

2π

1∫
0

u(b1 + τ(a1 − b1), b2)

b2 − ξ2 + i(b1 + τ(a1 − b1)− ξ1)
dτ − i

2π

1∫
0

u(a1, a2 + τ(b2 − a1))

a2 + τ(b2 − a2)− ξ2 + i(a1 − ξ1)
dτ

− 1

2π

f(x)

x2 − ξ2 + i(x1 − ξ1)
dx =

{
u(ξ), ξ ∈ D,
1
2u(ξ), ξ ∈ Γ.

(5)

The necessary conditions:

u(a1 + τ(b1 − a1), a2) =
i

π(b1 − a1)

1∫
0

u(a1 + τ(b1 − a1), a2)

τ − t
dτ

+
i

π

1∫
0

u(b1,b2 + τ(a2 − b2))

(a2 − b2)(τ − t) + i(b1 − a1)(1− t)
dτ +

1

π

1∫
0

u(b1 + τ(a1 − b1), b2)

b2 − a2 + i(b1 − a1)(1− τ − t)
dτ

− i
π

1∫
0

u(a1, a2 + τ(b2 − a1))

(b2 − a2) τ − i(b1 − a1)t
dτ − 1

π

∫
D

f(x)

x2 − a2 + i(x1 − a1 − t(b1 − a1))
dx. (6)

u(b1, b2 + t(a2 − b2)) = − 1

π

1∫
0

u(a1 + τ(b1 − a1), a2)

(a2 − b2)(1− t) + i(a1 − b1)(1− τ)
dτ

+
i

π(a2 − b2)

1∫
0

u(b1,b2 + τ(a2 − b2))

τ − t
dτ +

1

π

1∫
0

u(b1 + τ(a1 − b1), b2)

(b2 − a2) t+ i(a1 − b1)τ
dτ

− i
π

1∫
0

u(a1, a2 + τ(a2 − b2))

(a2 − b2)(1− τ − t) + i(a1 − b1)
dτ − 1

π

∫
D

f(x)

x2 − b2 − t(a2 − b2) + i(x1 − b1)
dx, (7)
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u(b1 + t(a1 − b1), b2) = − 1

π

1∫
0

u(a1 + τ(b1 − a1), a2)

a2 − b2 + i(a1 − b1)(1− τ − t)
dτ

+
i

π

1∫
0

u(b1,b2 + τ(a2 − b2))

(a2 − b2)τ + i(b1 − a1)t
dτ − 1

π(a1 − b1)

1∫
0

u(b1 + τ(a1 − b1), b2)

τ − t
dτ

− i
π

1∫
0

u(a1, a2 + τ(b2 − a2))

(a2 − b2)(1− τ) + i(a1 − b1)(1− t)
dτ − 1

π

∫
D

f(x)

x2 − b2 + i(x1 − b1 − t(a1 − b1))
dx,

(8)

u(a1, a2 + t(b2 − a2)) = − 1

π

1∫
0

u(a1 + τ(b1 − a1), a2)

(a2 − b2)t+ i(b1 − a1)τ
dτ

+
1

π

1∫
0

u(b1, b2 + τ(a2 − b2))

(b2 − a2)(1− τ − t) + i(b1 − a1)
dτ +

1

π

1∫
0

u(b1 + τ(a1 − b1), b2)

(b2 − a2)(1− t)− i(a1 − b1)(1− τ)
dτ

− i

(b2 − a2)π

1∫
0

u(a1, a2 + τ(b2 − a2))

τ − t
dτ − 1

π

∫
D

f(x)

x2 − a2 − t(b2 − a2) + i(x1 − a1)
dx. (9)

This establishes the following statement:

Theorem 1. If f(x) is a continuous function, then every solution of equation (1), deter-
mined in domain D satisfies necessary singular conditions (6)-(9)

Remark 3. As was mentioned above, every solution of equation (1) determined in domain
D is found from the main relation (5) for ξ ∈ D, i.e. the first expression of the main
relation (5)

Regularization: Proceeding from (6)-(9), we create the following linear combination:

αj1(t)(b1 − a1)u(a1 + t(b1 − a1), a2) + αj2(t)(a2 − b2)u(b1, b2 + t(a2 − b2))

+αj3(t)(b1 − a1)u(b1 + t(a1 − b1), b2) + αj4(t)(a2 − b2)u(a1, a2 + t(b2 − a2))

=
i

π

1∫
0

[αj1(τ)u(a1 + τ(b1 − a1), a2) + αj2(τ)u(b1, b2 + t(a2 − b2))

+αj3(τ)u(b1 + τ(a1 − b1), b2) + αj4(τ)u(a1, a2 + τ(b2 − a2))]
dτ

τ − t
+ ..., (10)

where, when obtaining (10) it was supposed that

αjk(t) ∈ Hµ(0, 1), j = 1, 2; k = 1, 4;µ ∈ (0, 1), (11)
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Hµ(0, 1) is a Holder class with the exponent µ ∈ (0, 1), the dots (· · · ) denotes the sum of
nonsingular addends.

Taking boundary condition (2) into account in (10), we get

αj1(t)(b1 − a1)u(a1 + t(b1 − a1), a2) + αj2(t)(a2 − b2)u(b1, b2 + t(a2 − b2))

+αj3(t)(b1 − a1)u(b1 + t(a1 − b1), b2) + αj4(t)(a2 − b2)u(a1, a2 + t(b2 − a2))

=
i

π

1∫
0

αj(τ)

q − t
dt+ ..., j = 1, 2; t ∈ [0, 1]. (12)

As is seen from (12), as the first part does not contain an unknown function, then it
exists in the Cauchy sense.

If we suppose

αj(t) ∈ C(1)(0, 1), j = 1, 2; αj(0) = αj(1) j = 1, 2; (13)

then the integral in the right hand side of (12) exists in the ordinary sence .
This establishes

Theorem 2. Under conditions of theorem 1, if conditions (11) and (12) hold, then rela-
tions (13) are regular.

Fredholm property: Now combining the given boundary condition (2) with regular
expressions (12), we have:

αj1(τ)u(a1 + t(b1 − a1), a2) + αj2(t)u(b1, b2 + t(a2 − b2))

+αj3(τ)u(b1 + t(a1 − b1), b2) + αj4(t)u(a1, a2 + t(b2 − a2)) = αj(t), j = 1, 2; t ∈ [0, 1],

αj1(t)(b1 − a1)u(a1 + t(b1 − a1), a2) + αj2(t)(a2 − b2)u(b1, b2 + t(a2 − b2))

+αj3(t)(b1 − a1)u(b1 + t(a1 − b1), b2)

+αj4(t)(a2 − b2)u(a1, a2 + t(b2 − a2)) = ...j = 1, 2; t ∈ [0, 1]. (14)

Let

∆(t) =

∣∣∣∣∣∣∣∣
α11(t) α12(t) α13(t) α14(t)
α21(t) α22(t) α23(t) α24(t)

α11(t)(b1 − a1) α12(t)(a2 − b2) α13(t)(b1 − a1) α14(t)(a2 − b2)
α21(t)(b1 − a1) α22(t)(a2 − b2) α23(t)(b1 − a1) α24(t)(a2 − b2)

∣∣∣∣∣∣∣∣ 6= 0, (15)

Then from (14) we get a system of normal form of Fredholm integral equations of
second kind with nonsingular kernels.

We get the following statement:

Theorem 3. Let the condition of theorem 3 hold, then if condition (15) is valid, the stated
boundary value problem (1)-(2) is Fredholm.
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Morrey Spaces
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Abstract. In this work the problem of the completeness of the classical system of cosines is
considered in a weighted Morrey spaces with a power weight. These spaces, generally speaking,
are not separable. Therefore, classical trigonometric systems are not complete in these spaces.
Starting from the shift operator, a subspace of Morrey space in which continuous functions are
dense is defined. A sufficient condition on the weight function is found, under which the cosine
system is complete in this subspace.
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1. Introduction

Morrey spaces were introduced by Morrey, see [1], in the setting of partial differential
equations, and presented in various books, see [2, 3, 4, 5], survey papers [6, 7, 8] and the
references therein. The splash of interest to Morrey-type spaces during the last decade
has advances in many areas, which allow to consider the basis properties of systems in
such spaces in order to fill the gaps in the theory of Morrey spaces. These problems arise
naturally in the solution of many partial differential equations by the Fourier method.

Several authors have studied the basis properties of trigonometric systems in Banach
function spaces. Well-known results concerning the basis properties of the systems of
exponentials in the case of the Lebesgue space Lp, (1 < p <∞), can be found in [9, 10, 11].
Babenko [12] has proved that the degenerate system of exponentials

{
|t|α eint

}
n∈Z with

|α| < 1
2 forms a basis for L2 (−π, π) but does not form a Riesz basis when α 6= 0, where

Z is the set of integers. This result has been generalized by Gaposhkin [13]. In [14], the
conditions on the weight function ρ, for which the system

{
eint
}
n∈Z forms an unconditional

basis for the weighted Besov space have been obtained. Similar problems have been studied
in [15, 16, 17, 18, 38, 39]. The basicity of the systems of sines and cosines with degenerate
coefficients have been widely analyzed. Amongst the Banach spaces where the basicity
are known we mention the Lebesgue space Lp, (1 < p <∞), [19, 20]. Basis properties of
the systems of sines, cosines and exponentials with the linear phase in weighted Lebesgue
space have been studied in [21, 22, 23]; see also [24, 25, 26].

http://www.cjamee.org 23 c© 2013 CJAMEE All rights reserved.
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The basis properties of the systems of sines, cosines and exponentials in Morrey spaces
are much less studied. In the paper [27], there were studied the basis properties of the
system of exponentials in Morrey space. Also, in [28, 37] the basis properties of the
perturbed systems of exponentials in Morrey space have been investigated. On the other
hand, some approximation problems have been investigated in Morrey-Smirnov classes in
[29].

We will use the standard notation. Denote the set of natural numbers by N and the
set of nonnegative integers by N0. We denote by L[M ] the linear span of the set M . M
will stand for the closure of the set M . ‖ · ‖∞ means sup-norm.

Our goal in this paper is the study of completeness of the system {cosnt}n∈N0
in

weighted Morrey space Lp,λν (0, π) defined by a product of power weights of the form

ν(t) =
r∏

k=0

|t− tk|αk , t ∈ [0, π] , (1)

where t0 = 0, tr = π, and tk are arbitrary finite points in the interval (0, π) for all k =
1, 2, ..., r− 1, and αk ∈ R for all k = 0, 1, ..., r. Also, we will consider the weighted Morrey
space Lp,λν (−π, π), where

ν(t) =

r∏
k=0

|t− tk|αk , t ∈ [−π, π] , (2)

and tk are arbitrary finite points in the interval [−π, π] and αk ∈ R for all k = 0, 1, ..., r.

Although the same properties of trigonometric systems, as well as their pertubations,
are well studied in weighted Lebesgue spaces, the situation changes cardinally in Morrey
spaces. For instance, since the functional characterization of dual spaces of Morrey spaces
is not known, it avoids working with dual spaces. Another difficulty, that frustrates the
“usual” attempts is that, the infinitely differentiable functions(even continuous functions)
are not dense in Morrey spaces, but we still seek to prove “density” property of trigono-
metric functions, which are infinily differentiable. For these reasons, unlike the Lp case,
here will be used another methods to study the basis properties(especially, completeness
and basisness) in weighted Morrey spaces.

In this work the problem of the completeness of the classical system of cosines is
considered in a weighted Morrey spaces with a power weight. These spaces, generally
speaking, are not separable. Therefore, classical trigonometric systems are not complete
in these spaces. Starting from the shift operator, a subspace of Morrey space in which
continuous functions are dense is defined. A sufficient condition on the weight function is
found, under which the cosine system is complete in this subspace.
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2. Preliminaries

2.1. (Weighted) Morrey space on an interval

For 1 < p < ∞ and 0 ≤ λ < 1 we define the Morrey space Lp,λ(a, b) as the set of
functions f on (a, b) such that

‖f‖p,λ := ‖f‖Lp,λ(a,b) = sup
I⊂(a,b)

 1

|I|λ

∫
I

|f(t)|p dt

 1
p

<∞,

where I ⊂ (a, b) is any interval. It is clear that Lp,λ(a, b) are Banach spaces. Morrey
spaces can be defined in a more general way (see e.g. [5, 8, 29]) but this is enough for our
purposes. The Lp(a, b) spaces with the Lebesgue measure correspond with the case λ = 0.

The weighted Morrey space Lp,λν (a, b) is defined in the usual way

Lp,λν (a, b) :=
{
f : νf ∈ Lp,λ(a, b)

}
,

with ‖f‖p,λ;ν := ‖νf‖p,λ. The function ν is called the weight or weight function of this
space.

It is evident that the space Lp,λν (a, b) contains constant functions if and only if ν ∈
Lp,λ(a, b). Throughout the paper, unless otherwise stated, we will assume that 1 < p, q <
∞, p−1 + q−1 = 1 and 0 < λ < 1. Also, the letter ”c” denotes a positive constant, which
is not necessarily the same at each occurance but is independent of the essential variable
and quantities. The expression f∼g, t→ a means that in suffeciently small neighborhood

Oδ of the point t = a, the inequalities 0 < δ ≤
∣∣∣f(t)g(t)

∣∣∣ ≤ δ−1 < ∞ hold in Oδ. If the last

inequalities hold on an interval I, we write f∼g on I. For example sin t∼t(π− t) on [0, π] .
We assume here some familiarity with basic concepts of basis theory and we refer to

the books of Heil [30], Christensen [31], Singer [32, 33] and Bilalov B.T. [39] for basic
definitions such as complete and minimal systems and basis in Banach spaces.

The following lemma has been proved by Samko [34] in the case of Morrey space on a
bounded rectifiable curve. In our case it reads

Lemma 1. The power function |t− t0| α, t0 ∈ [a, b] , belongs to the Morrey space Lp,λ(a, b)

if and only if α ∈
[
λ−1
p ,∞

)
.

Direct application of the above lemma implies the following

Proposition 1. Let ν be given as in (1). Then

{cosnt}n∈N0
⊆ Lp,λν (0, π), 0 < λ < 1, if and only if

αk ∈
[
λ− 1

p
,∞
)
, for all k = 0, 1, 2, ..., r. (3)

Remark 1. The case λ > 0 differs from the case λ = 0: when λ = 0, conditions (3) must
be replaced by the conditions

αk ∈
(
−1

p
,∞
)
, for all k = 0, 1, 2, ..., r.
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2.2. Auxiliary propositions

Let us start by considering the space(
Lp,λ

)′
=

{
g : sup
‖f‖p,λ=1

‖f g‖L1
< +∞

}
,

with the norm
‖g‖

(Lp,λ)
′ = sup

f∈Lp,λ,‖f‖p,λ=1

‖fg‖L1 .

It can be proved that
(
Lp,λ

)′
is a normed space and the following inequality is satisfied

‖fg‖L1 ≤ ‖f‖p,λ ‖g‖(Lp,λ)′ , (4)

for all f ∈ Lp,λ and g ∈
(
Lp,λ

)′
.

The following lemma is true.

Lemma 2. |t|β ∈
(
Lp,λ(−π, π)

)′
⇐ β ∈

(
−λ−1

p − 1,∞
)
, 0 ≤ λ < 1, 1 < p < +∞.

The following lemma is also true.

Lemma 3. |t|β ∈
(
Lp,λ(0, π)

)′
⇐ β ∈

(
−λ−1

p − 1,∞
)
, 0 ≤ λ < 1, 1 < p < +∞.

Proof. Firstly, suppose β ∈
(
−λ−1

p − 1,∞
)

. Then, for all f ∈ Lp,λ(0, π), we have∫ π

−π
|t|β |f(t)| dt =

∞∑
k=1

∫
t∈[2−k−1π,2−kπ]

|t|β |f(t)| dt

≤ c
∞∑
k=1

2−kβ
∫
t∈[2−k−1π,2−kπ]

|f(t)| dt

≤ c
∞∑
k=1

2−kβ2
−k
(
1− 1

p

)(∫
t∈[2−k−1π,2−kπ]

|f(t)|p dt

) 1
p

= c

∞∑
k=1

2
−k
(
β+1− 1

p
+λ
p

)
‖f‖p,λ ≤ c ‖f‖p,λ .

Then, |t|β ∈
(
Lp,λ(0, π)

)′
.

Conversely, suppose that β /∈
(
−λ−1

p − 1,∞
)

. That is β + λ−1
p ≤ −1.

Then, |t|
λ−1
p ∈ Lp,λ(0, π) and∫ π

0
|t|β |t|

λ−1
p dt =

∫ π

0
|t|β+

λ−1
p dt =∞.

Thus |t|β /∈
(
Lp,λ

)′
. This completes the proof. J
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2.3. Zorko subspace of weighted Morrey space

Denote by C∞0 [−π, π] the set of all infinitely differentiable functions with compact
support in (−π, π). We observe that functions in Lp,λ (−π, π) can not be approximated by
functions in C∞0 [−π, π], nor even by continuous functions. That is the set C∞0 [−π, π] is not
dense in Lp,λ (−π, π) (c.f. [5,35]). This fact still valid in the weighted setting of Morrey
space. For example, let ν be given as in (2) under conditions (3). Let τ0 6= tk , ∀k =
0, r , τ0 ∈ (−π, π) be any points. Then, there exists sufficianly small δ0 > 0, so that

tk /∈ Oδ0 ⊂ (−π, π) , ∀k = 0, r ,

where Oδ0 = [τ0, τ0 + δ0]. Then it’s clear that g±δ0 (t) = χOδ0 (t) ν±1 (t) is a continuous
function on [−π, π]. Consider the function

f (t) = |t− τ0|
λ−1
p ν−1 (t) .

It’s obvious that f ∈ Lp,λν (−π, π). Let g ∈ C [−π, π] be any function. From (3) it follows

that g ∈ Lp,λν (−π, π). We have

‖f − g‖
Lp,λν (−π,π) ≥ ‖f − g‖Lp,λν (Oδ0) =

= ‖fν − gν‖Lp,λ(Oδ0) = ‖F −G‖Lp,λ(Oδ0) ,

where F (t) = |t− τ0|
λ−1
p ∈ Lp,λ (Oδ0), G = gν ∈ C (Oδ0). For the rest one needs to follow

the corresponding example of Zorko [5, 35].

Let f (·) be the given function on [a, b]. In determining the Zorko type subspace we will
assume that the function f (·) is continued to [2a− b, 2b− a] with the following expression
(and this function is also denoted by f (·) )

f (x) =

{
f (2a− x) , x ∈ [2a− b, a) ,
f (2b− x) , x ∈ (b, 2b− a] .

So, following Zorko [35], we consider the subspace

∼
Lp,λν (a, b) :=

{
f ∈ Lp,λν (a, b) : ‖f(.+ δ)− f(.)‖p,λ;ν → 0 asδ → 0

}
,

where ν is given as in (2) under conditions (3). We will refer to this subspace as the Zorko

subspace of Lp,λν (a, b). Also, we consider the Lp,λν -closure of
∼
Lp,λν (a, b) and denote it by

Mp,λ
ν (a, b). It is easy to see that if ν ∈ Lp,λ (a, b) , then C [−a, b] ⊂ Mp,λ

ν (a, b). In fact,
let f ∈ C [a, b] be an arbitrary function and δ be an arbitrary number (with |δ|sufficiently
small). It is obvious that the extended function f (·) is continuous on [2a− b, 2b− a]. We
have
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‖f (·+ δ)− f (·)‖p,λ,ν = sup
I⊂(a,b)

(
1

|I|λ

∫
I
|(f (t+ δ)− f (t)) ν (t)|p dt

)1/p

≤

≤ sup
t∈[a,b]

|f (t+ δ)− f (t)| ‖ν‖p,λ → 0, δ → 0.

Thus we have the following

Lemma 4. If ν ∈ Lp,λ (a, b), then C[a, b] ⊂Mp,λ
ν (a, b).

Since Mp,λ
ν (a, b) is a closed subspace of Lp,λν (a, b), it also contains the Lp,λν -closure of

C∞0 [a, b]; in fact, Mp,λ
ν (a, b) is precisely that closure.

Proposition 2. Let ν be given as in (2) and the following condition holds

αk ∈
[
−1− λ

p
,−1− λ

p
+ 1

)
, k = 0, r. (5)

Then the set C∞ [−π, π] is dense in Mp,λ
ν (−π, π).

We need the following lemma.

Lemma 5. [Minkowski inequality for integrals in weighted Morrey spaces] Let (X;Xσ;µ)
be a measurable space with an σ-additive measure µ (·) on a set X, ν = ν(t) a weight func-
tion, dy a linear Lebesgue measure on an interval (a, b) and F (x, y) is µ× dy-measurable.
If 1 ≤ p <∞, then ∥∥∥∥∫

X
F (x, y)dµ(x)

∥∥∥∥
p,λ;ν

≤
∫
X
‖F (x, y)‖p,λ;ν dµ(x).

Proof. By using the Minkowski inequality for integrals in Lp(a, b),∥∥∥∥∫
X
F (x, y)ν(y)dµ(x)

∥∥∥∥
Lp

≤
∫
X
‖F (x, y)ν(y)‖Lp dµ(x),

we have(∫
Br(x)

∣∣∣∣∫
X
F (x, y)ν(y)dµ(x)

∣∣∣∣p dy
) 1

p

≤
∫
X

(∫
Br(x)

|F (x, y)ν(y)|p dy

) 1
p

dµ(x),

where Br (x) is a ball with a radius r > 0 and the center at x ∈ X. Then(
1

rλ

∫
Br(x)

∣∣∣∣∫
X
F (x, y)ν(y)dµ(x)

∣∣∣∣p dy
) 1

p
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≤
∫
X

(
1

rλ

∫
Br(x)

|F (x, y)ν(y)|p dy

) 1
p

dµ(x).

The required result follows by taking the supremum over all x ∈ (a, b) and r > 0 in the
last inequality. J

It is now easy to provide the
Proof of Proposition 2. Let f ∈ Mp,λ

ν (−π, π), and ε > 0, be a sufficiently small
number. Consider the function

wε(t) =

{
cεe

(
−ε2
ε2−t2

)
, |t| < ε,

0, |t| ≥ ε,

where cε is chosen such that
∫∞
−∞wε(t)dt = 1. Define the function fε(t) as

fε(t) =

∫ ∞
−∞

wε(s)f(t− s)ds.

As ε > 0 is sufficiently small, this definition is correct. Indeed, it is enough to prove that
f ∈ L1 (−π, π). From f ∈Mp,λ

ν (−π, π) it follows that (fν) ∈ Lp,λ (−π, π). Let (5) holds.

By using Lemma 2 it is easy to prove that ν−1 ∈
(
Lp,λ (−π, π)

)′
. Since (fν) ∈ Lp,λ (−π, π),

we have f = (fν) ν−1 ∈ L1 (−π, π).
It is clear that fε(t) is infinitely differentiable function on [−π, π], and

‖fε − f‖p,λ;ν =

∥∥∥∥∫ ∞
−∞

wε(s)f(t− s)ds− f(t)

∥∥∥∥
p,λ;ν

=

∥∥∥∥∫ ∞
−∞

wε(s) [f(t− s)− f(t)] ds

∥∥∥∥
p,λ;ν

Applying Lemma 5, we get

‖fε − f‖p,λ;ν ≤
∫ ∞
−∞
‖wε(s) [f(.− s)− f(.)]‖p,λ;ν ds

≤ sup
|s|<ε
‖[f(.− s)− f(.)]‖p,λ;ν

∫ ε

−ε
wε(s)ds

= sup
|s|<ε
‖[f(.− s)− f(.)]‖p,λ;ν → 0 as ε→ 0.

This completes the proof.
By similar way we can define Mp,λ

ν (0, π) and prove the following

Proposition 3. Let ν be given as in (1) and the conditions (5) be satisfied. Then the set
C∞[0, π], of all infinitely differentiable functions with compact support in (0, π), is dense

in Mp,λ
ν (0, π).
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3. Main result

In this section we will establish the completeness of system of cosines in weighted
Morrey spaces.

Theorem 1. The system {cosnt}n∈N0
is complete in Mp,λ

ν (0, π) , 0 < λ < 1, 1 < p < +∞,
if conditions

α0;αr ∈
(
−1− λ

p
,−1− λ

p
+ 1

)
, αk ∈

[
−1− λ

p
,−1− λ

p
+ 1

)
, k = 1, r − 1, (6)

are satisfied.

Proof. First, note that {cosnt}n∈N0
⊂ Mp,λ

ν (0, π). Indeed, by Lemma 1 under (5)

we have ν ∈ Lp,λ (0, π). Then from Lemma 4 we have C[0, π] ⊂ Mp,λ
ν (0, π), and as a

result {cosnt}n∈N0
⊂ Mp,λ

ν (0, π). Show that under (6) the set C∞0 [0, π] is also dense

in Mp,λ
ν (0, π). Indeed, from Proposition 3, we have that the set C∞ [0, π] is dense in

Mp,λ
ν (0, π). Letf ∈ Mp,λ

ν (0, π) be any function and ε > 0 be any number. Then ∃g ∈
C∞ [0, π]:

‖f − g‖p,λ;ν <
ε

2
.

Set E+
δ = (0, δ) , E−δ = (π − δ, π) . We have∥∥∥gχE±δ ∥∥∥Lp,λν (0,π)

= ‖g‖
Lp,λν (E±δ ) ≤ ‖g‖∞ ‖ν‖Lp,λ(E±δ ) .

For sufficiently small δ > 0 we get

‖ν‖Lp,λ(E+
δ ) ≤ C ‖t

α0‖Lp,λ(E+
δ ) → 0, δ → 0.

Analogously we have

‖ν‖Lp,λ(E−δ ) ≤ C ‖(π − t)
αr‖Lp,λ(E−δ ) → 0, δ → 0.

Let δ0 <
1
2 min {t1;π − tr−1} is so that

‖ν‖Lp,λ(E+
δ ) + ‖ν‖Lp,λ(E−δ ) <

ε

4 ‖g‖∞
, ∀δ ∈ (0, δ0) .

Set

gδ0 (t) =

 g (t) , t ∈ (0, π) \
(
E+
δ0/2

⋃
E−δ0/2

)
,

0 , t ∈
(
E+
δ0/2

⋃
E−δ0/2

)
.

Consider

Gδ0;τ (t) =

∫ ∞
−∞

ωε (s) gδ0 (t− s) ds.
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It is clear that
‖Gδ0;τ − gδ0‖p,λ;ν → 0, τ → 0.

Since gδ0 (·) is finitly supported on (0, π), for sufficiently small τ > 0 the function Gδ0;τ is
also finitly supported on (0, π), and as a result Gδ0;τ ∈ C∞0 [0, π]. Let τ < δ0

2 be so that

‖Gδ0;τ0 − gδ0‖p,λ;ν <
ε

4
.

We have
‖f −Gδ0;τ0‖p,λ;ν ≤ ‖f − g‖p,λ;ν + ‖g − gδ0‖p,λ;ν +

+ ‖gδ0 −Gδ0;τ0‖p,λ;ν ≤
ε

2
+ ‖g‖

Lp,λν

(
E+
δ0/2

⋃
E−
δ0/2

) +
ε

4
< ε.

As ε > 0 is arbitrary, from here we get that C∞0 [0, π] is dense in Mp,λ
ν (0, π).

So, for every f ∈Mp,λ
ν (0, π) and ε > 0, there exists fε ∈ C∞0 [0, π] such that ‖f − fε‖p,λ;ν <

ε. It is known that the Fourier sine series of fε converges uniformly to this function on
[0, π]. That is, if

Sm(t) =

m∑
n=1

cn(fε) cosnt, m ∈ N,

where cn(fε) = 2
π

∫ π
0 fε(t) cosnt dt, then there exists m0 = m0(ε) ∈ N, such that

sup
t∈0,π]

|fε(t)− Sm(t)| < ε, for all m ≥ m0.

Therefore

‖fε − Sm‖p,λ;ν = sup
I⊂(0,π)

 1

|I|λ

∫
I

|fε(t)− Sm(t)|p |ν(t)|p dt

 1
p

≤ ε sup
I⊂(0,π)

 1

|I|λ

∫
I

|ν(t)|p dt

 1
p

= ε ‖ν‖p,λ .

Then
‖f − Sm‖p,λ;ν ≤ ‖f − fε‖p,λ;ν + ‖fε − Sm‖p,λ;ν <

(
1 + ‖ν‖p,λ

)
ε.

Thus, we arrive at the result since ε was arbitrary. Thus, if the conditions (5) are satisfied,

then the system {cosnt}n∈N0
is complete in Mp,λ

ν (0, π).
The theorem is proved. J
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Abstract. In this paper we proved sufficient conditions for boundedness of Hardy type integral
operator in weighted Lebesgue spaces.
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1. Introduction

Let φ be a fixed kernel defined on (0,∞), i.e. φ ∈ Lloc1 (0,∞), then the Hardy type
integral operator is defined in the following way

Hφ (f) (x) =

∞∫
0

φ
(
x
y

)
y

f (y) dy. (1)

This integral operator (1) is deeply rooted in the study of one-dimensional Fourier
analysis and has become an essential part of modern harmonic analysis.In particular, it is
closely related to the summability of the classical Fourier series (see [8]). Many important
operators in analysis are special cases of the integral operator (1), by taking suitable choice
of φ.

The considered integral operator (1) has been extensively studied in recent years,
particularly its boundedness on the Lebesgue space as well as on the Hardy space(see
[2, 3, 4]). We also refer to [5, 6, 7] for some recent work in this vein. Moreover the
generalized version of the considered operators on multidimensional Euclidean spaces have
been studied (see [2], [8]). About boundedness of Hausdorff operator in different Lebesgue
spaces we refer to [1].

In this paper we proved sufficient conditions for boundedness of integral operator (1)
in weighted Lebesgue spaces.

http://www.cjamee.org 35 c© 2013 CJAMEE All rights reserved.
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2. Main Results

We recall some notation and basic facts about function spaces.

Let ω be a weight function on R+, i.e ω ∈ Lloc1 (R+) and almost everywhere is a positive
function. The weighted Lebesgue space Lp,ω (R+) is the class of all measurable functions
f defined on R+ such that

‖f‖Lp,ω(R+) =

 ∞∫
0

|f (x)|p ω (x) dx

 1
p

<∞.

Theorem 1. Let 1 < p < q < ∞ and Hφ is a Hausdorff operator. Let u be pos-
itive non-decreasing weighted function on (0,∞). Suppose that satisfying the following
conditions:

1)

1
2∫
0

φ(y)
y y

1
pdy < +∞ and there exists a constant C1 such that for any t ≥ 1

2 the

following inequality holds

|φ (t)| ≤ C1

t
,

2)

sup
t>0

 ∞∫
t

u (x)

xp
dx

 1
p
 t∫

0

u (x)1−p
′

dx


1

p
′

<∞.

Then there exists C > 0 for all f ∈ Lp,u (0,∞) the following inequality holds ∞∫
0

|Hφf (x)|p u (x) dx

 1
p

≤ C

 ∞∫
0

|f (x)|p u (x) dx

 1
p

. (2)

Proof: Without loss of generality we may assume that the function u has the form

u (t) = u (0) +

t∫
0

ψ (τ) dτ,

where u (0) = lim
t→+0

u (t) and ψ is a positive function on (0,∞). Indeed, for increasing

functions on (0,∞) there exists a sequence of absolutely continuous functions ϕn (t) such
that lim

n→∞
ϕn (t) = u (t) , 0 ≤ ϕn (t) ≤ u (t) a.e. t > 0 and ϕn (0) = u (0). Furthermore the

functions ϕn (t) are increasing, and besides

ϕn (t) = ϕn (0) +

t∫
0

ϕ
′
n (τ) dτ.
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Where lim
n→∞

ϕ
′
n (t) = ψ (t). Hence, using Fatou’s theorem , we obtain estimate (2) for any

increasing functions on (0,∞).

Let us estimate the left –hand side of inequality (2). We have ∞∫
0

|Hφf (x)|p u (x) dx

 1
p

=

 ∞∫
0

|Hφf (x)|p
u (0) +

x∫
0

ψ (t) dt

 dx

 1
p

.

If u (0) = 0, then

(∞∫
0

|Hφf (x)|p u (x) dx

) 1
p

=

(∞∫
0

|Hφf (x)|p
(∫ x

0 ψ (t) dt
)
dx

) 1
p

.

However, if u (0) > 0, then ∞∫
0

|Hφf (x)|p u (x) dx

 1
p

≤

 ∞∫
0

|Hφf (x)|p u (0) dx

 1
p

+

 ∞∫
0

|Hφf (x)|p
 x∫

0

ψ (t) dt

 dx

 1
p

= E1 + E2.

First estimate E1. By boundedness of integral operator (1) in Lebesgue spaces (see [2, 8]),
we get

E1 =

 ∞∫
0

|Hφf (x)|p u (0) dx

 1
p

= (u (0))
1
p

 ∞∫
0

|Hφf (x)|p dx

 1
p

≤ C (u (0))
1
p

 ∞∫
0

|f (x)|p dx

 1
p

≤ C

 ∞∫
0

|f (x)|p u (x) dx

 1
p

= C‖f‖Lp,u(0,∞).

Let us estimate the integral E2. We have

E2 =

 ∞∫
0

|Hφf (x)|p
 x∫

0

ψ (t) dt

 dx

 1
p

=

 ∞∫
0

|Hφf (x)|p
 ∞∫

0

ψ (t)χ{x>t} (x) dt

 dx

 1
p

=

 ∞∫
0

ψ (t)

 ∞∫
t

|Hφf (x)|p dx

 dt

 1
p
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≤ 2
1

p
′

 ∞∫
0

ψ (t)

 ∞∫
t

∣∣∣∣∣∣
∞∫

2t

φ
(
x
y

)
y

f (y) dy

∣∣∣∣∣∣
p

dx

 dt


1
p

+2
1

p
′

 ∞∫
0

ψ (t)

 ∞∫
t

∣∣∣∣∣∣
2t∫
0

φ
(
x
y

)
y

f(y)dy

∣∣∣∣∣∣
p

dx

 dt


1
p

= E21 + E22.

We estimate E21. Using Theorem on boundedness of integral operator (1) in Lebesgue
space, (see [1,7]) we get

E21 = 2
1

p
′

 ∞∫
0

ψ (t)

 ∞∫
0

∣∣∣∣∣∣
∞∫
0

φ
(
x
y

)
y

f (y)χ{y>2t} (y) dy

∣∣∣∣∣∣
p

χ{x>t} (x) dx

 dt


1
p

≤ 2
1

p
′

∫ ∞
0

ψ (t)

 ∞∫
0

∣∣∣∣∣∣
∞∫
0

φ
(
x
y

)
y

f (y)χ{y>2t} (y) dy

∣∣∣∣∣∣
p

dx

 dt


1
p

≤ C2

 ∞∫
0

ψ (t)

(∫ ∞
0
|f (x)|p χ{y>2t} (x) dx

)
dt

 1
p

= C2

 ∞∫
0

|f (x)|p


x
2∫

0

ψ (t) dt

 dx


1
p

≤ C2

 ∞∫
0

|f (x)|p u
(x

2

)
dx

 1
p

≤ C2

 ∞∫
0

|f (x)|p u (x) dx

 1
p

= C2 ‖f‖Lp,u(0,∞) .

Now we estimate E22. Note that if x > t, y ≤ 2t, then x
y ≥

1
2 . By virtue of condition

1) of Theorem 1, one has

E22 = 2
1

p
′

 ∞∫
0

ψ (t)

 ∞∫
t

∣∣∣∣∣∣
2t∫
0

ϕ
(
x
y

)
y

f (y) dy

∣∣∣∣∣∣
p

dx

 dt


1
p

≤ 2
1

p
′

 ∞∫
0

ψ (t)

 ∞∫
t

 2t∫
0

∣∣∣ϕ(xy)∣∣∣
y

|f (y)| dy

p

dx

 dt


1
p
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≤ 2
1

p
′

 ∞∫
0

ψ (t)

 ∞∫
t

 2t∫
0

|f (y)|
x

dy

p

dx

 dt


1
p

= 2
1

p
′

 ∞∫
0

ψ (t)

 ∞∫
t

dx

xp

 2t∫
0

|f (y)| dy

p

dt


1
p

.

We get following formula in a way that made use of change of variables(
t = z

2 , dt = 1
2dz, 0 < z <∞

)

E22 = 2
1

p
′ − 1

p

 ∞∫
0

ψ

(
t

2

) ∞∫
t
2

dx

xp


 t∫

0

|f (y)| dy

p

dt


1
p

.

As is well-known, the classical Hardy operator of function |f | is determined by

t∫
0

|f (y)| dy.

We have

∞∫
2t

ψ
(s

2

) ∞∫
s
2

dx

xp

 ds = 2

∞∫
t

ψ (s)

 ∞∫
s

dx

xp

 ds

= 2

∫ ∞
t

ψ (s)

 ∞∫
0

χ(s,∞) (x)x−pdx

 ds = 2

∞∫
0

ψ (s)χ(t,∞) (s)

×

 ∞∫
0

χ(s,∞) (x)x−pdx

 ds = 2

∞∫
0

∞∫
0

ψ (s)x−pχ(t,∞) (s)χ(s,∞) (x) dxds

= 2

∞∫
t

x−p

 x∫
t

ψ (s) ds

 dx ≤ 2

∞∫
t

x−p

 x∫
0

ψ (s) ds

 dx ≤ 2

∞∫
t

x−pu (x) dx.

From this, we get
∞∫
t

ψ(s)

 ∞∫
s

dx

xp

 ds ≤
∞∫
t

u (x)

xp
dx.

Let v and ω is weight functions defined on (0,∞). Follows by the theory of boundedness
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of two-weighted Hardy operators, (see [9]) we haveHf (x) =

x∫
0

f (t) dt : H : Lp,v(0,∞)→ Lp,ω(0,∞)

⇔
⇔ A = sup

t>0

 ∞∫
t

ω (x) dx

 1
p
 t∫

0

v(x)1−p
′
dx


1
p′

<∞.

(3)

Thus, from inequality (3), we have

sup
t>0

 ∞∫
t

ψ(s)

 ∞∫
s

dx

xp

 ds

 1
p
 t∫

0

u (x)1−p
′

dx


1

p
′

≤ sup
t>0

 ∞∫
t

u(x)

xp
dx

 1
p
 t∫

0

u (x)1−p
′

dx


1

p
′

<∞. (4)

Taking ω(x) = ψ
(
x
2

)
x1−p and v(x) = u(x) and applying (3) and (4), we have

E22 ≤ C6

 ∞∫
0

ψ

(
t

2

) ∞∫
t
2

dx

xp


 t∫

0

|f (y)| dy

p

dt


1
p

= C7

 ∞∫
0

ω(t)

 t∫
0

|f (y)| dy

p

dt


1
p

≤ C8

 ∞∫
0

|f (t)|p u (t) dt

 1
p

.

The proof is completed.
Corollary 1. Let 1 < p < ∞ and Hφ - is the classical Hardy operator or Riemann-

Liouville operator.
Then these operators satisfy all terms of theorem 1 and these operators are bounded

on Lp,u (0,∞).
Theorem 2. Let 1 < p < ∞ and Hφ− Hausdorff operator. Let u be positive non-

increasing weighted function on (0,∞). Suppose that satisfying the following conditions:

1)

1
2∫
0

φ(y)
y y

1
pdy < +∞ and there exists a constant C1 > 0 such that for any ∀t ∈ (0, 2) the

following inequality holds
|φ (t)| ≤ C1;

2) sup
t>0

 t∫
0

u (x)

xp
dx


1
p
 ∞∫
t

u (x)1−p
′

dx

 1

p
′

<∞.
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Then there exists C > 0 for all f ∈ Lp,u (0,∞) the following inequality holds ∞∫
0

|Hφf (x)|p u (x) dx

 1
p

≤ C

 ∞∫
0

|f (x)|p u (x) dx

 1
p

.

The proof of Theorem 2 is also similar to the proof of the corresponding Theorem 1.
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Weak Solvability of the First Boundary Value Problem
for a Class of Parabolic Equations with Discontinuous
Coefficients in Paraboloid Type Domains

N.J. Jafarov

Abstract. In the paper, weak solvability of the first boundary value problem is proved for a
class of parabolic equations with discontinuous coefficients and given in parabolic type domains in
Sobolev’s weight spaces. The coefficients of these equation bear discontinuity at the vertex of P−
domain. At the vertex P− domain touches the characteristics of the equation.
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1. Introduction

Let En and Rn+1 be – n- dimensional and (n+ 1) dimensional Euclidean spaces of the
points x = (x1, . . . , xn) and (x, t) = (x1, . . . , xn, t) respectively. D be a bounded domain
En with a boundary ∂ D, 0 ∈ D, R−n+1 = Rn+1 ∩ {(x, t) : t < 0} .

The domain Q ⊂ R−n+1 is said to be a paraboloid type domain (or P−domain) if its
cross section with each hyperplane t = τ (τ < 0) has the form:{

x :
x

2
√
−τ
∈ D

}
.

The domain D is called a foot of the P– domain Q.
Let further QT = Q ∩ {(x, t) : −T < t < 0 } , ST = ∂Q ∩ {(x, t) : T < t < 0 } ,
DT = Q ∩ {(x, t) : t = −T } , Γ(QT ) be a parabolic boundary of the domain QT .
Consider in QT the following operator

L = ∆ + λ

n∑
i,j=1

xixj
4(−t)

· ∂2

∂xi∂xj
− ∂U

∂t
,

where ∆ is the Laplace operator and the number parameter λ satisfies the condition

1

d2
< λ <∞. (1)

http://www.cjamee.org 42 c© 2013 CJAMEE All rights reserved.
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Here d = supyεD |y|. It is easy to see that subject to condition (1) the operator L
uniformly parabolic in the domain QT . By analogy with the elliptic case, we call the
operator L the Gilbarg-Serrin parabolic operator.

Let us agree in the following denotation ui and uij are the derivatives of ∂u
∂xi

and ∂2u
∂xi∂xj

,

respectively,

uxx = (uij) , u2
x =

n∑
i=1

u2
i , u2

xx =
n∑

i,j=1

u2
ij ; i, j = 1, n.

Let the number parameter γ satisfy the condition

γε

(
n2
(
λ− 1

d2

)
+ 2λn

2
,∞

)
. (2)

A∞0 (QT ) be a space of infinitely differentiable and finite in QT functions for which the
following integral is finite

∫
QT

(−t)γu2dxdt, L2,γ(QT ) be Banach space of measurable

functions u(x, t) given on, QT with finite norm

‖u‖L2,γ(QT ) =

(∫
QT

(−t)2u2dxdt

) 1
2

,

0
W

1,0

2,γ (QT ) and
0
W

1,1

2,γ (QT ) be Banach spaces of measurable functions u(x, t) given on
QT with finite norms

‖u‖
W 1,0

2,γ (QT )
=

(∫
QT

(−t)γ(u2 + u2
x)dxdt

) 1
2

,

‖u‖
W 1,1

2,γ (QT )
=

(∫
QT

(−t)γ(u2 + u2
x + u2

t )dxdt

) 1
2

,

respectively.
0
W

1,0

2,γ (QT ) and
0
W

1,1

2,γ (QT ) be subspaces of W 1,0
2,γ (QT ) and W 1,1

2,γ (QT ), respectively, in
which A∞0 (QT ) is a dense set.

In the domain QT consider the first boundary value problem

Lu = ∆u + λ
n∑

i,j=1

xixj
4(−t)

· ∂2u

∂xi∂xj
− ∂u

∂t
= f +

n∑
k=1

∂fk

∂xk
(3)

u|Γ(QT ) = 0, (4)

where fεL2,γ(QT ), fkεL2,γ(QT ); k = 1, n.
Therewith, it is assumed that with regard to number parameters λ and γ, conditions

(1) and (2) are fulfilled. At first give definition of the weak solution of the first boundary
value problem (3)-(4).
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The function u(x, t)εW 1,0
2,γ (QT ) is said to be a weak solution of equation (3) in the

domain QT if for any function v(x, t)ε
0
W

1,1

2,γ (QT )the following integral identity is fulfilled.

BQT (u, v) =

∫
QT

(−t)γu vtdxdt−
∫
QT

(−t)γ
n∑

i,j=1

(
δij + λ

xixj
4 (−t)

)
viujdxdt+

+λ (n+ 1)

∫
QT

(−t)γ
n∑
i=1

xi
4 (−t)

uvidxdt+
λn (n+ 1)

4

∫
QT

(−t)γuvdxdt−

−γ
∫
QT

(−t)γuvdxdt =

∫
QT

(−t)γfvdxdt−
∫
QT

(−t)γ
n∑
k=1

fkvkdxdt, (5)

where δij is the Kronecker symbol.

The function u(x, t)ε
0
W

1,0

2,γ (QT ) being a weak solution of equation (3) in QT is called
a weak solution of boundary value problem (3)-(5). Now we show the relation between
equation (3) and integral identity (5). At first we represent the Hilbarg-Serrin parabolic
operator in the form of a divergent operator with unbounded minor coefficients. We have

Lu = ∆u+ λ

n∑
i,j=1

(
xixj

4 (−t)
ui

)
j

− λ (n+ 1)

n∑
i=1

xi
4 (−t)

ui − ut .

Consider the domain QT,δ = QT \Qδ multiply the both parts of equation (3) by the
function v(x, t)εA∞0 (QT ) and integrate the obtained equality with respect to QT,δ. We get∫

QT,δ

(−t)γv ∆u dx dt+

+λ

∫
QT,δ

(−t)γ
n∑

i,j=1

(
x??xj
4 (−t)

ui

)
j

v dx dt− λ (n+ 1)

∫
QT,δ

(−t)γ
n∑
i=1

xj
4 (−t)

ujv dx dt−

−
∫
QT,δ

(−t)γutv dx dt =

∫
QT,δ

(−t)γf · v dx dt+

∫
QT,δ

(−t)γ
n∑
i=1

∂f i

∂xi
v dx dt. (6)

By Ostrogradskii‘s formula∫
QT,δ

(−t)γv ∆u dx dt+ λ

∫
QT,δ

(−t)γ
n∑

i,j=1

(
xixj

4 (−t)
ui

)
j

v dx dt =

= −
∫
QT,δ

(−t)γ
n∑

i,j=1

(
δij + λ

xixj
4 (−t)

)
uivj dx dt. (7)
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In what follows we have

−λ (n+ 1)

∫
QT,δ

(−t)γ
n∑
i=1

xi
4 (−t)

uiv dx dt =
λn (n+ 1)

4

∫
QT,δ

(−t)γ−1uv dx dt+

+λ (n+ 1)

∫
QT,δ

(−t)γ
n∑
i=1

xi
4 (−t)

viu dx dt (8)

Furthermore ∫
QT,δ

(−t)γf · v dx dt+

∫
QT,δ

(−t)γ
n∑
i=1

∂f i

∂xi
v dx dt=

=

∫
QT,δ

(−t)γf v dx dt−
∫
QT,δ

(−t)γ
n∑
i=1

f i vi dx dt (9)

Let ΠR =
{
x : |xi| < R, i = 1, n

}
, Kδ = ΠR × (−T,−δ) . For simplicity we

will consider that we can continue the function u(x, t) in Kδ\QT,δ so that the obtained

continuation ũ(x, t) be the element of the space W 1,0
2,γ (Kδ). We continue the function v(x, t)

by a zero toKδ\QT,δ and denote the obtained continuation again by v(x, t).We have

Jδ= −
∫
Kδ

(−t)γ ũtv dx dt = −δ
∫

ΠR

?̃D (x,−δ) v (x,−δ) dx+

+

∫
Kδ

(−t)γvtũ dx dt− γ
∫
Kδ

(−t)γ−1ũ v dx dt= −δγ
∫
Kδ

u (x,−δ) v (x,−δ) dx+

+

∫
QT,δ

(−t)γvtudxdt−γ
∫
QT,δ

(−t)γ−1uvdxdt.

Hence it follows that

lim
δ→0+

Jδ =

∫
QT

(−t)γvt u dx dt− γ
∫
QT

(−t)γ−1u v dx dt. (10)

Now, taking into account (7)-(10) in (6), and tending δ to zero we arrive at integral
identity (5).

Theorem 1. If with respect to number parameters λ and γ conditions (1) and (2) are
fulfilled, then the first boundary value problem (3)-(4) is uniquely weakly solvable in the

space
0
W

1,0

2,γ (QT ) for any f(x, t) ∈ L2,γ(QT ) and fk (x, t) ∈ L2,γ (QT ) ; k = 1, n.

Proof. At first prove the existence of the solution. To this end we consider the extend-
ing sequence of domains {Dm} , m = 1, 2, . . . ; approximating from within the domain D,
i.e. Dm ⊂ Dm+1, Dm ⊂ D, limm→∞Dm = D . Therewith we choose Dm so that for any
natural m ∂Dm ∈ C2. Let further Qm be a P−domain whose foot is the domain Dm,

QmT = Qm ∩ {(x, t) : t > −T} , QmT,δ = QmT \Q
m
δ , δ ∈ (0, T ) .
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Denote by fh and fk,h the Friedrichs averaged functions, respectively, k = 1, n with a
parameter h > 0. Consider for h > 0 and natural m the family of the first boundary value
problems

∆um,h + λ
n∑

i,j=1

(
xixj

4 (−t)
um,hi

)
j

− λ (n+ 1)
n∑
i=1

xi
4 (−t)

um,hi −um,ht =

= fh +
n∑
k=1

∂fk,h

∂xk
; (x, t) ∈ QmT,δ, (11)

um,h
∣∣∣
Γ(QmT,δ)

= 0. (12)

As for any natural m and positive h and δ the coefficients and the right side of equation
(11) are infinitely differentiable in Q

m
T,δ functions, problem (11)-(12) has a unique classic

solution um,h(x, t). Indeed,um,h(x, t) depends on δ as well, but for brevity of notation

we write um,h(x, t) instead of um,hδ (x, t). Multiply the both sides of equation (11) by the
function (−t)γum,h(x, t) and integrate the obtained equality with respect to the domain
QmT,δ.

We get∫
QmT,δ

(−t)γ∆um,h · um,hdx dt+

∫
QmT,δ

(−t)γum,h
n∑

i,j=1

∂

∂xi

(
xixj

4 (−t)
um,hj

)
dx dt−

−λ (n+ 1)

∫
QmT,δ

(−t)γ
n∑
i=1

xi
4 (−t)

um,hi um,hdx dt−
∫
QmT,δ

(−t)γum,hi um,ht dxdt =

=

∫
QmT,δ

(−t)γfh · um,hdx dt+

∫
QmT,δ

(−t)γ
n∑
k=1

∂fk,h

∂xk
um,hdx dt. (13)

Further we have∫
QmT,δ

(−t)γ∆um,h · um,hdx dt+ λ

∫
QmT,δ

(−t)γum,h
n∑

i,j=1

∂

∂xi

(
xixj

4 (−t)
um,hj

)
dx dt =

= −
∫
QmT,δ

(−t)γ
(
um,hx

)2
dx dt− λ

∫
QmT,δ

(−t)γ
n∑

i,j=1

xixj
4 (−t)

um,hi um,hj dxdt. (14)

Furthermore

−λ (n+ 1)

∫
QmT,δ

(−t)γ
n∑
i=1

xi
4 (−t)

uiu dxdt =
λ (n+ 1) · n

2

∫
QmT,δ

(−t)γ u2

4 (−t)
dx dt, (15)

∫
QmT,δ

(−t)γ
n∑
k=1

∂fk,h

∂xk
um,kdx dt = −

∫
QmT,δ

(−t)γ
n∑
k=1

fk,hum,hk dx dt. (16)
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Finally, by means of arguments similar to ones that were used by deriving integral
identity (5), we get

−
∫
QmT,δ

(−t)γu utdxdt = −γ
2

∫
QmT,δ

(−t)γu2dxdt+ i1 (δ) , (17)

where lim
δ→∞

i1 (δ) = 0.

Taking into account (13)-(16) in (12) and tending δ to zero, we conclude

∫
QmT,δ

(−t)γ
(um,hx

)2
+ λ

n∑
i,j=1

xixj
4 (−t)

um,hi ·um,hj

 dx dt−

−λ (n+ 1)− 4γ

2
·
∫
QmT

(−t)γ
(
um,h

)2
4 (−t)

dx dt =

=

∫
QmT

(−t)γ
n∑
k=1

fkum,hk dx dt−
∫
QmT

(−t)γf um,hdx dt. (18)

Here um,h (x, t) = limδ→0+ u
m,h
δ (x, t) .

The existence of the pointwise limit is proved in the same as in [1].

If now λn(n+1)−4γ
2 ≤ 0, i.e. γ ≥ λn(n+1)

2 , then from (17) it follows

∫
QmT

(−t)γ
(um,hx

)2
+ λ

n∑
i,j=1

xixj
4 (−t)

um,hi ·um,hj

 dx dt ≤

≤
∫
QmT

(−t)γ
n∑
k=1

fk,hum,hk dx dt−
∫
QmT

(−t)γfhum,hdx dt. (19)

Note that for ≥ 0 , λ
∑n

i,j=1
xixj
4(−t)u

m,h
i ·um,hj ≥ 0. But if − 1

d2
< λ < 0, then

λ

n∑
i,j=1

xixj
4 (−t)

um,hi ·um,hj ≥ λ d2
(
um,hx

)2
.

Thus, if γ ≥ λn(n+1)
2 , then from (18) we get∫

QmT

(−t)γ
(
um,hx

)2
dx dt ≤ C1 (λ, n, d, γ) .

(∫
QmT

(−t)γ
n∑
k=1

fk,hum,hk dx dt−
∫
QmT

(−t)γfhum,hdx dt

)
. (20)
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Now consider the case

γ ∈

(
n2
(
λ− 1

d2

)
+ 2λn

8
,
λn (n+ 1)

2

)
. (21)

According to inequality (17)

λn (n+ 1)− 4γ

2

∫
QmT

(−t)γ
(
um,h

)2
4(−t)

dx dt ≤

≤ 2 λ n (n+ 1)− 8γ

n2

∫
QmT

(−t)γ
n∑

i,j=1

xixj
4 (−t)

um,hi ·um,hj dx dt. (22)

But on the other hand, from (20) it follows that there exists µ ∈ (0, 1) for which

2 λ n (n+ 1)− 8γ

n2
<

1

d2
+ λ− µ

d2
.

So, from (18) and (21) we conclude

∫
QmT

(−t)γ
(um,hx

)2
+
µ− 1

d2

n∑
i,j=1

xixj
4 (−t)

um,hi ·um,hj dx dt

 ≤
≤
∫
QmT

(−t)γ
(

n∑
i=1

f i,hum,hi − fhum,h
)
dx dt. (23)

As µ < 1, then

µ− 1

d2

n∑
i,j=1

xixj
4 (−t)

um,hi ·um,hj ≥ (µ− 1)
(
um,hx

)2
. (24)

From (22)-(23) it follows that

µ

∫
QmT

(−t)γ
(
um,hx

)2
dx dt ≤

∫
QmT

(−t)γ
(

n∑
k=1

fk,hum,hk − fhum,h
)
dx dt.

The last inequality and estimation (19) allows to conclude that for

γ ∈

(
n2

(
λ− 1

d2

)
+2λn

8 ,∞

)
the following inequality is valid

∫
QmT

(−t)γ
(
um,hx

)2
dx dt ≤ C2 (λ, n, d, γ)

∫
QmT

(−t)γ
(

n∑
k=1

fk,hum,hk − fhum,h
)
dx dt. (25)
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According to Friedrich‘s inequality we get∫
QmT

(−t)γ
(
um,h

)2
dx dt ≤ C3 (λ, n, d, γ)

∫
QmT

(−t)γ
(

n∑
k=1

fk,hum,hk − fhum,h
)
dx dt. (26)

Thus, from (24)-(25) we conclude∫
QmT

(−t)γ
((

um,h
)2

+
(
um,hx

)2
)
dx dt ≤

leC4 (λ, n, d, γ)

∫
QmT

(−t)γ
(

n∑
k=1

fk,hum,hk − fhum,h
)
dx dt. (27)

Further, for any ε > 0 we have∫
QmT

(−t)γ
(

n∑
k=1

fk,hum,hk − fhum,h
)
dx dt ≤

≤ ε

2

∫
QmT

(−t)γ
n∑
k=1

(
um,hk

)2
dx dt+

1

2ε

∫
QmT

(−t)γ
n∑
k=1

(
fk,h

)2
dx dt+

+
ε

2

∫
QmT

(−t)γ
(
um,h

)2
dx dt+

1

2ε

∫
QmT

(−t)γ
(
um,h

)2
dx dt. (28)

Now choosing ε = 1
C4

from (26)-(27) we get∫
QmT

(−t)γ
((

um,h
)2

+
(
um,hx

)2
)
dx dt ≤ C5 (λ, n, d, γ)×

×

(∫
QmT

(−t)γ
n∑
k=1

(
fk,h

)2
dx dt+

∫
QmT

(−t)γ
(
fh
)2
dx dt

)
. (29)

Without loss of generality, we can consider that for f 6= 0; fk 6= 0; k = 1, n. Therefore
from (28) it follows that for rather small h > 0

∥∥∥um,k∥∥∥
W 1,0

2,γ (QmT )
≤ C6 (λ, n, d, γ)

(
‖f‖L2,γ(QT ) +

n∑
k=1

∥∥∥fk∥∥∥
L2,γ(QT )

)
. (30)

Fix an arbitrary natural m. From inequality (29) it follows that the family of functions{
um,h (x, t)

}
is weakly compact (with respect to h) in the space

0
W

1,0

2,γ (QmT ). Thus, there

exists such a sequence hl → 0 as l →∞ and the function um (x, t) ∈
0
W

1,0

2,γ (QmT ) that the

functional sequence
{
um,hl (x, t)

}
weakly converges to the function um (x, t) in

0
W

1,0

2,γ (QmT )
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as l → ∞. This means that for any function um (x, t) ∈
0
W

1,0

2,γ (QmT ) it holds the limit
equality

lim
l→∞

BQmT

(
um,hl , v

)
= BQmT (um, v) . (31)

But on the other hand

BQmT

(
um,hl , v

)
=

∫
QmT

(−t)γfhl v dx dt−
∫
QmT

(−t)γ
n∑
k=1

fk,hlvkdx dt. (32)

Furthermore

lim
l→∞

(∫
QmT

(−t)γfhl v dx dt−
∫
QmT

(−t)γ
n∑
k=1

fk,hlvk dx dt

)
=

=

∫
QmT

(−t)γf v dx dt−
∫
QmT

(−t)γ
n∑
k=1

fkvkdx dt. (33)

From (30)-(32) we conclude that

BQmT (um, v) =

∫
QmT

(−t)γf v dx dt−
∫
QmT

(−t)γ
n∑
k=1

fkvkdx dt.

The last equality means that the function um (x, t) is a weak solution of equation (3) in
the domain QmT . Furthermore, for the function um (x, t) the following estimation is valid

‖um‖
W 1,0

2,γ (QmT )
≤ C7 (λ, n, d, γ)

(
‖f‖L2,γ(QT ) +

n∑
k=1

∥∥∥fk∥∥∥
L2,γ(QT )

)
. (34)

For any natural m we continue the function um (x, t) by a zero in QT \QmT and denote

the obtained continuation again by um (x, t). It is easy to see that um (x, t) ∈
0
W

1,0

2,γ (QT ).
Therewith, according to (33) the following estimation is valid

‖um‖
W 1,0

2,γ (QT )
≤ C8

(
‖f‖L2,γ(QT ) +

n∑
k=1

∥∥∥fk∥∥∥
L2,γ(QT )

)
. (35)

From (34) it follows that the family of functions {um (x, t)} , . . . .m = 1, 2, . . . is weakly

compact in the space
0
W

1,0

2,γ (QT ). Thus, there exists such a function u (x, t) ∈
0
W

1,0

2,γ (QmT )
and sequence mr → ∞ as r → ∞ that u (x, t) is a weak limit of umr (x, t) as r → ∞in
0
W

1,0

2,γ (QmT ). This means that for any function v (x, t) ∈
0
W

1,0

2,γ the following limit equality
is valid:

lim
r→∞

BQT (umr , v) = BQT (u, v) .
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Moreover, using the above arguments, we can show that

BQT (u, v) =

∫
QmT

(−t)γf v dx dt−
∫
QmT

(−t)γ
n∑
k=1

fk v dx dt.

From the last equality it follows that the function u (x, t) is a weak solution of the
first boundary value problem (3)-(4). Furthermore, for the functions u (x, t) the following
estimation is valid

‖um‖ 0
W

1,0

2,γ(QmT )
≤ C9

(
‖f‖L2,γ(QT ) +

n∑
k=1

∥∥∥fk∥∥∥
L2,γ(QT )

)
. (36)

Thereby the existence of the weak solution of the first boundary value problem (3)-(4)
is proved. Now prove its uniqueness. It suffices to show that a homogeneous problem
has only a trivial solution. Let u (x, t) be the solution of homogeneous problem (3)-(4),
i.e. for f ≡ 0; fk ≡ 0; k = 1, n. Fix an arbitrary δ ∈ (0, T ) and consider the

function v (x, t) ∈
0
W

1,1

2,γ (QT+δ) vanishing for t ≤ T and t ≥ −δ. Let further K =
ΠR × (−T − δ, 0) , ΠR =

{
x : |xi| < R, i = 1, n

}
. Continue the function u (x, t) and

v (x, t) by zero to K\QT and denote the obtained continuations again by u (x, t) and

v (x, t), respectively. It is easy to see that u (x, t) ∈
0
W

1,1

2,γ (K), while v (x, t) ∈
0
W

1,1

2,γ (K),
Denote for

h ∈ (0, δ]
1

h

∫ t

t−h
v (x, τ) dτ by vh (x, τ)

and put into integral identity (5) instead of the function u (x, t) the function vh (x, τ)
and get

BK
(
u, vh

)
= 0. (37)

Taking into account the equalities
(
vh
)
t

= (vt)h ,
(
vh
)
i

= (vi)h i = 1, nand also

−
∫
K

(−t)γu (vt)h dx dt = −
∫
K

((−t)γu)hvtdx dt =

∫
K

[((−t)γu)h]tvdx dt,

∫
K

(−t)γ
n∑

i,j=1

(
δij + λ

xixj
4 (−t)

)
uiui (vj)h dx dt =

∫
K

(−t)γ
n∑

i,j=1

(
δij + λ

xixj
4 (−t)

ui

)
vj dx dt,

where uh (x, t) = 1
h

∫ t+h
t u (x, τ) dτ , assuming v (x, t) = uh (x, t) tending h to zero, from

(36) we get

λ n (n+ 1)− 4γ

8

∫
QT,δ

(−t)γ−1u2 dx dt−
∫
QT,δ

(−t)γ
n∑

i,j=1

(
δij + λ

xixj
4 (−t)

)
uiuj dx dt = 0.

(38)
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Now, behaving as in deriving estimation (24), we get that if with respect to number
parameters λ and γ conditions (1) and (2) are fulfilled, then

∫
QT,δ

(−t)γu2
x dx dt = 0. The

last equality yields ∫
QT,δ

(−t)γ−1u2 dx dt = 0.

With regard to arbitrariness of δ we conclude∫
QT

(−t)γ−1u2 dx dt = 0.

Hence it follows that u (x, t) = 0 almost everywhere in QT . J

In fact in the course of proof we established the estimation of the weak solution of
the first boundary value problem (3)-(4). We formulate this statement in the form of a
separate theorem.

Theorem 2. If the conditions of the previous theorem are fulfilled then for the weak
solution of the first boundary value problem (3)-(4), estimation (35) is valid.
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Characterization of Parabolic Fractional Integral and Its
Commutators in Orlicz Spaces

G.A. Abasova∗, F.M. Namazov, Z.V. Safarov

Abstract. In this paper, we characterize BMO space in terms of the boundedness of commutators
of parabolic maximal operator in Orlicz spaces. As an application of this boundedness, we give
necessary and sufficient condition for the boundedness of parabolic fractional integral and its
commutators in Orlicz spaces.
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1. Introduction

The theory of boundedness of classical operators of the real analysis, such as the
maximal operator, fractional maximal operator, Riesz potential and the singular integral
operators etc, from one Lebesgue space to another one is well studied by now. These
results have good applications in the theory of partial differential equations. However, in
the theory of partial differential equations, along with Lebesgue spaces, Orlicz spaces also
play an important role.

For x ∈ Rn and r > 0, we denote by B(x, r) the open ball centered at x of radius r,

and by
{
B(x, r) denote its complement. Let |B(x, r)| be the Lebesgue measure of the ball

B(x, r).
Let P be a real n × n matrix, all of whose eigenvalues have positive real part. Let

At = tP (t > 0), and set γ = trP . Then, there exists a quasi-distance ρ associated with
P such that

(a) ρ(Atx) = tρ(x), t > 0, for every x ∈ Rn;

(b) ρ(0) = 0, ρ(x− y) = ρ(y − x) ≥ 0

and ρ(x− y) ≤ k(ρ(x− z) + ρ(y − z));
(c) dx = ργ−1dσ(w)dρ, where ρ = ρ(x), w = Aρ−1x

and dσ(w)is a C∞measure on the ellipsoid {w : ρ(w) = 1}.

∗Corresponding author.
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Then, {Rn, ρ, dx} becomes a space of homogeneous type in the sense of Coifman-
Weiss. Thus Rn, endowed with the metric ρ, defines a homogeneous metric space ([2, 3]).
The balls with respect to ρ, centered at x of radius r, are just the ellipsoids E(x, r) =
{y ∈ Rn : ρ(x− y) < r}, with the Lebesgue measure |E(x, r)| = vρr

γ , where vρ is the

volume of the unit ellipsoid in Rn. Let also
{E(x, r) = Rn \ E(x, r) be the complement of

E(x, r). If P = I, then clearly ρ(x) = |x| and EI(x, r) = B(x, r). Note that in the standard
parabolic case P = (1, . . . , 1, 2) we have

ρ(x) =

√
|x′|2 +

√
|x′|4 + x2

n

2
, x = (x′, xn).

Let Sρ = {w ∈ Rn : ρ(w) = 1} be the unit ρ-sphere (ellipsoid) in Rn (n ≥ 2) equipped
with the normalized Lebesgue surface measure dσ. The parabolic maximal function MP f
and the parabolic fractional integral IPα f , 0 < α < γ, of a function f ∈ Lloc

1 (Rn) are
defined by

MP f(x) = sup
t>0
|E(x, t)|−1

∫
E(x,t)

|f(y)|dy,

IPα f(x) =

∫
Rn

f(y)

ρ(x− y)γ−α
dy.

If P = I, then M ≡ M I
0 is the Hardy-Littlewood maximal operator. It is well known

that, the parabolic maximal function and the parabolic fractional integral operators play
an important role in harmonic analysis (see [4, 15]).

In this work we present the characterization for parabolic fractional integral operator
IPα (Theorem 6) and its commutators [b, IPα ] (Theorem 7) in Orlicz spaces.

By A . B we mean that A ≤ CB with some positive constant C independent of
appropriate quantities. If A . B and B . A, we write A ≈ B and say that A and B are
equivalent.

2. On Young Functions and Orlicz Spaces

Orlicz space was first introduced by Orlicz in [12, 13] as a generalizations of Lebesgue
spaces Lp. Since then this space has been one of important functional frames in the
mathematical analysis, and especially in real and harmonic analysis. Orlicz space is also
an appropriate substitute for L1 space when L1 space does not work.

First, we recall the definition of Young functions.

Definition 1. A function Φ : [0,∞) → [0,∞] is called a Young function if Φ is convex,
left-continuous, lim

r→+0
Φ(r) = Φ(0) = 0 and lim

r→∞
Φ(r) =∞.

From the convexity and Φ(0) = 0 it follows that any Young function is increasing. If
there exists s ∈ (0,∞) such that Φ(s) = ∞, then Φ(r) = ∞ for r ≥ s. The set of Young
functions such that

0 < Φ(r) <∞ for 0 < r <∞
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will be denoted by Y. If Φ ∈ Y, then Φ is absolutely continuous on every closed interval
in [0,∞) and bijective from [0,∞) to itself.

For a Young function Φ and 0 ≤ s ≤ ∞, let

Φ−1(s) = inf{r ≥ 0 : Φ(r) > s}.

If Φ ∈ Y, then Φ−1 is the usual inverse function of Φ. It is well known that

r ≤ Φ−1(r)Φ̃−1(r) ≤ 2r for r ≥ 0, (1)

where Φ̃(r) is defined by

Φ̃(r) =

{
sup{rs− Φ(s) : s ∈ [0,∞)} , r ∈ [0,∞)

∞ , r =∞.

A Young function Φ is said to satisfy the ∆2-condition, denoted also as Φ ∈ ∆2, if

Φ(2r) ≤ CΦ(r), r > 0

for some C > 1. If Φ ∈ ∆2, then Φ ∈ Y. A Young function Φ is said to satisfy the
∇2-condition, denoted also by Φ ∈ ∇2, if

Φ(r) ≤ 1

2C
Φ(Cr), r ≥ 0

for some C > 1.

Definition 2. (Orlicz Space). For a Young function Φ, the set

LΦ(Rn) =

{
f ∈ L1

loc(Rn) :

∫
Rn

Φ(k|f(x)|)dx <∞ for some k > 0

}
is called Orlicz space. If Φ(r) = rp, 1 ≤ p <∞, then LΦ(Rn) = Lp(Rn). If Φ(r) = 0, (0 ≤
r ≤ 1) and Φ(r) =∞, (r > 1), then LΦ(Rn) = L∞(Rn). The space LΦ

loc(Rn) is defined as
the set of all functions f such that fχE ∈ LΦ(Rn) for all parabolic balls E ⊂ Rn.

LΦ(Rn) is a Banach space with respect to the norm

‖f‖LΦ = inf

{
λ > 0 :

∫
Rn

Φ
( |f(x)|

λ

)
dx ≤ 1

}
.

For a measurable set Ω ⊂ Rn, a measurable function f and t > 0, let m(Ω, f, t) =
|{x ∈ Ω : |f(x)| > t}|. In the case Ω = Rn, we shortly denote it by m(f, t).

Definition 3. The weak Orlicz space

WLΦ(Rn) = {f ∈ L1
loc(Rn) : ‖f‖WLΦ <∞}

is defined by the norm

‖f‖WLΦ = inf
{
λ > 0 : sup

t>0
Φ(t)m

(f
λ
, t
)
≤ 1
}
.
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We note that ‖f‖WLΦ ≤ ‖f‖LΦ ,

sup
t>0

Φ(t)m(Ω, f, t) = sup
t>0

tm(Ω, f, Φ−1(t)) = sup
t>0

tm(Ω, Φ(|f |), t)

and ∫
Ω

Φ
( |f(x)|
‖f‖LΦ(Ω)

)
dx ≤ 1, sup

t>0
Φ(t)m

(
Ω,

f

‖f‖WLΦ(Ω)

, t
)
≤ 1, (2)

where ‖f‖LΦ(Ω) = ‖fχΩ‖LΦ and ‖f‖WLΦ(Ω) = ‖fχΩ‖WLΦ .

The following analogue of the Hölder’s inequality is well known (see, for example, [14]).

Theorem 1. Let Ω ⊂ Rn be a measurable set and functions f and g measurable on Ω. For
a Young function Φ and its complementary function Φ̃, the following inequality is valid∫

Ω
|f(x)g(x)|dx ≤ 2‖f‖LΦ(Ω)‖g‖LΦ̃(Ω)

.

By elementary calculations we have the following property.

Lemma 1. Let Φ be a Young function and E be a parabolic balls in Rn. Then

‖χE‖LΦ = ‖χE‖WLΦ =
1

Φ−1 (|E|−1)
.

By Theorem 1, Lemma 1 and (1) we get the following estimate.

Lemma 2. For a Young function Φ and for the parabolic balls E = E(x, r) the following
inequality is valid: ∫

E
|f(y)|dy ≤ 2|E|Φ−1

(
|E|−1

)
‖f‖LΦ(E).

In [1] the boundedness of the parabolic maximal operator MP in Orlicz spaces LΦ(Rn)
was obtained.

Theorem 2. [1] Let Φ any Young function. Then the parabolic maximal operator MP is
bounded from LΦ(Rn) to WLΦ(Rn) and for Φ ∈ ∇2 bounded in LΦ(Rn).

We recall that the space BMO(Rn) = {b ∈ L1
loc(Rn) : ‖b‖∗ < ∞} is defined by the

seminorm

‖b‖∗ := sup
x∈Rn,r>0

1

|E(x, r)|

∫
E(x,r)

|b(y)− bE(x,r)|dy <∞,

where bE(x,r) = 1
|E(x,r)|

∫
E(x,r) b(y)dy.We will need the following properties of BMO-functions:

‖b‖∗ ≈ sup
x∈Rn,r>0

(
1

|E(x, r)|

∫
E(x,r)

|b(y)− bE(x,r)|pdy

) 1
p

, (3)
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where 1 ≤ p <∞, and∣∣bE(x,r) − bE(x,t)

∣∣ ≤ C‖b‖∗ ln
t

r
for 0 < 2r < t, (4)

where C does not depend on b, x, r and t. We refer for instance to [9] and [10] for details
on this space and properties.

The commutators generated by b ∈ L1
loc(Rn) and the parabolic maximal operator MP

is defined by

MP
b (f)(x) = sup

t>0
|E(x, t)|−1

∫
E(x,t)

|b(x)− b(y)||f(y)|dy.

Next, we recall the notion of weights. Let w be a locally integrable and positive
function on Rn. The function w is said to be a Muckenhoupt A1 weight if there exists a
positive constant C such that for any ellipsoid E

1

|E|

∫
E
w(x)dx ≤ Cess infx∈Ew(x).

Lemma 3. [6, Chapter 1] Let ω ∈ A1, then the reverse Hölder inequality holds, that is,
there exist q > 1 such that(

1

|E|

∫
E
w(x)qdx

) 1
q

.
1

|E|

∫
E
w(x)dx

for all ellipsoids E.

Lemma 4. Let Φ be a Young function with Φ ∈ ∆2. Then we have

1

2|E|

∫
E
|f(x)|dx ≤ Φ−1

(
|E|−1

)
‖f‖LΦ(E) .

(
1

|E|

∫
E
|f(x)|pdx

) 1
p

for some 1 < p <∞.

Proof. The left-hand side inequality is just Lemma 2.
Next we prove the right-hand side inequality. Our idea is based on [8]. Take g ∈ L

Φ̃

with ‖g‖L
Φ̃
≤ 1. Note that Φ̃ ∈ ∇2 since Φ ∈ ∆2, therefore M is bounded on L

Φ̃
(Rn)

from Theorem 2. Let Q := ‖M‖L
Φ̃
→L

Φ̃
and define a function

Rg(x) :=

∞∑
k=0

Mkg(x)

(2Q)k
,

where

Mkg :=


|g| k = 0,
Mg k = 1,
M(Mk−1g) k ≥ 2.

For every g ∈ L
Φ̃

with ‖g‖L
Φ̃
≤ 1, the function Rg satisfies the following properties:
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• |g(x)| ≤ Rg(x) for almost every x ∈ Rn;

• ‖Rg‖L
Φ̃
≤ 2‖g‖L

Φ̃

• M(Rg)(x) ≤ 2QRg(x), that is, Rg is a Muckenhoupt A1 weight with the A1 constant
less than or equal to 2Q.

By Lemma 3, there exist positive constants q > 1 and C independent of g such that for
all ellipsoids E , (

1

|E|

∫
E
Rg(x)qdx

) 1
q

≤ C

|E|

∫
E
Rg(x)dµ(x).

By Lemmas 2 and 3, we obtain

‖Rg‖Lq(E) = |E|1/q
(

1

|E|

∫
E
Rg(x)qdx

) 1
q

. |E|1/q 1

|E|

∫
E
Rg(x)dx

. |E|−1/q′
‖Rg‖L

Φ̃

Φ−1
(
|E|−1

) .
|E|−1/q′

Φ−1
(
|E|−1

) .
Thus we have ∫

E
|f(x)g(x)|dx ≤

∫
E
|f(x)|Rg(x)dx ≤ ‖f‖Lq′ (E)‖Rg‖Lq(E)

.

(
1

|E|

∫
E
|f(x)|q′dx

) 1
q′ 1

Φ−1
(
|E|−1

) .
Since the Luxemburg-Nakano norm is equivalent to the Orlicz norm (see, for example [14,
p. 61]) we get

‖f‖LΦ(E) ≤ sup

{∣∣∣∣∫
E
f(x)g(x)dx

∣∣∣∣ : g ∈ L
Φ̃
, ‖g‖L

Φ̃
≤ 1

}
.

(
1

|E|

∫
E
|f(x)|q′dx

) 1
q′ 1

Φ−1
(
|E|−1

) .
Consequently, the right-hand side inequality follows with p = q′.

We have the following result from (3) and Lemma 4.

Lemma 5. Let b ∈ BMO(Rn) and Φ be a Young function with Φ ∈ ∆2. Then

‖b‖∗ ≈ sup
x∈Rn,r>0

Φ−1
(
r−γ
) ∥∥b(·)− bE(x,r)

∥∥
LΦ(E(x,r))

.

The known boundedness statements for the commutator operator MP
b on Orlicz spaces

run as follows, see [5, Corollary 2.3].

Theorem 3. Let Φ be a Young function with Φ ∈ ∆2 ∩ ∇2 and b ∈ BMO(Rn). Then
MP
b is bounded on LΦ(Rn) and the inequality

‖MP
b f‖LΦ ≤ C0‖b‖∗‖f‖LΦ (5)

holds with constant C0 independent of f .
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3. Parabolic fractional integral and its commutators in Orlicz spaces

For proving our main results, we need the following estimate.

Lemma 6. If E0 := E(x0, r0), then for every x ∈ E0

c0r
α
0 < IPα χE0(x),

where c0 = (2k)α−γ |E(0, 1)|.

Proof. If x, y ∈ E0, then ρ(x− y) ≤ k(ρ(x− x0) + ρ(y − x0)) < 2kr0. Since 0 < α < γ,
we get (2kr0)α−γ < ρ(x− y)α−γ . Therefore

IPα χE0(x) =

∫
E0
ρ(x− y)α−γdy > (2kr0)α−γ |E0| = c0r

α
0 .

The known boundedness statement for IPα in Orlicz spaces on spaces of homogeneous
type runs as follows.

Theorem 4. [11] Let Φ,Ψ ∈ Y and∫ ∞
r

tα−1Φ−1
(
t−γ
)
dt . rαΦ−1

(
r−γ
)

for 0 < r <∞, (6)

rαΦ−1
(
r−γ
)
. Ψ−1

(
r−γ
)

for 0 < r <∞. (7)

Then IPα is bounded from LΦ(Rn) to WLΨ(Rn). Moreover, if Φ ∈ ∇2, then IPα is bounded
from LΦ(Rn) to LΨ(Rn).

Theorem 5. Let Φ,Ψ ∈ Y and IPα is bounded from LΦ(Rn) to WLΨ(Rn) then condition
(7) holds.

Proof. Let E0 = E(x0, r0) and x ∈ E0. By Lemmas 6 and 1, we have

rα0 . Ψ−1(r−γ0 )‖IPα χE0‖WLΨ(E0) . Ψ−1(r−γ0 )‖IPα χE0‖WLΨ

. Ψ−1(r−γ0 )‖χE0‖LΦ .
Ψ−1(r−γ0 )

Φ−1(r−γ0 )
.

Since this is true for every r0 > 0, we are done.

Combining Theorems 4 and 5 we have the following result.

Theorem 6. Let Φ,Ψ ∈ Y. If (6) holds, then the condition (7) is necessary and sufficient
for the boundedness of IPα from LΦ(Rn) to WLΨ(Rn). Moreover, if Φ ∈ ∇2, the condition
(7) is necessary and sufficient for the boundedness of IPα from LΦ(Rn) to LΨ(Rn).

Remark 1. Note that Theorem 6 in the isotropic case P = I were proved in [7].
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The commutators [b, IPα ], |b, IPα | generated by b ∈ L1
loc(Rn) and the operator IPα are

defined by

[b, IPα ]f(x) =

∫
Rn

b(x)− b(y)

ρ(x− y)γ−α
f(y)dy,

|b, IPα |f(x) =

∫
Rn

|b(x)− b(y)|
ρ(x− y)γ−α

f(y)dy, 0 < α < γ,

respectively.
The following lemma is the analogue of the Hedberg’s trick for [b, Iα].

Lemma 7. If 0 < α < γ and f, b ∈ L1
loc(Rn), then for all x ∈ Rn and r > 0 we get

|b, IPα |(χE(x,r)
|f |)(x) . rαMP

b f(x).

Proof.

|b, IPα |(χE(x,r)
|f |)(x) =

∫
E(x,r)

|f(y)|
ρ(x− y)γ−α

|b(x)− b(y)|dy

=
∞∑
j=0

∫
E(x,2−jr)\E(x,2−j−1r)

|f(y)|
ρ(x− y)γ−α

|b(x)− b(y)|dy

.
∞∑
j=0

(2−jr)α(2−jr)−γ
∫
E(x,2−jr)

|f(y)||b(x)− b(y)|dy . rαMP
b f(x).

Lemma 8. If b ∈ L1
loc(Rn) and E0 := E(x0, r0), then

rα0 |b(x)− bE0 | ≤ C|b, IPα |χE0(x)

for every x ∈ E0.

Proof. The proof is similar to the proof of Theorem 6.

Theorem 7. Let 0 < α < γ, b ∈ BMO(Rn) and Φ,Ψ ∈ Y.
1. If Φ ∈ ∇2 and Ψ ∈ ∆2, then the condition

rαΦ−1
(
r−γ
)

+

∫ ∞
r

(
1 + ln

t

r

)
Φ−1

(
t−γ
)
tα−1dt ≤ CΨ−1

(
r−γ
)

(8)

for all r > 0, where C > 0 does not depend on r, is sufficient for the boundedness of [b, IPα ]
from LΦ(Rn) to LΨ(Rn).

2. If Ψ ∈ ∆2, then the condition (7) is necessary for the boundedness of |b, IPα | from
LΦ(Rn) to LΨ(Rn).

3. Let Φ ∈ ∇2 and Ψ ∈ ∆2. If the condition∫ ∞
r

(
1 + ln

t

r

)
Φ−1

(
t−γ
)
tα−1dt ≤ CrαΦ−1

(
r−γ
)

(9)

holds for all r > 0, where C > 0 does not depend on r, then the condition (7) is necessary
and sufficient for the boundedness of |b, IPα | from LΦ(Rn) to LΨ(Rn).



Characterization of Parabolic Fractional Integral and Its Commutators in Orlicz Spaces 61

Proof. (1) For arbitrary x0 ∈ Rn, set E = E(x0, r) for the ball centered at x0 and of
radius r. Write f = f1 + f2 with f1 = fχ

2kE and f2 = fχ
{
(2kE)

, where k is the constant

from the triangle inequality.
For x ∈ E we have

|[b, IPα ]f2(x)| .
∫
Rn

|b(y)− b(x)|
ρ(x− y)γ−α

|f2(y)|dy ≈
∫

{(2kE)

|b(y)− b(x)|
ρ(y − x0)γ−α

|f(y)|dy

.
∫

{(2kE)

|b(y)− bE |
ρ(y − x0)γ−α

|f(y)|dy +

∫
{(2kE)

|b(x)− bE |
ρ(y − x0)γ−α

|f(y)|dy

= J1 + J2(x),

since x ∈ E and y ∈ {
(2kE) implies

1

2k
ρ(y − x0) ≤ ρ(x− y) ≤

(
k +

1

2

)
ρ(y − x0).

Let us estimate J1.

J1 =

∫
{(2kE)

|b(y)− bE |
ρ(y − x0)γ−α

|f(y)|dy ≈
∫

{(2kE)
|b(y)− bE ||f(y)|

∫ ∞
ρ(y−x0)

dt

tγ+1−αdy

≈
∫ ∞

2kr

∫
E(x0,t)\(2kE)

|b(y)− bE ||f(y)|dy dt

tγ+1−α

.
∫ ∞

2kr

∫
E(x0,t)

|b(y)− bE ||f(y)|dy dt

tγ+1−α .

Applying Hölder’s inequality, by (1), (4), (5) and Lemma 2 we get

J1 .
∫ ∞

2r

∫
E(x0,t)

|b(y)− bE(x0,t)||f(y)|dy dt

tγ+1−α

+

∫ ∞
2r
|bE(x0,r) − bE(x0,t)|

∫
E(x0,t)

|f(y)|dy dt

tγ+1−α

.
∫ ∞

2r

∥∥b(·)− bE(x0,t)

∥∥
L

Φ̃
(E(x0,t))

‖f‖LΦ(E(x0,t))
dt

tγ+1−α

+

∫ ∞
2r
|bE(x0,r) − bE(x0,t)|‖f‖LΦ(E(x0,t))Φ

−1
(
|E(x0, t)|−1

) dt

t1−α

. ‖b‖∗
∫ ∞

2r

(
1 + ln

t

r

)
‖f‖LΦ(E(x0,t))Φ

−1
(
|E(x0, t)|−1

) dt

t1−α
.

. ‖b‖∗ ‖f‖LΦ

∫ ∞
2r

(
1 + ln

t

r

)
Φ−1

(
t−γ
)
tα−1dt.

A geometric observation shows 2kE ⊂ E(x, δ) for all x ∈ E , where δ = (2k + 1)kr.
Using Lemma 7, we get

J0(x) := |[b, IPα ]f1(x)| .
∫

2kE

|b(y)− b(x)|
ρ(x− y)γ−α

|f(y)|dy
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.
∫
E(x,δ)

|b(y)− b(x)|
ρ(x− y)γ−α

|f(y)|dy . rαMP
b f(x).

Consequently, we have

J0(x) + J1 . ‖b‖∗rαMP
b f(x) + ‖b‖∗‖f‖LΦ

∫ ∞
2r

(
1 + ln

t

r

)
Φ−1

(
t−γ
)
tα−1dt.

Thus, by (8) we obtain

J0(x) + J1 . ‖b‖∗
(
MP
b f(x)

Ψ−1(r−γ)

Φ−1(r−γ)
+ Ψ−1(r−γ)‖f‖LΦ

)
.

Choose r > 0 so that Φ−1(r−γ) =
MP

b f(x)

C0‖b‖∗‖f‖LΦ
. Then

Ψ−1(r−γ)

Φ−1(r−γ)
=

(Ψ−1 ◦ Φ)(
MP

b f(x)

C0‖b‖∗‖f‖LΦ
)

Mbf(x)
C0‖b‖∗‖f‖LΦ

.

Therefore, we get

J0(x) + J1 ≤ C1‖b‖∗‖f‖LΦ(Ψ−1 ◦ Φ)
( MP

b f(x)

C0‖b‖∗‖f‖LΦ

)
.

Let C0 be as in (5). Consequently by Theorem 3 we have∫
E

Ψ

(
J0(x) + J1

C1‖b‖∗‖f‖LΦ

)
dx ≤

∫
E

Φ

(
MP
b f(x)

C0‖b‖∗‖f‖LΦ

)
dx

≤
∫
Rn

Φ

(
MP
b f(x)

‖MP
b f‖LΦ

)
dx ≤ 1,

i.e.
‖J0(·) + J1‖LΨ(E) . ‖b‖∗‖f‖LΦ . (10)

In order to estimate J2, by (5), Lemma 2 and condition (8), we also get

‖J2‖LΨ(E) =

∥∥∥∥∥
∫

{(2kE)

|b(·)− bE |
ρ(y − x0)γ−α

|f(y)|dy

∥∥∥∥∥
LΨ(E)

≈ ‖b(·)− bE‖LΨ(E)

∫
{(2kE)

|f(y)|
ρ(y − x0)γ−α

dy

.
‖b‖∗

Ψ−1
(
r−γ
) ∫

{(2kE)

|f(y)|
ρ(y − x0)γ−α

dy

≈
‖b‖∗

Ψ−1
(
r−γ
) ∫

{(2kE)
|f(y)|

∫ ∞
ρ(y−x0)

dt

tγ+1−αdy
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≈
‖b‖∗

Ψ−1
(
r−γ
) ∫ ∞

2kr

∫
E(x0,t)\(2kE)

|f(y)|dy dt

tγ+1−α

.
‖b‖∗

Ψ−1
(
r−γ
) ∫ ∞

2r

∫
E(x0,t)

|f(y)|dy dt

tγ+1−α

.
‖b‖∗

Ψ−1
(
r−γ
) ∫ ∞

2r
‖f‖LΦ(E(x0,t))Φ

−1
(
t−γ
)
tα−1dt

.
‖b‖∗

Ψ−1
(
r−γ
)‖f‖LΦ

∫ ∞
2r

Φ−1
(
t−γ
)
tα−1dt

. ‖b‖∗ ‖f‖LΦ .

Consequently, we have

‖J2‖LΨ(E) . ‖b‖∗ ‖f‖LΦ . (11)

Combining (10) and (11), we get

‖[b, IPα ]f‖LΨ(E) . ‖b‖∗‖f‖LΦ . (12)

By taking supremum over E in (12), we get

‖[b, IPα ]f‖LΨ . ‖b‖∗‖f‖LΦ ,

since the constants in (12) don’t depend on x0 and r.

(2) We shall now prove the second part. Let E0 = E(x0, r0) and x ∈ E0. By Lemmas
8, 5 and 1 we have

rα0 .
‖|b, IPα |χE0 ‖LΨ(E0)

‖b(·)− bE0‖LΨ(E0)

. Ψ−1(r−γ0 )‖|b, IPα |χE0‖LΨ(E0)

. Ψ−1(r−γ0 )‖|b, IPα |χE0‖LΨ . Ψ−1(r−γ0 )‖χE0‖LΦ .
Ψ−1(r−γ0 )

Φ−1(r−γ0 )
.

Since this is true for every r0 > 0, we are done.

(3) The third statement of the theorem follows from the first and second parts of the
theorem.

Remark 2. Note that Theorem 7 in the isotropic case P = I were proved in [7].

Acknowledgements

The authors would like to express their gratitude to the referees for his (her) very
valuable comments and suggestions. The research of Z.V. Safarov was partially supported
by the grant of 1st Azerbaijan-Russia Joint Grant Competition (the Agreement number
No. EIF-BGM-4-RFTF-1/2017).



64 G.A. Abasova, F.M. Namazov, Z.V. Safarov

References

[1] G. A. Abbasova, Boundedness of the parabolic maximal operator in Orlicz spaces,
Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci. 37(4), 2017, Mathematics,
5-11.

[2] O.V. Besov, V.P. Il’in, P.I. Lizorkin, The Lp-estimates of a certain class of non-
isotropically singular integrals, (Russian) Dokl. Akad. Nauk SSSR, 169, 1966, 1250-
1253.

[3] E.B. Fabes, N. Rivère, Singular integrals with mixed homogeneity, Studia Math., 27,
1966, 19-38.

[4] G.B. Folland, E.M. Stein, Hardy Spaces on Homogeneous Groups, Math. Notes, 28,
Princeton Univ. Press, Princeton, 1982.

[5] X. Fu, D. Yang, W. Yuan, Boundedness of multilinear commutators of Calderón-
Zygmund operators on Orlicz spaces over non-homogeneous spaces, Taiwanese J.
Math. 16, 2012, 2203-2238.

[6] I. Genebashvili, A. Gogatishvili, V. Kokilashvili, M. Krbec, Weight theory for integral
transforms on spaces of homogeneous type, Longman, Harlow, (1998).

[7] V.S. Guliyev, F. Deringoz, S.G. Hasanov, Riesz potential and its commutators on
Orlicz spaces, J. Inequal. Appl. 2017, Paper No. 75, 18 pp.

[8] M. Izuki, Y. Sawano, Characterization of BMO via ball Banach function spaces, Vestn.
St.-Peterbg. Univ. Mat. Mekh. Astron. 4(62) (1), 2017, 78-86.

[9] F. John, L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl.
Math. 1961, 14:415-426.

[10] Ruilin Long, Le Yang, BMO functions in spaces of homogeneous type, Sci. Sinica Ser.
A, 27(7) :695-708.

[11] E. Nakai, On generalized fractional integrals in the Orlicz spaces on spaces of homo-
geneous type, Scientiae Mathematicae Japonicae, 54 (2001), 473-487.
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The Stability of Basis Properties of Multiple Systems in a
Banach Space With Respect to Certain Transformations

T.B. Gasymov∗, G.V. Maharramova

Abstract. In this paper a method for constructing a basis of a Banach space based on the bases
of subspaces is proposed. The completeness, minimality, uniform minimality and basicity with
the parentheses of the corresponding systems are also studied. The obtained abstract results are
applied to the study of the basis properties of the eigenfunctions of a discontinuous differential
operator of second order.

Key Words and Phrases: basis, completeness, minimality, uniformly minimality, discontinuous
differential operator

2010 Mathematics Subject Classifications: 34L10, 41A58, 46A35

1. Introduction

The study of the spectral properties of some discrete differential operators leads to the
development of new methods for constructing bases. In this regard, many mathematicians
have paid attention to the study of basis properties (completeness, minimality, basicity)
of systems of functions of special types, often being eigen and associated functions of
differential operators. At the same time, various methods for studying these properties
were proposed. Among such works are the works of the authors [1-6]. In the case of
discontinuous differential operators, from eigenfunctions arise systems that for the study
of the basicity the previously known methods are not applicable.

In this work is considered an abstract approach to the problem described above. The
stability of the basis properties of multiple systems in a Banach space with respect to
certain transformations is studied, a method for constructing a basis for the whole space
is proposed, based on the bases of subspaces, which has wide application in the spectral
theory of discontinuous differential operators.
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2. Necessary information

Recall the definitions of some notions from the theory of basis in a Banach space. Let
X be a Banach space.

Definition 1. The system {xn}n∈N ⊂ X is called uniformly minimal in X, if

∃δ > 0 : inf
∀u∈L [{xn}n 6=k]

‖xk − u‖ ≥ δ ‖xk‖ , ∀k ∈ N.

Definition 2. If there exists a sequence of indexes, such that {nk}k∈N ⊂ N : nk <
nk+1 , ∀k ∈ N and any element x ∈ X is uniquely represented in the form

x =

∞∑
k=0

nk+1∑
j=nk+1

cjxj (n0 = 0),

then the system {xn}nεN ⊂ X is called a basis with parentheses in X.

For nk = k the system {xn}n∈N forms a usual basis for X.
We need the following easily proved statements.

Statement 1. Let the system {xn}n∈N form a basis with parentheses for X. If the system
{xn}n∈N is uniformly minimal and the sequence {nk+1 − nk}k∈N is bounded, then this
system forms a usual basis for X.

Statement 2. Let the system {xn}n∈N form a Riesz basis with parentheses for a Hilbert
space X. If the sequence {nk+1 − nk}n∈N is bounded and the following condition

sup
n
{‖xn‖ : ‖vn‖} <∞

holds, where {vn}n∈N is a biorthogonal system, then {xn}n∈N forms a usual Riesz basis
for X.

Definition 3. The basis {un}n∈N of Banach space X is called a p-basis, if for any x ∈ X
the condition ( ∞∑

n=1

|〈x, ϑn〉|p
) 1

p

≤M ‖x‖ ,

holds, where {ϑn}n∈N - is a biorthogonal system to {un}n∈N .

Definition 4. The sequences {un}n∈N and {ϕn}n∈N of Banach space X are called a
p-close, if the condition

∞∑
n=1

‖un − ϕn‖p <∞,

holds.
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We will also use the following results from [3,5] (see, also [6-8]).

Theorem 1. [3] Let {xn}n∈N form a q-basis for a Banach space X, and the system
{yn}n∈N is p-close to {xn}n∈N , where 1

p + 1
q = 1. Then the following properties are

equivalent:

i) {yn}n∈N -is complete in X;

ii) {yn}n∈N -is minimal in X;

iii) {yn}n∈N -forms an isomorphic basis to {xn}n∈N for X.

Let X1 = X⊕Cm and {ûn}n∈N ⊂ X1 be some minimal system and
{
ϑ̂n

}
n∈N

⊂ X∗1 =

X∗ ⊕ Cm be its biorthogonal system:

ûn = (un;αn1, ..., αnm) ; ϑ̂n = (ϑn;βn1, ..., βnm) .

Let J = {n1, ..., nm} be some set of m natural numbers. Suppose

δ = det ‖βnij‖i,j=1,m .

The following theorem is true.

Theorem 2. [5] Let the system {ûn}n∈N form a basis for X1. In order to the system
{un}n∈NJ

, where NJ = N\J form a basis for X it is necessary and sufficient that the
condition δ 6= 0 be satisfied. In this case the biorthogonal system to {un}n∈NJ

is defined
by

ϑ∗n =
1

δ

∣∣∣∣∣∣∣∣
ϑn ϑn1 . . . ϑnm
βn1 βn11 . . . βnm1

. . . . . . . . . . . .
βnm βn1m . . . βnmm

∣∣∣∣∣∣∣∣ .
In particular, if Xis a Hilbert space and the system {un}n∈N forms a Riesz basis for
X1,then under the condition δ 6= 0, the system {un}n∈NJ

also forms a Riesz basis for X.
For δ = 0 the system {un}n∈NJ

is not complete and is not minimal in X.

3. Stability of the basis properties of systems

Suppose that the direct decomposition X = X1 ⊕ . . . ⊕Xm holds, where Xi,i = 1,m
are Banach spaces. For convenience, the elements of X are identified with vectors:x ∈
X ⇔ x = (x1; ...;xm), where xk ∈ Xk , k = 1,m. The norm in X is defined by the

formula ‖x‖X =
√∑m

i=1 ‖xi‖
2
Xi

. It is clear that X∗ = X∗1 ⊕ . . . ⊕X∗m and for f ∈ X∗ and

x ∈ X it holds < x ; f >=
∑m

i=1 < xi; fi > (< · ; · > −is the value of the functional),
where f = (f1, ..., fm), fk ∈ X∗k , k = 1,m. For xk ∈ Xk let us denote by x̃k the element

from X, which is defined by the formula x̃k =

0, ..., xk︸ ︷︷ ︸
k

, ..., 0

.
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Suppose that a system {uin}n∈N is given in each space Xi, i = 1,m, Consider the
following system in X:

ûin = (a
(n)
i1 u1n, ..., a

(n)
imumn), i = 1,m, n ∈ N, (1)

where a
(n)
ij −are some numbers. Let An =

(
a
(n)
ij

)
i, j=1,m

; ∆n = detAn.

The following theorem is proved.

Theorem 3. Let the system {uin}n∈N be complete (minimal) in Xi, i = 1,m. If ∆n 6=
0 , ∀n ∈ N , then the system {ûin}i=1,m;n∈N is also complete (minimal) in X.

Proof. Let the system {uin}n∈N be complete (minimal) in Xi, i = 1,m. If for any
ϑ ∈ X∗

< ûin, ϑ >= 0 , i = 1, m, n ∈ N,

then from the representation X∗ = X∗1
·
⊕. . . ⊕ X∗m and ϑ = (ϑ1, ..., ϑm)t , ϑi ∈ X∗i , i =

1,m, implies
m∑
j=1

aij < ujn, ϑj >= 0 , i = 1, m. (2)

Since ∆n = det
(
a
(n)
ij

)
6= 0, n ∈ N , then (2) has only trivial solution for each n ∈ N :

< ujn, ϑj >= 0, j = 1, m , n ∈ N.

Then from the completeness of the system {ujn}n∈N in Xj implies that ϑj = 0, j = 1, m,
i.e. ϑ = 0.

Now let the system {uin}n∈N be minimal in Xi, and {ϑin}n∈N ⊂ X∗i be conjugate-
biorthogonal system. Consider the following system in X∗

ϑ̂in =
(
b
(n)
1i ϑ1n; b

(n)
2i ϑ2n; ...; b

(n)
miϑmn

)
=

m∑
s=1

b
(n)
si ϑ̃sn, i = 1, m , n ∈ N,

where the numbers b
(n)
ji − are the elements of the inverse matrix A−1n . We obtain

< ûin, ϑ̂lk >=

m∑
j=1

m∑
s=1

a
(n)
ij b

(k)
sl < ũjn, ϑ̃sk >=

=

m∑
j=1

a
(n)
ij b

(k)
jl < ujn, ϑjk >=

m∑
j=1

a
(n)
ij b

(k)
jl δnk =

m∑
j=1

a
(n)
ij b

(n)
jl δnk = δilδnk , i; l = 1,m;n; k ∈ N.

The last expressions mean that the system
{
ϑ̂in

}
i=1,m;n∈N

is conjugated to the system

{ûin}i=1,m;n∈N , i.e. the system {ûin}i=1,m;n∈N is minimal in X.
Theorem is proved.
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Theorem 4. Let the system {uin}n∈N be minimal in Xi, i = 1,m. If ∃n0 ∈ N, ∆n0 = 0
then the system {ûin}i=1,m;n∈N is not minimal in X.

Proof. Let for any n0 ∈ N, ∆n0 = 0. We will show that the system {ûin0}i=1,m is

linear dependent. From the condition det
(
a
(n0)
ij

)
= 0 implies that, there are numbers

ci, i = 1, m, which not all equal to zero and such that

m∑
i=1

a
(n0)
ij ci = 0 , j = 1,m.

Then
m∑
i=1

ciûin0 =

m∑
i=1

ci

m∑
j=1

a
(n0)
ij ũjn0

=

=
m∑
j=1

(
m∑
i=1

a
(n0)
ij ci

)
ũjn0

= 0 .

Thus, the system {ûin0}i=1,m is linear dependent, consequently, all of the systems
{ûin}i=1,m;n∈N are linear dependent and especially are not minimal. Theorem is proved.

Theorem 5. Let the system {uin}n∈N be complete and minimal in Xi , for each i ∈ 1 : m.
If ∃n0 ∈ N, ∆n0 = 0, then the system {ûin}i=1,m;n∈N is not complete and is not minimal
in X.

Proof. Non-minimality of the system {ûin}i=1,m;n∈N in X implies from the previ-
ous theorem. We will show that, it is not complete in X. From the condition ∆n0 =

det
(
a
(n0)
ij

)
= 0 implies that, there are numbers cj , j = 1, m, which not all are equal to

zero such that
m∑
j=1

a
(n0)
ij cj = 0 , j = 1,m.

Suppose

ũjn =

0, . . . , ujn︸ ︷︷ ︸
j

, . . . , 0

 ∈ X, j = 1, m.

Then the system {ũjn}j=1,m; n∈N is complete and minimal inX, and its conjugated system
is in the following form

ϑ̃jn =

0, .. . , ϑjn︸ ︷︷ ︸
j

, . .., 0

 , j = 1,m; n ∈ N,
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where
{
ϑjn

}
n∈N

⊂ X∗j−is conjugate system to
{
ujn

}
n∈N

. Consider the following func-

tional

ϑ0 =

m∑
s=1

csϑ̃sn0
.

It is clear that ϑ0 ∈ X ∗ and ϑ0 6= 0. We will show that the functional , ϑ0 annuls the
system {ûin}. Indeed, for n = n0 we obtain

< ûin0 , ϑ0 >=

m∑
j=1

a
(n0)
ij < ũjn0

, ϑ0 >=
m∑
j=1

a
(n0)
ij

m∑
s=1

cs < ũjn0
, ϑ̃sn0

>=

=
m∑
j=1

a
(n0)
ij

m∑
s=1

csδjs =
m∑
j=1

a
(n0)
ij cj = 0.

For n 6= n0 we have

< ũin, ϑ0 >=

m∑
j=1

a
(n)
ij

m∑
s=1

cs < ũjn, ϑ̃sn0 >= 0.

Thus, the system {ûin}i=1,m; n∈N is not complete in X. Theorem is proved.

Theorem 6. If all ∆n = det
(
a
(n)
ij

)
6= 0, n ∈ N , and for each i ∈ 1 : m the system

{uin}n∈N forms a basis in Xi , then the system {ûin}i=1,m;n∈N forms a basis with paren-
theses in X. If, the conditions

sup
n
{‖uin‖ ; ‖ϑin‖} < +∞, i = 1,m, sup

n

{
‖An‖ ,

∥∥A−1n ∥∥} < +∞, (3)

also hold, then the system {ûin}i=1,m;n∈N forms a usual basis in X.

Proof. Let us present the system {ûin} in the following form

ûin =
m∑
j=1

a
(n)
ij ũjn , i = 1,m ; n ∈ N. (4)

As shown above, the conjugated system is in the following form

ϑ̂in =

m∑
j=1

b
(n)
li ϑ̃l n, l = 1,m;n ∈ N, (5)

where the numbers bji are the elements of the inverse matrix A−1. Hence we get (for
x ∈ X )

m∑
i=1

< x, ϑ̂in > ûin =

m∑
i=1

m∑
j=1

m∑
l=1

a
(n)
ij b

(n)
li < x, ϑ̃l n > ũjn =
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=

m∑
j=1

m∑
l=1

(
m∑
i=1

b
(n)
li a

(n)
ij

)
< x, ϑ̃l n > ũjn =

=

m∑
j=1

m∑
l=1

δlj < x, ϑ̃l n > ũjn =

m∑
j=1

< x, ϑ̃jn > ũjn.

Consequently

SN (x) =

N∑
n=1

m∑
i=1

< x, ϑ̂in > ûin =

N∑
n=1

m∑
j=1

< x, ϑ̃jn > ũjn =

=
m∑
j=1

N∑
n=1

< x, ϑ̃jn > ũjn → x, as N →∞.

Thus, the system {ûin}i=1,m ;n∈N forms a basis with parentheses in X.

Now let us assume that the condition (3) be fulfilled. Then

sup
i, n

{
‖ũin‖ ;

∥∥∥ϑ̃in∥∥∥} < +∞, i = 1,m,

And from the representations (4) and (5) we obtain

sup
i, n

{
‖ûin‖ ;

∥∥∥ϑ̂in∥∥∥} < +∞.

Consequently, the system {ûin} is uniformly minimal and by Statement 1 it forms a usual
bases in X.

Theorem 7. If Xi−are Hilbert spaces, and {uin}n∈N is a Riesz basis in Xi , i = 1,m,
then for ∆n 6= 0 , n ∈ N , the system {ûin}i=1,m ;n∈N forms Riesz basis with parentheses
in X, and under the condition (3) it forms a usual Riesz basis in X.

Proof of the theorem implies from the Theorem 6 and Statement 2. Note that, in
particular, when the matrixes An do not depend on n: An = A, n ∈ N, the similar results
were obtained in [9,10].

4. Application to discontinuous differential operators

Consider the following model spectral problem for a second-order discontinuous differ-
ential operator

−y′′ (x) + q (x) y = λy (x) , x ∈ (−1, 0)
⋃

(0, 1) , (6)

with boundary conditions

y (−1) = y (1) = 0,
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y (−0) = y (+0) , (7)

y′ (−0)− y′ (+0) = λmy (0) .

where m 6= 0− is any complex number, q (x) - summable complex-valued function. Such
spectral problems arise when the problem of vibrations of a loaded in the middle of the
string with fixed ends is solved by applying the Fourier method [11,12]. The justification
of the Fourier method requires the study of the basis properties of the eigenfunctions of
the spectral problem in the appropriate spaces of functions (as a rule, in Lebesgue or
Sobolev spaces). Such questions for the problem (6),(7) studied by another method in
[13,14]. Following two theorems are proved in [13].

Theorem 8. [13] Let

d = 4 + (mq2 (0))2 + (mq1 (0))2 + 8mq2 (0)− 2m2q2 (0) q1 (0) 6= 0,

where

q1 (0) =
1

2

∫ 0

−1
q (t) dt

and

q1 (0) =
1

2

∫ 0

−1
q (t) dt.

Then the spectral problem (6), (7) has two series asymptotically simple eigenvalues λ1, n =
ρ21, n, n = 1, 2, ... and λ2, n = ρ22, n, n = 1, 2, ..., where ρ1, n and ρ2, n have asymptotics

ρ1, n = πn+
α1

n
+ o

(
1

n

)
and

ρ2, n = πn+
α2

n
+ o

(
1

n

)
respectively, and the numbers α1 and α2 are different complex numbers and are defined as
follows:

α1 =
− (2mq2 (0) +mq1 (0)) +

√
d

−2mπ
,

α2 =
− (2mq2 (0) +mq1 (0))−

√
d

−2mπ
,

where 0 ≤ arg
√
d < π.

Theorem 9. [13] Let the function q (x) satisfy the condition of the Theorem 8. Then the
eigen functions y1, n (x) of the problem (6),(7), corresponding to eigen values λ1, n = (ρ1, n)2

and the eigen functions y2, n (x), which correspond to eigen values λ2, n = (ρ2, n)2 have the
following asymptotics:

y1, n (x) =

{
sinπnx+ O

(
1
n

)
, x ∈ [−1, 0] ,

γ1, n sinπnx+ O
(
1
n

)
, x ∈ [0, 1] ,

(8)
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y2, n (x) =

{
sinπnx+ O

(
1
n

)
, x ∈ [−1, 0] ,

γ2, n sinπnx+ O
(
1
n

)
, x ∈ [0, 1] ,

(9)

where the numbers γ1, n γ2, n are defined by the formula

γ1, n = 1 +mq1 (0)−mα1π +O

(
1

n

)
,

γ2, n = 1 +mq1 (0)−mα2π +O

(
1

n

)
.

By W k
p (−1, 0)⊕ (0, 1) we denote a space of functions whose constrictions on segments

[−1, 0] and [0, 1] belong to Sobolev spaces W k
p (−1, 0) and W k

p (0, 1), respectively. Let’s
define the operator L in Lp (−1, 1)⊕ C as follows :

D (L) =
{
û ∈ Lp (−1, 1)⊕ C : û = (u; mu (0)) , u ∈W 2

p (−1, 0)
⋃

(0, 1) ,

u (−1) = u (1) = 0, u (−0) = u (+0)} (10)

and for û ∈ D (L)

Lû =
(
−u′′ + q (x)u; u′ (−0)− u′ (+0)

)
. (11)

Lemma 1. Operator L, defined by the formulas (10), (11) is a linear closed operator
with dense definitional domain in Lp (−1, 1) ⊕ C. Eigenvalues of the operator L and
of the problem (6), (7) coincide, and {ŷk}∞k=0 are eigenvectors of the operator L, where
ŷ2n−1 = (y2n−1 (x) ; my2n−1 (0)), ŷ2n = (y2n (x) ; my2n (0)).

Proof. To prove the first part of the lemma we take ŷ = (y; α) ∈ Lp (−1, 1) ⊕ C and
we define the functional F (ŷ) as follows:

F (ŷ) = my (+0)− α.

Let us assume

Uν (ŷ) = Uν (y) , ν = 1, 2, 3,

where

U1 (y) = y (−1) , U2 (y) = y (1) , U3 (y) = y (−0)− y (+0) .

Then F, Uv, v = 1, 2, 3, are bounded linear functionals on W 2
p (−1, 0)

⋃
(0, 1) ⊕ C, but

unbounded on Lp (−1, 1)⊕ C. Therefore , (see, e.g. [15, pp. 27-29]) the set

D (L) =
{
ŷ = (y; α) , y ∈W 2

p (−1, 0)
⋃

(0, 1) , F (ŷ) = Uν (ŷ) = 0, ν = 1, 2, 3
}

is dense everywhere in Lp (−1, 1)⊕C, and L is a closed operator as constriction of corre-
sponding closed maximal operator.

The second part of the lemma is verified directly.
The lemma is proved.
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Theorem 10. In conditions of the Theorem 8 eigenvectors and conjugate vectors of the
operator L, linearized problem (6), (7) form basis in Lp (−1, 1) ⊕ C,and for p = 2 this
basis is a Riesz basis.

Proof. From the Lemma 1 implies that , L is a dense defined closed operator with
compact resolvent. Then the system {ŷn}∞n=0 of eigenvectors of the operator L is minimal

in Lp (−1, 1)⊕ C, and its conjugate system
{
ϑ̂n

}∞
n=0

is the system of eigenvectors of the

conjugate operator L∗ and is in the form

ϑ̂n = (ϑn, m̄ϑn (0)) , n = 0, 1, ...,

here ϑn (x) , n = 0, 1, ..., are eigenfunctions of the conjugate spectral problem

−ϑ′′ + q (x)ϑ = λϑ, (12)

ϑ (−1) = ϑ (1) = 0 ; ϑ (−0) = ϑ (+0) ; ϑ′ (−0)− ϑ′ (+0) = λm̄ϑ (0) . (13)

By the similar way, for the problem (12), (13) we obtain, that for ϑn (x) hold following
formulas:

ϑ1, n (x) =

{
sinπnx+ O

(
1
n

)
, x ∈ [−1, 0] ,

µ1, n sinπnx+ O
(
1
n

)
, x ∈ [0, 1] ,

(14)

ϑ2, n (x) =

{
sinπnx+ O

(
1
n

)
, x ∈ [−1, 0] ,

µ2, n sinπnx+ O
(
1
n

)
, x ∈ [0, 1] ,

(15)

where µ1,n, µ2,n are the normalization numbers and for which holds

µ1,n = a1 +O

(
1

n

)
, µ2,n = a2 +O

(
1

n

)
,

and a1a2 6= 0. Denote

e1, n (x) =

{
sinπnx, x ∈ [−1, 0] ,
γ1, n sinπnx, x ∈ [0, 1] ,

(16)

e2, n (x) =

{
sinπnx, x ∈ [−1, 0] ,
γ2, n sinπnx, x ∈ [0, 1] ,

(17)

and consider the system {ên}∞n=0, where

ê0 = (0; 1) , ê2n = (e2,n; 0) , ê2n−1 = (e1,n; 0) , n ∈ N.

Then {ên}∞n=0 is basis in Lp (−1, 1)⊕C, besides for 1 < p ≤ 2, from the formulas (16),(17)
implies, that according to inequality Hausdorf-Young for trigonometric system (see., for
example, [16] ) for each f̂ ∈ Lp (−1, 1)⊕ C the inequality( ∞∑

B=0

∣∣∣〈f̂ , ên〉∣∣∣q)
1
q

≤ c
∥∥∥f̂∥∥∥

Lq⊕C
,
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is fulfilled and from the formulas (8),(9) implies that∑
n

‖ŷn − ên‖pLp⊕C <∞.

Then by Theorem 1 the system {ŷn}∞n=0 also forms a basis in Lp (−1, 1) ⊕ C isomorphic
to {ên}∞n=0. If p > 2 (1 < q < 2), then in this case from the formulas (14),(15) implies

that, the system
{
ϑ̂n

}∞
n=0

is q- close to {ên}∞n=0:∑
n

∥∥∥ϑ̂n − ên∥∥∥q
Lq⊕C

<∞,

and for each ĝ ∈ Lq (−1, 1)⊕ C( ∞∑
B=0

|〈g, ên〉|p
) 1

p

≤ c ‖ĝ‖Lq⊕C ,

and by Theorem 1 the system
{
ϑ̂n

}∞
n=0

forms a basis in Lq (−1, 1)⊕C and consequently,

the system {ŷn}∞n=0 forms a basis in Lp (−1, 1)⊕ C isomorphic to {ên}∞n=0.

As noted in the Theorem 8, α1 6= α2, because, although one of these numbers does not
equal zero. With this in mind and applying the Theorem 2 and 7, we obtain, that right is
next

Theorem 11. If α1 6= 0, then for sufficiently great values of n0 we eliminate y1, n0 (x), and
if α2 6= 0, then for sufficiently great values of n0 we eliminate y2, n0 (x) from the system of
the eigen and conjugate functions of the problem (6), (7) we obtain a basis in Lp (−1, 1),
and for p = 2 we obtain a Riesz basis in L2 (−1, 1).
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Fractal Conception Evaluation of Blood-Vessel System
State in the Anterior Part of an Eye

H.A. Nagiev, S.A. Ahmedov ∗

Abstract. The paper deals with parametrization of graphical representation in the anterior part of
an eye, analysis of the systems that perform statistical analysis, information processing, diagnostics
and data bank creation. Information about fractal conception, the effect of its application and
complex of necessary theoretical and practical works in this field are given. The use of the fractal
size of the eye vessels as an information wrapping method and the perspective of linear regression
or the least square methods are studied. The efficiency of the use of fractal concept for the
preservation and processing of graphical representation of the blood-vessel system of the anterior
part of an eye is shown.

Key Words and Phrases: blood-vessel system of an eye, image recognition, simulation of chaotic
structures, fractal structures, simulation.

2010 Mathematics Subject Classifications: 34L10, 41A58, 46A35

1. Introduction

Numerous historical facts from ancient medicine can be considered as important facts
of eye-diagnostics information. There is also scientific evidence that there is a correlation
between the visual analysis of changes in the anterior part of an eye and internal diseases
and even some psychological disorder symptoms.

Today, there is a great believance that the functional changes and hormonal shortcom-
ings that occur in interior organs and other objective factors are revealed. The importance
given to the perspective of the eye that the blood vessel structure or changes in it can be
instrumental in early prediction of internal diseases is developing on a day-to-day. One
of the reasons of this tendency is related to the achievements of electronic appliances
and medical devices in medicine, and the other reason is the high achievement of modern
information technologies and the broad range of mathematical-cybernetic methods.

As the symptomatic factors as the appearance of yellow strains in the eye is usually
more common in liver pathology, swelling in the eyes in the blood-vessel cardiological
diseases, redness in the eyes in hypertension have been known for a long time, now there
are more complex requirements based on external showings of the eye and they consider
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to study pathalogical changes more thouroughly. Local vein blockage in the eye is one
of the factors that can dramatically alter the appearance of the anterior part of the eye.
Today the intuitive conviction based on subjective observation of the people as ”Eyes are
the light of life”, ”The eyes are the mirror of the heart” needs to be transferred to a more
serious and objective evaluation. Analysis of the existing scientific literature in this field
shows that analysis of an eye-vascular system based on mathematical-cybernetic methods
can be considered as a perspective direction that creates important steps in the field of
medical diagnostics [2].

2. The most important apparatus for the automatic examination of the
eye’s blood-vascular system image

A positive solution to the problem of objective parametrization (characterization) of
the eye’s blood-vessel system can refer to the medical examination tools available in the
current eye care. A positive solution to the problem of symptomatic diagnostic problem
is undoubtedly dependent on the level of improvement of the analyzers and measurement
systems currently used in the eye examination and treatment. The analysis of survey
reviewer of technical literature, which we have undertaken in this field, does not cover the
issue, but it can to a certain extent give the most important idea of the general situation.

Some of the apparatus manufactured by leading companies of advanced countries in the
field of medical devices can play a major role in the diagnostics, prophylaxis and treatment
prophylaxis and treatment of eye diseases and enable to carry out fundamental researches
in the field of examination of blood-vascular system of the eye. Many of these equipments
were designed to examine the anterior part the eye, the ultrasound examination of the
eyeground, the visual field and the visual acuity. The last model apparatus manufac-
tured in Japan, Korea, the USA, Central Europe and other countries are widely used in
modern medicine. The Japanese “TOPCON” company’s test, measurement, treatment
complex is successfully used in the diagnostics, prevention and treatment of eye diseases.
The “FOROPTER” complex is a computerized intellectual system, has the function of
evaluating the patien’s vision area and sharpness and is widely used in clinical practice.
Germanc “VOLK” and “Reister” systems also examine the eyeground, “ALKON”, “LAU-
REAT” systems are able to carry out the most recent cataract surgery. The “Quantel”
system of France is used in the prevention and treatment of degenerative diseases of retina.

Of course it is impossible to claim that mathematical-cybernetic methods such as
statistical analysis, image recognition and mathematical simulation are used as a funda-
mental necessity in addressing the broad spectrum of mentioned systems. On the other
hand, there is no need to note that the functional issues such as simulation with differential
functions, arising in operational control in the dynamics of processes during the patient’s
examination, and the analysis of transition state in the patient are widely used. For exam-
ple, the German-made “Zeiss” brand equipment examines the activity of the blood stream
in retinal vessels. For this examination, the patient is administrated intravenously 2ml-25
% or 5ml-10 % fluorescein sodium salt. Fluorescein enters ocular circulation from the
internal carotid artery through the eye artery. Fluoresein first enters the choroidal vessels,
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Figure 1: A picture of the unique structure of the eye’s blood-vessel system received from
optic devices

then to arteries and veins of retina. The drug is injected within 6 seconds and appears in
fluorescein vision nerve and choroid within 8 to 11 seconds. The duration of fluorescein
entering the veins depends on the age of the patient, the patient’s cardiovascular status,
and the rate of fluorescein entering. White and black images are taken within 10 seconds
after injection, 1 image in every second during 20 seconds. Then the patient is offered
10-minute rest. Then 5-10 images are taken. In some cases, the pictures taken in 15
minutes can also be used as useful diagnostic information [9].

Thus, it can be shown from this example that during the examination, both the record-
ing of the reactions arising from the dynamic effects in the body and the effects of inter-
mediate stages of examination require to have and storage the graphical description by
parametrizing it. With regard to the problem of blood vessel examination of the eye, it
should be noted that for both diagnostic and statistical analysis, reduction of optic at
and ultrasound examination results as physical measure information to a compact form,
in other words, parametrization does not manifests itself to day.

3. Possible folding methods for the eye’s blood-vasculus system image.
Fractal reflection

The picture shows a blood-vessel-eye system’s photo surrounded by different size square
networks. The distinctive thickness of vessel and formation of their dendrites with random
character forms draws attention.

If one or more dendrite aggregates are taken within each check, each of them can be
regarded as an implementation of a random function, and we can suggest that we can
centralize multiple implementations on square networks. If this implementation is carried
out on a basis of any methods, we can obtain folding of the image either in the form of any
numerical characteristic of characteristic function. Such statement of the problem first of
all focuses on the Fourier spectral analysis that requires complex, graphical processing
processes such as separately analyzing the image of the dendrite aggregate falling on each
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network, subsequent centering and defecting the spectral composition. It should be noted
that this issue itself will create an important stage and will require independent algorithmic
works to find its solution.

The another direction may be calculation of general `length of vessels with respect to
δin arbitrary δ+dδ interval within the network of the given size. The Fourier transform of
this distribution function gives a complex variable characteristic function, and in principle,
such a substitution can be used as an image folding method.

It should be noted that as a mathematical description of dendritic structures, there
is a scientific study showing that fractal notation of such structures is far more effective
[7,8]. In this study, the total volume of chaotic pores channel, surface area and effective
perimetry concepts were introduced and they were used to parametrize the dendritric
channel system. Fig. 2.

Fractal is a fraction - dimensional object, i.e. a whole consisting of its own parts Benua
Mandelbrot proposed initial guidelines for geometrical measurement or calculation of such
structures [5]. These rules and formulas are now also available.

According to Mandelbrot, the fractal is a structure recurring in scale changes from the
biggest to the smallest and where any geomterical object is considered. When ordinary
geomterical objects (full size) are broken down into similar parts the resulting size for ex-
ample total length, total surface area or total volume remain unchanged. In fractal objects
(fractional dimensional) this dimension varies with the fact that the fractal dimension dif-
fers from the topological dimension. In the quantitative sense fractal property is reflected
just in the mentioned difference. It should be noted that the size of the fractality may be
both greater or less than the topological dimension.

Divide sequentially the identified sides of any D- dimensional geometrical structure
into Mequal parts. After divisions as each iteration the original (or any element obtained
from dividend) turns into N number identical element, we can write:

N = MD (1)

It is obvious that in objects with no fractality, D equals 1, 2 or 3. Now in addition
to some variants of fractality that have become classic examples, the expanding diversity
is successfully applied not only to non-traditional computer graphics, but to modeling of
non-traditional objects, too.

The most common formula for determining the fractal dimension can be written using
formula

D =
lnM

lnM
(2)

Here D is a fractal dimension [5,6].
At present, there are numerous algorithms based on different approaches to determine

the dimension of fractals in nature [3,7,8].
It is clear from Fig. 1 that vascular system in the eye forms one natural fractal system.

Here, the main problem is the determination of the regular fractal structure of the system
equivalent to it in this or other point of view and the solution of parametrization problem
on this basis. In our study, we aimed to determine the fractal dimension of blood vessels
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in the eye and the length of blood vessels to parametrize the eye. At first, in order to
determine the length of blood vessels, we measure by taking two points of the vessel and
determine the length along any straight line. But, the result obtained at this time may be
considered as an approximate result. If the distance between the points is taken smaller,
the size will be adjusted. We can define the total length of blood vessels in the eye based
on the formula used by Lewis Fry Richardson in measuring the geographical borders of
the countries and the algorithm suggested below. We can also define the fractal dimension
according to the length of blood vessels in the eye, i.e. by the length we can determine
the fractal dimension. Lewis Fry Richardson has shown that the L length of the borders
of the countries varies depending on the δ scale of the map, L = L(δ). We can use this
formula for the blood vessel system we consider [8].

L(δ) = Aδ1−D. (3)

Here A is a constant, D is a fractal dimension.

Figure 2: Statistical processing of eye-vascular system image based on reflection on differ-
ent dimensional networks

E. Feder has shown on the basis of different experiments that the following formula can
be used to determine any δ –dependent length [6]:

miδi = Aδ1−Di . (4)

Here L(δ) = mδ, where m sizes for different scale δ were obtained. Since we do not have
a scale in the graphical description of the considered blood vascular system, if we place
on the graphic representation of a square grid with the side of length δ1 (fig 2. a)), then
a quadratic grid with side of length δ2 (fig. 2. b)), and in this sequence a quadratic grid
with side of length δn , then for each δ1 δ2.....δn we obtain the length of vessels, m1 m2

.....mn. It is appropriate to take n≥5. Here mi is the sum length of the parts of vessels
that the quadratic grid cuts. Here each δ value has a specific mδ length, and if we draw
a graph of these values, we can see their linear dependence. For each lg(δ) we get certain
lg(mδ). If based on



Fractal Conception Evaluation of Blood-Vessel System State 83

x = lg δ; y = lg(mδ), (5)

we draw a graph, we can see linear dependence in the form of y = ax + b [8]. So, by the
least square method we can find the constants a and b

a =

∑
yi

∑
x2i −

∑
xi

∑
xiyi

n
∑
x2i −

∑
xi

∑
xi

;

b =
n
∑
xiyi −

∑
xi

∑
yi

n
∑
x2i −

∑
xi

∑
xi

.

From the known L(δ) = mδ and formula (5) we get y = lg(mδ) = lgL (δ). Then we can
write y = ax+ b in the form lgL = a lg δ + b. Hence we get

10lgL = 10a lg δ+b; L = 10bδa. (6)

Taking (3) into account, we find A = 10b; a = 1−D. From the expression D = 1−a we can
determine the fractal dimension with respect to the length of the blood vessel according
to the graphic description of the anterior of the eye. Using the quantities D and A being
the found fractal dimension in length by means of the formula L (δ) = Aδ1−D (3), we can
determine L length of the vessels according to the graphic description of the anterior part
of the eye for any δ × δ- dimensional square grid.

The carried out investigations enable to determine two unique values, the length and
fractal dimension of the vascular system of the anterior part of the eye. Thus, by the
unique value corresponding to each graphic description of the anterior part of the eye, we
can parametrize this description.

4. Conclusion

Modern development of information technology shows that parametrization of graphic
descriptions in automation of medical diagnostics is more likely to provide possible infor-
mation. The studies have shown that as the analysis of graphic description complicates,
the focus is on the parametrization of description in studying diagnostic descriptive bank,
statistical analysis and the dynamics of the description. Today, fractal description analysis
as a separate field of science involves professionals in the field of information technology
and is used in many fields including graphic descriptions. Parametrization of the graphic
description of the anterior part of the eye using the fractal analysis apparatus may be
used to examine the anterior part of the eye and to study the dynamics of pathological
conditions. The achievements in the field of finding these parameters with certain accu-
racy can eventually be an important step in ensuring a positive solution to the problem
of computerized diagnostics.
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Global Bifurcation From Infinity in Nonlinear Elliptic
Problems with Indefinite Weight
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Abstract. In this paper we consider global bifurcation of solutions in nonlinear eigenvalue prob-
lems for semi-linear elliptic partial differential equations with indefinite weight function. We prove
the existence of two pairs of unbounded continua of solutions bifurcating from the points in R×{∞}
corresponding to the positive and negative principal eigenvalues of the linear problem and such
that the continua of each pair consists of positive and negative functions, respectively, in the
neighborhood of these points.
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1. Introduction

In this paper, we consider the following nonlinear eigenvalue problem

Lu ≡ −
n∑

i,j=1

∂
∂xi

(
aij(x) ∂u∂xi

)
+ c(x)u = λa(x)u+ g(x, u,∇u, λ) in Ω,

u = 0 on ∂Ω,

(1)

where Ω be a bounded domain in Rn with a smooth boundary ∂Ω, ∇u = ( ∂u∂x1 ,
∂u
∂x2

, ... , ∂u∂xn )

and λ is a real parameter. We assume that L is uniformly elliptic in Ω and that the
aij(x) ∈ C1(Ω̄), aij(x) = aji(x) for x ∈ Ω, c(x) ∈ C(Ω̄), c(x) ≥ 0 for x ∈ Ω. Let
a(x) ∈ C(Ω) such that |Ωσ

a | > 0 for σ ∈ {+ , −}, where Ωσ
a = {x ∈ Ω : σa(x) > 0} and

|Ωσ
a | = meas{Ωσ

a}. Moreover, the nonlinear term g ∈ C(Ω×R×Rn ×R) and satisfies the
following condition:

g(x, u, v, λ) = o(|u|+ |s|) as |u|+ |v| → ∞, (2)

uniformly in x ∈ Ω and λ ∈ Λ, for every bounded interval Λ ⊂ R.
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Problem (1) with a(x) > 0, x ∈ Ω, and all the coefficients and the nonlinear terms
are smooth was considered by Rabinowitz [9] in a more general case, where, in particu-
lar, it was shown that there exist two unbounded continua of solutions emanating from
asymptotically bifurcation point corresponding to the first eigenvalue of the linear problem
obtained from (1) by setting g ≡ 0 and contained in the classes of positive and negative
functions in near of this point. In the future, Przybycin [8] and Rynne [10] extended the
results of Rabinowitz [9] to the class of nonlinearizable eigenvalue problems for elliptic
partial differential equations with a definite weight.

In the papers [3, 4], problem (1) was studied in the case when the nonlinear term g
satisfies a o(|u| + |∇u|) condition at u = 0. For such a problem, the authors show the
existence of two pairs of unbounded continua of solutions bifurcating from points of the
line of trivial solutions corresponding to the positive and negative principal eigenvalues
of linear problem, and such that the continua of each pair are contained in the classes of
positive and negative functions, respectively.

The purpose of the present paper is extend the result of Rabinowitz concerning the
existence of branches of positive and negative solutions, [9], to the nonlinear problem (1)
with indefinite weight function a(x).

2. The classes P µ
σ and principal eigenvalues of the corresponding linear

problem

For k ∈ N, and α ∈ (0, 1) let Ck, α(Ω) denote the Banach space of the functions in
Ck((Ω) having all their derivatives of order k Hölder continuous with exponent α. We let
| · |k and | · |k, α denote the standard sup-norms on spaces Ck((Ω) and Ck, α(Ω), respectively.
For p > 1, let W k,p(Ω) denote the standard Sobolev space of functions whose distributional
derivatives, up to order k, belong to Lp(Ω). We let || · ||p and || · ||k,p denote the norm on
Lp(Ω) and W k,p(Ω), respectively.

It is known (see [1]) that, if p > N , then there exists a constant γ such that

||u||C1,1−n/p ≤ γ ||u||W 2, p for all u ∈W 2, p(Ω).

Now let α ∈ (0, 1) be the given number and p be a real number such that p > n and
α < 1− n/p. Then W 2, p(Ω) is compactly embedded in C1, α(Ω).

Let E = {u ∈ C1, α
(
Ω
)

: u = 0 on ∂Ω} be the Banach space with the norm || · ||C1, α .
A pair (λ, u) is said to be a solution of problem (1) if u ∈W 2, p(Ω) and (λ, u) satisfies (1).
By virtue of compactly embedding W 2, p(Ω) in C1, α(Ω) we conclude that every solution
of the nonlinear problem (1) belongs to R × E. Thus we may consider the structure of
the set of solutions of problem (1) in R × E. Let P+

σ = {u ∈ E : u > 0 in Ω and ∂u
∂n <

0 on ∂Ω, σ
∫
Ω

au2dx > 0}, where ∂u
∂n is the outward normal derivative of u on ∂Ω.

Remark 1. It follows from the definition that for each σ ∈ {+ , −} the sets P+
σ , P

−
σ =

−P+
σ and Pσ = P+

σ ∪ P−σ are open subsets of E; for each σ ∈ {+ , −} the sets P+
σ and
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P−σ , and for each ν ∈ {+ , −} the sets P ν+ and P ν− are disjoint. Moreover, if u ∈ ∂P νσ , σ ∈
{+ , −}, ν ∈ {+ , −}, then the function u has either an interior zero in Ω or ∂u

∂n = 0 at
some point on ∂Ω or

∫
Ω

au2dx = 0 [4].

Now we consider the linear eigenvalue problem obtained from (1) by setting h ≡ 0, i.e.
the following spectral problem

Lu = λ a(x)u in Ω,
u = 0 on ∂Ω.

(3)

It should be noted that if the weight function a(x) does not change sign in Ω, then (3)
admits one principal eigenvalue [7], and if a(x) changes sign in Ω, then problem (3) admits
two principal eigenvalues; one positive and the other negative [3].

In [3] the authors obtained the following properties of the eigenfunctions corresponding
to the principal eigenvalues of problem (3).

Theorem 1. (see [3, Lemmas 2.1-2.4, Theorems 2.1, 2.2 and Remark 2.1]) The linear
eigenvalue problem (3) have positive and negative principal eigenvalues λ+

1 and λ−1 , re-
spectively, which are simple and given by the relations

λσ1 = inf {R(u) : u ∈ H1
0 (Ω), σ

∫
Ω

au2dx > 0} for σ ∈ {+ , −},

where H1
0 (Ω) = {u ∈W 1, 2(Ω) : u = 0 on ∂Ω} and R(u) is the Rayleigh quotient [2] defined

as follows:

R(u) =

∫
Ω

aij
∂u
∂xi

∂u
∂xj

dx+
∫
Ω

cu2dx∫
Ω

au2dx
.

Moreover, the corresponding eigenfunction uσ1 (x), x ∈ Ω, σ ∈ {+ , −}, can be chosen so

that uσ1 (x) > 0 for all x ∈ Ω and
∂uσ1 (x)
∂n < 0 for all x ∈ ∂Ω.

Remark 2. It follows from Theorem 1 that uσ1 ∈ P+
σ for each σ ∈ {+ , −}. It should be

noted that uσ1 is made unique by taking ||uσ1 ||C1, α = 1.

3. Global bifurcation of solutions of problem (1) from infinity

The closure of the set of nontrivial solutions of (1) will be denoted by L. We say
(λ,∞) ∈ R×{∞} is a bifurcation point for problem (1) if any neighborhood of this point
contains solutions of problem (1), i.e. there exists a sequence {(λn, un)}∞n=1 ⊂ L such that
λn → λ and |un|1, α →∞ as n→∞ [6].

The main result of this paper is the following theorem.
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Theorem 2. For each σ ∈ {+ , −} and each ν ∈ {+ , −} there exists a component Cν1,σ
of L which contains (λσ1 ,∞) and satisfies the conclusions of Theorem 1.6 and Corollary
1.8 from [9]. Moreover, the neighborhood Q of [9, Corollary 1.8] can be chosen such that

(Cν1,σ ∩Q) ⊂ (R× P νσ ) ∪ {(λσ1 ,∞)}.

Proof. Step 1. We assume that aij ∈ C2(Ω), c, a ∈ C1(Ω) and h ∈ C1(Ω×R×Rn×R).

It follows from the Lp theory for uniformly elliptic partial differential equations [2]
that there exists a unique v = G(λ, u) satisfying

Lv = λa(x)u+ g(x, u,∇u, λ)) in Ω,
v = 0 on ∂Ω.

Since E is compactly embedding in W 2,p
0 (Ω) = W 2,p(Ω) ∩ {u : u = 0 on ∂Ω} the Arzela-

Ascoli Theorem imply that G is compact on R× E.

Denote by w = Lu ∈W 2,p
0 (Ω) the solution of the following problem

Lw = a(x)u in Ω,
w = 0 on ∂Ω.

Then from the above reasoning imply that L is a compact linear map on E. By the
Theorem 1 it follows that λ+

1 and λ−1 are simple principal characteristic values of operator
L.

Suppose that G(λ, u) = G(λ, u)−λLu. From the our above remarks it follows that (1)
is equivalent to the following nonlinear eigenvalue problem

u = λLu+ G(λ, u). (4)

Following the corresponding reasoning carried out in the proof of Theorem 2.28 from [9],
we see that G(λ, u) = o(|u|1, α) as |u|1, α → ∞, uniformly on bounded λ intervals and

|u|21, αG
(
λ, u
|u|21, α

)
is compact. Thus [9, Theorem 1.6 and Corollary 1.8] are applicable

here. The verification of the last statement of this theorem follows as in [9, Theorem 2.4].

Step 2. To complete the proof of this theorem, we approximate equation (1) by
”smoothed equations”, as in [5, Section 4], and apply standard elliptic regularity results
for elliptic operators [2].
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On the Parametric Resonance Cases of the System Con-
sisting of the Circular Cylinder and Surrounding Elastic
Medium Under Action in the Interior of the Cylinder
Time-Harmonic Oscillating Moving Load

M.A. Mehdiyev

Abstract. The paper studies the parametric resonance cases which appear under the action of
the oscillating moving ring load on the interior of the hollow cylinder surrounded by an elastic
medium. The axisymmetric stress-strain state is considered and it is assumed that the perfect
contact conditions satisfy on the interface between the cylinder and surrounding elastic medium
and the equations of motion for the cylinder and surrounding elastic medium are written separately
and these equations are exact the so-called 3D equations of the elastodynamics. Numerical results
on the interface stresses are presented and according to the analyses of these results, it is established
the existence of the parametric resonance in certain values of the moving velocity of the oscillating
load.

1. Introduction

The detailed review of the related investigations are given in the papers [1-4] and in
the monograph [5] therefore we do not consider here this review again. Nevertheless, we
note here some particularities of the recent results which have been obtained with the
participation of the author of the present paper. We begin this notation with the paper
[1] in which it was shown that under the forced vibration of the system consisting of the
hollow cylinder and of the surrounding elastic medium under the action time-harmonic
axisymmetric ring forces on the interior of the cylinder the resonance phenomenon does
not appear.

In this case, the dependence between the frequency and amplitudes of the quantities
characterizing the stress-strain state in the aforementioned system appearing as a result
of the time-harmonic ring load has non-monotonic character. In other words, there exists
such value of the frequency of the external forces under which the absolute values of the
mentioned quantities have their maximum. In other words, there exists such value of the
frequency of the external forces under which the absolute values of the mentioned quan-
tities have their maximum. However, in the paper [2] it was established that in the case
where on the interior of the cylinder act corresponding non-axisymmetric forces, according

http://www.cjamee.org 90 c© 2013 CJAMEE All rights reserved.
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to which it was solved the relating three-dimensional problem the noted above dependen-
cies have more complicated character and nevertheless the resonance phenomenon does
not observe in the 3D case also. At the same time, the paper [3] establishes that if on
the interior of the cylinder the axisymmetric moving constant ring load acts then under
certain values moving velocity of this load the resonance type phenomenon takes place
and the velocity regarding this case is called the critical velocity.

The question ”what kind of the response of the foregoing system to the time-harmonic
ring forces acting on the interior of the cylinder appears in the case where these forces
move with the constant velocity and this velocity is less than the corresponding critical
velocity”, is the subject of the investigation of the present paper. As a result of this
investigation, it is established that there exist such value of the velocity of the moving
load under which the resonance cases appear as a result of the oscillation of the external
forces.

2. Formulation of the problem

Consider the aforementioned ”hollowcylinder + surrounded elastic medium” system
the sketch of which is illustrated in Fig. 1 and assume the thickness of the wall of the
cylinder is h and the external radius of the cross section of that is R. Moreover, we assume
that on the inner surface of this cylinder normal time-harmonic ring forces act and these
forces move along the cylinder axis with constant velocity V . We associate with the central
axis of the cylinder the cylindrical system of coordinates Orθz and within this framework
we attempt to investigate the stress-strain state in the system under consideration with
utilizing the following field equations of elastodynamics.

Figure 1: The sketch of the system under consideration and the oscillating moving ring
load

Equations of motion:

∂σ
(k)
rr

∂r
+
∂σ

(k)
rz

∂z
+

1

r
(σ(k)
rr − σ

(k)
θθ ) = ρ(k)∂

2u
(k)
r

∂t2
,
∂σ

(k)
rz

∂r
+
∂σ

(k)
zz

∂z
+

1

r
σ(k)
rz = ρ(k)∂

2u
(k)
z

∂t2
. (1)
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Elasticity relations:

σ(k)
nn = λ(k)(ε(k)

rr + ε
(k)
θθ + ε(k)

zz ) + 2µ(k)ε(k)
nn , nn = rr; θθ; zz, σ(k)

rz = 2µ(k)ε(k)
rz . (2)

Strain – displacement relations:

ε(k)
rr =

∂u
(k)
r

∂r
, ε

(k)
θθ =

u
(k)
r

r
, ε(k)

zz =
∂u

(k)
z

∂z
, ε(k)

rz =
1

2
(
∂u

(k)
z

∂r
+
∂u

(k)
r

∂z
). (3)

In equations (1), (2) and (3) the conventional notation of the theory of elasticity is used
and through the upper index (k) it is indicated the belonging of the quantities to the
cylinder under k = 2 and to the surrounding elastic medium under k = 1.

Consider also formulation of the corresponding boundary and contact conditions which
can be written as follows.

σ(2)
rr

∣∣∣
r=R−h

= −P0δ(z − V t)eiωt, σ(2)
rz

∣∣∣
r=R−h

= 0, (4)

σ(1)
rr

∣∣∣
r=R

= σ(2)
rr

∣∣∣
r=R

, σ(1)
rz

∣∣∣
r=R

= σ(2)
rz

∣∣∣
r=R

, u(1)
r

∣∣∣
r=R

= u(2)
r

∣∣∣
r=R

. u(1)
z

∣∣∣
r=R

= u(2)
z

∣∣∣
r=R

(5)

∣∣∣σ(1)
rr

∣∣∣ ; ∣∣∣σ(1)
θθ

∣∣∣ ; ∣∣∣σ(1)
zz

∣∣∣ ; ∣∣∣σ(1)
rz

∣∣∣ ; ∣∣∣u(1)
r

∣∣∣ ; ∣∣∣u(1)
z

∣∣∣→ 0, as
√
r2 + z2 →∞. (6)

Thus, the investigation of the problem is reduced to the boundary-contact problem
(1) – (6) for solution to which the method developed in the papers [1-4] is employed.
Now we consider some fragments of the application of this method for the problem under
consideration.

3. Method of solution

For solution of the equations (1)-(3). We use the well-known, classical Lame (or
Helmholtz) decomposition (see, for instance, the monograph [6] and others listed therein)
for solution of the above formulated problem:

u(k)
r =

∂Φ(k)

∂r
+
∂2Ψ (k)

∂r∂z
, u(k)

z =
∂Φ(k)

∂z
+
∂2Ψ(k)

∂r2
+

1

r

∂Ψ(k)

∂r
, (7)

where Φ(k) and Ψ(k) satisfy the following equations:

∇2Φ(k) − 1

(c
(k)
1 )2

∂2Φ(k)

∂t2
= 0 ,∇2Ψ(k) − 1

(c
(k)
2 )2

∂2Ψ(k)

∂t2
= 0,∇2 =

∂2

∂r2
+

1

r

∂

∂r
+

∂2

∂z2
. (8)

Here the notation c
(k)
1 =

√
(λ(k) + µ(k))

/
ρ(k) and c

(k)
2 =

√
µ(k)

/
ρ(k) is used.

We introduce the moving coordinate system

r′ = r, z′ = z − V t, (9)
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which moves with the ring load. Representing all the sought values as g(r, z′, t) =
ḡ(r, z′)eiωt (below, the over bar and upper prime will be omitted) and rewriting the Eq.
(8) with the coordinates r′ and z′ determined in (9), we obtain:

∇2Φ(k) − 1

(c
(k)
1 )2

(
V 2 ∂2Φ(k)

∂z2
− 2iωV ∂Φ(k)
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(c
(k)
2 )2

(
V 2 ∂2Ψ(k)

∂z2
− 2iωV ∂Ψ(k)

∂z − ω
2Ψ(k)

)
= 0.

(10)

During the foregoing transformations, the first condition in (4) transforms to the fol-
lowing one:

σ(2)
rr

∣∣∣
r=R−h

= −P0δ(z), (11)

but the other relations and conditions in (1) – (6) remain valid for the amplitudes of the
sought values.

Below we will use the dimensionless coordinates r̄ = r/h and z̄ = z/h instead of the
coordinates r and z, respectively and the over-bar in r̄ and z̄ will be omitted.

Further, we employ the exponential Fourier transform fF =
∫ +∞
−∞ f(z)eiszdz, according

to which, the functions Φ(k) and Ψ(k), and the amplitudes of the sought values can be
presented as follows:{

Φ(k); Ψ(k);u(k)
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(r, s)e−iszds, nn = rr; θθ; zz. (12)

Substituting the expressions in (12) into the foregoing equations, relations and contact
and boundary conditions, we obtain the corresponding ones for the Fourier transformations
of the sought values. After this transform the relation (2), the first and second relation in
(3), the second condition in (4) and all the conditions in (5) and (6) also remain valid for
their Fourier transforms. Nevertheless, the third and fourth relation in (3), the condition
(11) and the relations in (7) transform to the following ones:
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where, according to (8), the functions Φ
(k)
F and Ψ

(k)
F are determined from the equations:[
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where

W = Ω− sc, Ω =
ωh

c
(2)
2

, c =
V

c
(2)
2

. (15)

Taking into consideration the conditions in (6), the solution to the equations in (14)
are found as follows:

Φ
(2)
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0 (r 1) +A2H

(2)
0 (r 1),Ψ
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where H
(1)
0 (x) and H

(2)
0 (x) are the Hankel functions of the first and second kinds, respec-

tively and
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(17)

Substituting the expressions in (17) into (13) and the Fourier transforms of the ex-
pressions in (2) it is obtained the analytic expressions for the Fourier transforms of the
sought values which contain the unknown constants A1, A2, B 1, B2, C2 and D2. Using the
Fourier transforms of the contact and boundary conditions (4) and (5) the system of alge-
braic equations are obtained for these unknowns. Thus, solving this system of equations
the Fourier transforms of the sought values are determined completely.

The originals of the aforementioned transforms are determined numerically the algo-
rithm for which are proposed and discussed in the papers [1-5]. Therefore we do not
consider here the algorithm and their testing which are used under obtaining numerical
results which are discussed below.

4. Numerical results and their discussions

First of all, we note that the numerical results which will be considered below are
obtained in the following three cases.

Case 1.

E(1)
/
E(2) = 0.35, ρ(1)

/
ρ(2) = 0.1, ν(1) = ν(2) = 0.25. (18)

Case 2.

E(1)
/
E(2) = 0.05, ρ(1)

/
ρ(2) = 0.01, ν(1) = ν(2) = 0.25. (19)

Case 3.

E(1)
/
E(2) = 0.5, ρ(1)

/
ρ(2) = 0.5, ν(1) = ν(2) = 0.3. (20)
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We consider of the frequency response of the interface normal stress

σrr(z) = σ(1)
rr (R, z) = σ(2)

rr (R, z) (21)

in the foregoing cases (18)-(20) for various values of dimensionless moving velocity c =

V/c
(2)
2 . The graphs of these responses are illustrated in Figs. 2, 3 and 4 for the cases

(18), (19) and (20), respectively.

Figure 2: Frequency response of the interface normal stress σrr obtained for various values
of the load moving velocity under h/R = 0.5 (a), 0.2 (b), 0.1 (c) and 0.05 (d) in Case 1

Figure 3: Graphs indicated in Fig. 2 caption and constructed in Case 2
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Figure 4: Graphs indicated in Fig. 2 caption and constructed in Case 3

It follows from Figs.2, 3 and 4 that in the all cases under consideration (except the
case where h/R = 0.5 and 0 ≤ c ≤ 0.3 in Case 1 and Case 3, and 0 ≤ c ≤ 0.1 in Case
3 under which the absolute values of the stress increase with Ω in the considered change
range) the frequency responses have non-monotonic character, i.e. there are such values of
Ω (denote this value of Ω by Ω∗) before which the absolute value of the stress σrr becomes
maximum and this maximum increases with the moving velocity of the ring load. At the
same time, it follows from the results that the values of Ω∗ decrease monotonically with c.
Moreover, Figs. 2a, 2b, 3a, 3b, 3c and 3d show that there may be cases where an increase
in the values of c leads to resonance cases. Such resonance cases, and the corresponding
resonance frequencies are indicated in these figures.

The above-noted resonances can be estimated as a parametric resonance and as a
parameter it can be taken as the load moving velocity. Consequently, under oscillating
moving load action of the ring load, resonance type accidents appear not only under
critical moving velocities of this load but also under the foregoing type of parametric
resonances. Analyses of the foregoing results also show that the absolute maximum values
of the stress under consideration increase with decreasing of the ratio h/R. Moreover,
comparison of the results obtained for Case 1, Case 2 and Case 3 with each other shows
that the responses of the interface normal stress to the moving velocity of the ring load and
its vibration depend not only on the values of this velocity and frequency, but also depend
significantly on the ratio of the mechanical properties of the selected pairs of materials, as
indicated in (18) – (20) for the hollow cylinder and surrounding elastic medium. At the
same time, the latter dependence has not only quantitative, but also qualitative character.

5. Conclusions

Thus, in the present paper the parametric resonance of the system consisting of the
hollow cylinder and surrounding elastic medium under action of the time-harmonic oscil-
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lating moving ring load acting in the interior of the cylinder is studied. The study is made
within the scope of the exact equations and relations of the elastodynamics in the axisym-
metric stress-state case. It is described the problem formulation and solution method for
this problem.

Numerical results are presented for certain cases which are determined with the ratio of
the mechanical constants of the constituents. As a result of the analyses of these results, it
is established that there exist the cases under which in the certain values of the velocity of
the moving load the oscillation of the moving load causes the resonance of the bi-material
elastic system under consideration. The appearance of the resonance cases depends also
on the ratio of the cylinder thickness to the cylinder external radius.

The obtained results and their discussions show that the investigations of the problem
under consideration have not only theoretical but also the application significance under
construction of underground structures. Therefore, it can be concluded that it is necessary
to develop such type investigations for the other related problems.

Finally, we note that the results obtained in the present paper have been presented in
the 6-th International Conference on Control and Optimization with Industrial Application
and the related summary has been published in [7].
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