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Investigation of Laplace Transforms for Distribution of
the First Passage of Zero Level of the Semi-Markov Ran-
dom Process with Positive Tendency and Negative Jump
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Abstract. One of the important problems of stochastic process theory is to define the Laplace
transforms for the distribution of semi-markov random processes. With this purpose, we will
investigate the semi-markovrandom processes with positive tendency and negative jump in this
article. The first passage of the zero level of the process will be included as a random variable.
The Laplace transforms for the distribution of this random variable is defined. The parameters of
the distribution will be calculated on the basis of the final results.
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1. Introduction

There are number of works devoted to definition of the Laplace transforms for the
distribution of the first pas- sage of the zero level. (Borovkov 2004) [1] defined the explicit
form of the distribution, while (Klimov 1996) [3] and (Lotov V. I.) [2] indicated implicit
form of the distribution of the first passage of zero level. The presented work explicitly
defines the Laplace transforms for the unconditional and conditional distribution of the
semi-markov random processes with positive tendency and negative jump.

2. Mathematical Statement of the problem

Let a sequence of independent and identically distributed pairs of random variables
{ξk, ζk}k≥1 , k = 1,∞ defined on a probability space (Ω, F, P ) such that ξk and ζk are
independent random variables and ξk > 0,ζk > 0. Using these random variables we will
derive the following step processes of semi-Markov random walk:

Xz(t) = z + t−
k−1∑
i=1

ζi if

k−1∑
i=1

ξi ≤ t <
k∑
i=1

ξi, k = 1,∞ z ≥ 0

∗Corresponding author.

http://www.cjamee.org 76 c© 2013 CJAMEE All rights reserved.



Investigation of Laplace Transforms for Distribution of the First Passage of Zero Level 77

Xz(t) process is the (asymptotic) semi-Markov random processes with positive tendency
and negative jump.One of the realizations of the process Xz(t) will be in the following
form:

a) Xz(t) = z + t if t < ξ1 (see, Figure 1),

b) Xz(t) = z + t− ζ1, if ξ1 ≥ t < ξ1 + ξ2 (see, Figure 2)

Fig. 1.

Fig. 2.

Let’s include the τ0
z random variable defined as below:

τ0
z = min{t : Xz(t) ≤ 0}

where τ0
z , is the time of the first passage ofX(t) process. We need to find Laplace transform

for distribution of τ0
z random variable. Let us set Laplace transform for the distribution
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of τ0
z random variable as L(θ)

L(θ) = Ee−θτ
0
z , θ > 0;

L(θ|z) = E(e−θτ
0
z |Xz(t) = z), , z ≥ 0

In this case we can express the equation as

τ0
z =

{
ξ1, z + ξ1 − ζ1 < 0

ξ1 + T 0
z+ξ1−ζ1 , z + ξ1 − ζ1 > 0

Thus, T and τ0
z are evenly distributed random variables.Our goal is to find Laplace

transform of relative and non-relative distribution of τ0
z random variable.

Theorem 1. Let a sequence of independent and identically distributed pairs of random
variables {ξk, ζk}k≥1 , k = 1,∞ , defined on a probability space (Ω, F, P ) such that ξk and
ζk are independent random variables and ξk > 0,ζk > 0. Then an integral equation of
Laplace transform of distribution of τ0

z random variable will be as follows:

L(θ|z) =

∞∫
s=0

e−θsP{ζ1 > z + s}P{ξ1 ∈ ds}−

−
∞∫

s=0

e−θs
z+s∫

α=0

L(θ|α)dαP{ζ1 < z + s− α}dP{ξ1 < s} (1)

Proof: According to the formula of total probability, we can put it as

E
(
e−θτ

0
z |Xz(0) = z

)
=

∫
Ω

e−θτ
0
zP (dω) =

=

∫
{ω:z+ξ1−ζ1<0}

e−θξ1P (dω) +

∫
{ω:z+ξ1−ζ1>0}

e−θ(ξ1+T )P (dω)

If to consider the following substitution

ξ1 = s; ς1 = y : T = β

we derive

E
(
e−θsτ

0
z |X1(0) = z

)
=

∞∫
s=0

∞∫
y=z+s

eθsP{ξ1 ∈ ds; ζ1 ∈ dy}+

+

∞∫
s=0

∫ z+s

y=0

∞∫
β=0

e−θ(s+β)P{ξ1 ∈ ds; ζ1 ∈ dy;T ∈ dβ} =
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=

∞∫
s=0

e−θsP{ξ1 ∈ ds}
∞∫

y=z+s

P{ζ1 ∈ dy}+

+

∞∫
s=0

e−θs
z+s∫
y=0

dP{ζ1 ∈ y}dP{ξ1 < s}L(θ|z + s− y) =

=

∞∫
s=0

e−θsP{ξ1 ∈ ds}P{ζ1 > z + s}+

+

∞∫
s=0

e−θs
0∫

β=z+s

L(θ|β)dP{ζ1 < z + s− β}dP{ξ1 < s}

or

L(θ|z) =

∞∫
s=0

e−θsP{ζ1 > z + s}P{ξ1 ∈ ds}+

+

∞∫
s=0

e−θs
z+s∫
y=0

L(θ|z + s− y)P{ζ1 ∈ ds}P{ξ1 ∈ ds}

Let’s assume that z+s−y = α . In this case we will receive the following integral equation:

L(θ|z) =

∞∫
s=0

e−θsP{ζ1 > z + s}P{ξ1 ∈ ds}−

−
∞∫

s=0

e−θs
z+s∫

α=0

L(θ|α)dαP{ζ1 < z + s− α}dP{ξ1 < s}

The theorem 1 is proved.

We will solve this integral equation in special case. Let’s assume that ξ1(ω) random
variable has the Erlangian distribution of third construction, while ζ1(ω) random variable
has the single construction Erlangian distribution:

P{ξ1(ω) < t} =

[
1−

(
1 + λt+

λ2t2

2

)
e−λt

]
ε(t), λ > 0,

P{ζ1(ω) < t} =
[
1− e−µt

]
ε(t), µ > 0

where ε(t) =

{
0, t < 0,
1, t > 0.



80 K.K. Omarova, U.Y. Kerimova

In this case Equation (1) will be as follows:

L(θ|z) =
λ3e−µz

(λ+ µ+ θ)3
+
λ3µe−µz

2

∞∫
s=0

S2e−(λ+µ+θ)s

z+s∫
α=0

eµαL(θ|α)dαds (2)

We can derive differential equation from this integral equation. For this purpose, we
will multiply both sides of equation (2) by eµz

µL(θ|z) + L′(θ|z) =
λ3µ

2

∞∫
s=0

S2e−(λ+θ)sL(θ|z + s)ds

If to consider the following substitution x = z+ s, multiply both sides of last equation by
e−(λ+θ)z and derive on z we can find the following differential equation:

LIV (θ|z)− [3(λ+ θ)− µ]L′′′(θ|z) + 3(λ+ θ)(λ+ θ − µ)L′′(θ|z)−

−(λ+ θ)2(λ+ θ − 3µ)L′(θ|z)− µ[(λ+ θ)2 − λ3]L(θ|z) = 0

The general solution of this differential equation will be as follows :

L(θ|z) = C1(θ)ek1(θ)z =
λ3

[λ+ θ − k1(θ)]3
ek1(θ)z .

This expression is the Laplace transform of the conditional distribution of τ0
z random

variable. Then, we will need to find Laplace transform for the unconditional distribution
of τ0

z random variable. In accordance with formula of total probability

L(θ) =

∞∫
z=0

L(θ|z)λ3z2e−λzdz =

∞∫
z=0

c1(θ)ek1(θ)zλ3z2e−λzdz =

= c1(θ)λ3

∞∫
z=0

z2e[k1(θ−λ)]zdz =
λ3

[λ− k1(θ)]3
C1(θ)

Therefore

L(θ) =
λ3

[λ− k1(θ)]3
C1(θ)

Respectively, we will get the following characteristics:

Eτ0
1 = −L′(0) =

3(λ+ µ)

λ(λ− 3µ)

E(τ0
z |z) =

3(1 + zµ)

λ− 3µ

E(τ0
z |z) =

3

(λ− 3µ)2
+

12(3 + zλ)µ

(λ− 3µ)3
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3. Conclusions

In this article we have defined Laplace transforms for the unconditional and conditional
distribution of the first passage of zero level of semimarkov random processes with positive
tendency and negative jump.
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Methodological Aspects of Cluster Policy Formation in
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Abstract. The ways to form and develop the country’s competitively oriented national economy:
1) the role of clusters in the development of regional and national economies; 2) factors determining
the growing impact of the state on clustering processes; 3) work carried out within the framework
of cluster policy in Azerbaijan.

Key Words and Phrases: cluster policy, industrial parks, competitive economy, innovation
activity.

1. Introduction

The formation and development of a competitively oriented national economy plays
the key role in the recognition of the efficiency of a country’s economy. As specified in
the political programs of many countries, the competitiveness of the national economy is
a key development priority.

The Global Competitiveness Index (GCI) of the CIS countries for 2008-2009 has the
following rankings: Russia — 4.31 (51st place), Kazakhstan — 4.11 (66th place), Azer-
baijan — 4.1 (69th place), Ukraine Belarus — 3.95 (82nd place), Georgia — 3.86 (90th

place), Moldova — 3.75 (95th place) [1]. The low level of the global GCI indicators in
post-Soviet states being makes the problem of forming a competitively oriented national
economy highly relevant.

Today, along with adapting strategic analysis tools to the world practice, there is a
great need to develop new approaches to the economic justification of development con-
cepts and strategies. Globalization processes are an objective condition for changing the
paradigm of competitive management, which consists in the intensification of international
competition that characterizes the world economy, the rejection of the traditional industry
policy and the transition to a new, cluster system.

http://www.cjamee.org 82 c© 2013 CJAMEE All rights reserved.
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2. Problem statement

Technology clusters, such as technology parks, technopoles, scientific and technolog-
ical centers, are very popular, well known and studied in the modern economy. Their
importance in catalyzing innovation activity is undisputable.

Production cluster is a network of enterprises and organizations (including special-
ized service providers, manufacturers and buyers) which are concentrated around a science
and education center, interconnected through mutual cooperation geographically and have
partnership relations with local institutions and governing agencies with the purpose of
stepping up the competitiveness of regions and the national economy.

The features of a production cluster that distinguish it from a technology cluster are
as follows: manufacturing of a ”core” product (the product with the largest share in
the cluster production volume that defines the cluster name); cooperation relations with
competitors (implementation of joint projects around common interests, such as education,
science, marketing); combination of businesses with the completed production cycle (from
raw materials to finished products).

International practice proves the importance of clusters in the develop-
ment of regional and national economies, which is confirmed by the following
conditions.

1. Clusters have positive external impacts. External impacts are due to the effect of
one company’s actions on other companies. The benefits of the cluster are distributed over
all contact areas: new manufacturers from other industries accelerate the development of
the entire group, stimulating the development of research and development; network coop-
eration leads to free information exchange through the channels of suppliers or consumers
that are in contact with many competitors and through rapid spread of innovation; in-
ternal cluster relations create conditions for emerging competition methods that create
conditions for innovation.

2. The cluster form of business organization causes a particular kind of innovation
to emerge — a ”general innovation product”. A cluster based on vertical integration
forms a specific system of dissemination of new knowledge and technologies rather than
a spontaneous concentration of various scientific and technological inventions. Besides,
the most important prerequisite for the efficient transformation of inventions into innova-
tions and competitive advantages of innovations is the creation of a robust communication
network involving all cluster participants. Within the framework of international techno-
logical cooperation, it is particularly important to have ties stimulating the formation of
international clusters. Clusters create conditions for the formation of regional innovation
systems.

3. Being the ”development points” of the domestic market in the economy of the en-
tire country or a region, clusters perform the function of assimilation of the international
market. The presence of clusters in many industries accelerates the process of emer-
gence of competitive factors through joint investment (as part of network cooperation
and public-private partnerships) directed to the development of technology, information,
infrastructure, education.
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4. Major manufacturers of the cluster create demand for specialized material and
technical resources and services. Intra-cluster relations ensure the development of external
sources (”outsourcing”), which accelerates the development of small and medium-sized
businesses in the region by small and medium-sized businesses producing products, jobs
and services for key subjects of the cluster, thereby increasing their competitiveness [2].

5. Competition among cluster manufacturers leads to deeper specialization in the clus-
ter, a search for new fields and cluster expansion, ultimately giving rise to new businesses
that increase the profitability of regional production, solve employment issues and raise
the integration potential.

6. Clusters are one of the institutional forms of ensuring frontier co-operation in trade,
agriculture, tourism, transport and infrastructure; they facilitate economic development
of frontier areas.

7. The development of clusters enhances connections between industries, stimulating
economic growth. Entering foreign markets, competitors inside a cluster develop joint
marketing programs and ensure an increase in export volumes. All of this contributes in
general to socio-economic development and the competitiveness of regions and the national
economy.

3. Methodological aspects of cluster policy formation

Foreign experience demonstrates that countries’ strategies in cluster policy differ de-
pending on national traditions and culture of their strategy engineering process, as well as
on the cluster concept. Analysis of information sources shows that technical and method-
ological framework for cluster policy formulation have not been clearly and unambiguously
studied in science.

The most important methodological document on cluster policy is the European Clus-
ter Memorandum signed by the Member States of the European Union in 2006 [3]. It
defined the essence and importance of clusters in innovation development and identified
the key provisions of cluster policy.

One of the essential methodological issues is the role of government in the formation
of clusters. The following factors can be associated with the state’s growing influence on
clustering processes:

- market weakness, increase in the volume and value of public goods;

- an objective priority of public interest in the context of globalization;

- the need to protect the national economy in the international economic relations;

- the need for institutional regulations in the national and global economy.

Foreign experience demonstrates that the numerous cluster initiatives running in ma-
jor developed countries over the last few years have been brought forward by local or
regional governments. In relatively small developed countries and in a number of develop-
ing countries, the government plays an essential role in the cluster development initiative,
especially when local and regional government agencies cannot partner with the private
sector. A number of decisions on clusters have been adopted at national level in countries
with centralized decision-making process.
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A new era in the development of industry began under the leadership of President
Ilham Aliyev in 2004. During this period, some of the revenues from the oil and gas
sector have been directed to the development of various industries, state programs for the
optimization of the industrial structure in the regions have been developed, substantial
work has been done to address the energy supply problem, the overall infrastructure has
been improved, and numerous projects for the opening of new production facilities have
been implemented. The favorable business environment created in the country and the
important decisions in the field of business regulation played a significant role in the
development of industries. Due to the state support measures in the field of business
development carried out in recent years, the share of the private sector in the GDP in
2015 was 81.2 percent. The number of businesses was 677,000, including 100,000 legal
entities [4].

Since 2012, innovations in the regions have been supported by the state as part of
cluster policy in Azerbaijan. The cluster approach stimulates the growth of territorial and
socio-economic development, competitiveness of industries and the region, labor produc-
tivity, budget revenues, etc.

As a follow-up to the work done, the year 2014 was declared the ”Year of Industry”
in the Republic of Azerbaijan by Decree No. 212 of the President of the Republic of
Azerbaijan dated 10 January 2014, and the plan of industrial development measures was
implemented. Also, the State Program for Industrial Development in the Republic of
Azerbaijan for 2015-2020 was approved by Decree No. 964 of the President of the Republic
of Azerbaijan dated 26 December 2014. The implementation of the planned state policy
has created conditions for the formation of sustainable financial resources in the country
and thereby for the development of all industries. The volume of industry has grown
almost twice over the last ten years, which is mainly due to the non-oil sector.

Under the leadership of the President of the Republic of Azerbaijan Mr. Ilham Aliyev,
complex measures are being implemented to diversify the non-oil sector, to create new pro-
duction areas based on competitive and export-oriented innovations, to intensify economic
activity and to support business activity. The infrastructure required for the efficient busi-
ness activity is being created and preferential treatment is introduced in industrial parks,
which play an important role in the development of industry; the interest of entrepreneurs
in industrial zones is growing. As a result of the implementation of the investment promo-
tion mechanism, investment promotion certificates were issued to 182 projects in a short
time; as a result of their implementation, over 1.6 billion manat will be invested in the
national economy and around 12,000 new jobs will be created. 62% of these projects are
industry-related [5].

With the purpose of supporting the activity of small and medium-sized businesses in
industry and increasing the employment of the population, the head of state signed the
Order on establishing the Hajigabul Industrial Site.

SOCAR Polymer was founded on 16 July 2016 in order to enhance the country’s
chemical industry. The company’s production facilities include two plants, one produc-
ing polypropylene (PP) and the other high-density polyethylene (HDPE). These plants
are currently being constructed in the grounds of the Sumgayit Chemical Industry Park
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(SCIP). The PP and HDPE plants with the capacity of 18,000 and 120,000 t/yr, respec-
tively, will be commissioned in 2018. The reason for founding SOCAR Polymer LLC
is that our country currently exports low-density polyethylene and imports high-density
polyethylene, and the main purpose of the SOCAR Polymer project is to eliminate im-
ports in this field. Along with the domestic market, the products will be exported to the
Turkish and European markets. The work on commissioning the production lines with
annual capacity of 180,000 tons for polypropylene based on the Canadian technology and
120,000 tons for high-density polyethylene based on the Austrian technology has been in
progress since the beginning of 2018. Propylene and ethylene produced by the Azerkimya
Production Association are used as raw material. About 3,000 workers are involved in
the construction of the facility. SOCAR Polymer LLC is negotiating on creating clusters
around these facilities in the future.

Integration of national clusters into the international cluster network for Azerbaijan
enhances the competitiveness of enterprises on international level by increasing the quality
and rate of economic growth, raising the level of the national technological base, and the
performance of advanced management methods.

The search for sources of financing of innovation activities being crucial for the national
economy, the formation and development of clusters can be one of the most effective mech-
anisms for spurring foreign investment, including foreign economic integration processes.

The functioning and development of clusters in the region creates conditions for im-
proving the competitiveness of the business environment through the opportunities of em-
ploying additional kinds of services by establishing mutually beneficial relations between
enterprises and organizations, citing them close to each other, cutting transport costs, sup-
plying new ideas, developing innovative infrastructure, collaborating with organizations
with developed infrastructure and established domestic and foreign relations.

Based on the above, it should be noted that the cluster policy of innovation devel-
opment is the main strategy of regional innovation development in the conditions of the
modernization of the Azerbaijani economy. Cluster, in its turn, is a kind of regional
innovation system that organizes the essential elements, which design, manufacture and
implement innovations.

The global economic crisis has raised the issue of Azerbaijan’s transition to the path
of innovation development to a new level, which, in turn, requires a revision of key sources
of strategic directions of competitively oriented economy. It is necessary to change the
direction of economic development, accelerating economic development, ensuring economic
security and reducing dependence on the world market.

Statistical data analysis shows the presence of a number of problems hindering the
efficient implementation of the innovative potential of Azerbaijan. The results of innovative
development are far from satisfactory. The share of Azerbaijan in the global market of
high technology products is only 0.3%, much smaller than that of developed countries.
The efficiency of the high technology sector in Azerbaijan is very low. Apart from that,
the share of R&D expenditure in the GDP in Azerbaijan is 1.16%, which is due to the fact
that, unlike the Western countries, the main source of funding for science in Azerbaijan is
the state, not the private sector. These figures indicate the weak sensitivity of Azerbaijani
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enterprises to innovation [6].
Thus, we can conclude that the only condition for the integration of the Azerbaijani

economy into the global economic community as an equal participant rather than a pri-
mary producer is to transition the structure of all sectors of the national economy to the
innovative mode involving economical use of raw materials. The first steps have been
taken in this direction; however, it is necessary to speed up these processes to maintain
the existing scientific and educational potential and create a competitive and beneficial
partnership in the field of science.

International practices show that countries with a high innovation potential have an
independent position. Innovation is a driving force of all social development, the source
that boosts economic growth. Building a national innovation system is one of the main
objectives of the Azerbaijani economy.
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1. Introduction

The M -series was introduced by the mathematician M. Sharma [10], and defined as

α

pMq (a1, · · · , ap; b1, · · · ,bq; z) =
α

pMq (z) =
∞∑

k=0

(a1)k· · · (ap)k

(b1)k· · · (bq)k

zk

Γ(α k + 1)
, (1)

where z, α ∈ C,<(α) > 0 and (ai)k , (bj)k (i = 1, · · · , p; j = 1, · · · , q) are the Pochhammer

symbol given by (γ)n = Γ(γ+n)
Γ(γ) .

The series in (1) is convergent for all z if p ≤ q, also if p = q + 1 its convergent
absolutely or conditionally when |z| = 1, and divergent if p > q + 1.

In 2009, the generalization of (1) was introduced and studied by Sharma and Jain [11],
and given as

α,β

M
p,q

(z) =

∞∑
k=0

(a1)k· · · (ap)k

(b1)k· · · (bq)k

zk

Γ(αk + β)
. (2)

The series in (2) is convergent for all z if p ≤ q+<(α), also it is convergent for |z| < δ = αα

if p = q + <(α) and divergent if p > q + <(α).

∗Corresponding author.
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Recently, a new generalization of M -series introduced by Faraj et al. [2] in the following
manner:

α, β

M
p, q; m, n

(a1, · · · , ap; b1, · · · , bq; z) =
α, β

M
p, q; m, n

(z) =
∞∑

k=0

(a1)km · · · (ap)km
(b1)kn · · · (bq)kn

zk

Γ(αk + β)
, (3)

where z, α, β ∈ C,<(α) > 0 and m,n are non–negative real number.

The series in (3) is absolutely convergent for all values of z provided that pm <
qn+ <(α), moreover if pm = qn+ <(α), the series converges for |z| < δ = αα.

For m = n = 1 and m = n = β = 1, equation (3) reduces to generalized M -series
α,β

M
p,q

(z) and M -series
α

pMq (z), respectively (see (1) and (2)).

Further, if we take p = q = 1, equation (3) reduces to generalized Mittag–Leffler
function introduced by Salim and Faraj [4] and given as

α,β

M
1,1 ; m, n

(z) = E
a1, b1,m
α, β, n

(z) =

∞∑
k=0

(a1)km
(b1)kn

zk

Γ(αk + β)
. (4)

The generalized Wright hypergeometric function was introduced by Wright [14] and defined
as

pΨq(z) = pΨq

[
(ai, αi)1, p

(bj, βj)1,q

; z

]
=
∞∑

k=0

p∏
i=1

Γ(ai + αik)

q∏
j=1

Γ(bj + βjk)

zk

k!
, (5)

where z, ai, bj ∈ C and αi, βj ∈ R− {0} (i = 1, · · · , p; j = 1, · · · , q) .
Haubold and Mathai [3] established a fractional differential equation between the rate

of change of reaction, the destruction rate and the production rate as follows:

dN

dt
= −d(Nt) + p(Nt), (6)

where N = N(t) is the rate of reaction, d(Nt) is the rate of destruction, p(Nt) is the rate
of production and Nt denotes the function defined by Nt (t∗) = N (t− t∗) , t∗ > 0.

A special case of (6), when spatial fluctuations or homogeneities in the quantity N(t)
are neglected, is given by the following differential equation:

dNi

dt
= − ci Ni(t) (7)

with the initial condition that Ni (t = 0) = N0 is the number of density of species i at time
t = 0 and constant ci > 0. If we remove the index i and integrate the standard kinetic
equation (7), we have

N(t)−N0 = − c 0D−1
t N(t), (8)

where 0D−1
t is the standard integral operator.
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Houbold and Mathai [3], obtained the fractional generalization of the standard kinetic
equation (7) as

N(t)−N0 = − cν0D−vt N(t), (9)

where 0D−vt is Riemann–Liouville fractional integral operator defined as follows [5]:

0D−vt f(t) =
1

Γ(ν)

∫ t

0
(t− s)ν−1f(s) ds (t > 0, f(ν) > 0). (10)

The solution of equation (8) is given by (See [3])

N(t) = N0

∞∑
k=0

(− 1)k

Γ(ν k + 1)
(ct)νk. (11)

Further, Saxena and Kalla [6] considered the following fractional kinetic equation

N(t)−N0 f(t) = − cν0D−vt N(t), (<(ν) > 0), (12)

where N(t) denotes the number of density of a given species at time t, N0 = N(0) is the
number of density of that species at time t = 0 and c is a constant.

2. Solution of generalized fractional kinetic equations by using the
Laplace transform

In this section, we will establish and derive the solution of the generalized kinetic
equations involving the generalized M -series (3) by applying the Laplace transform.

Laplace transform [12] of the function f(t) is defined as

L {f(t) : s} =

∫ ∞

0
e−stf(t) dt, (< (s) > 0). (13)

and convolution theorem is given by

L {f ∗ g} (s) = L

{∫ t

0
f (t− ξ) g (ξ) dξ

}
= L {f (s)} .L {g (s)} . (14)

Laplace transform of the Riemann–Liouville fractional integral operator given by Erdélyi
et al. [1] as

L
{

0D−v
t N(t) : s

}
= s−ν N(s), (15)

and also

L {N(t) : s} = N(s). (16)

The following Lemmas are required to prove our main results.
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Lemma 1. For <(γ),<(σ),< (s) > 0, the following Laplace transform of generalized M -

series
α,β

M
p,q;m,n

(z) holds true:

L

{
tγ−1

α,β

M
p,q;m,n

(tσ) : s

}
= s−γ

Γ(b1) · · ·Γ(bq)

Γ(a1) · · ·Γ(ap)
p+2Ψq+1

[
(a1,m), · · · , (ap, m), (γ,σ), (1, 1)

(b1, n), · · · , (bq, n), (β, α)
; s−σ

]
, (17)

where p+2Ψq+1(.) is given by (5).

Proof. By taking (3) and (13) into account, we can easily obtain the required result
(17) after a little simplification.

If we take γ = β and σ = α in (17), then a special case of (17) is given by following
lemma.

Lemma 2. For min{< (s) ,<(α),<(β)} > 0, the Laplace transform of (3) is given by

L

{
tβ−1

α,β

M
p,q;m,n

(tα) : s

}
= s−β

Γ(b1) · · ·Γ(bq)

Γ(a1) · · ·Γ(ap)
p+1Ψq

[
(a1,m), · · · , (ap,m), (1, 1)

(b1, n), · · · , (bq, n),
; s−α

]
.

(18)

Theorem 1. Let c, w, ν, γ, σ ∈ R+;α, β, t ∈ C; m, n > 0;< (α) > 0 and pm ≤ qn+<(α).
Then, the solution of the following generalized fractional kinetic equation

N(t)−N0 tγ−1
α,β

M
p,q;m,n

(wtσ) = −cν0D−vt N(t) (19)

is given by

N(t) = N0 t
γ−1 Γ(b1) · · ·Γ(bq)

Γ(a1) · · ·Γ(ap)

∞∑
r=0

(−cvtv)r

× p+2Ψq+2

[
(a1,m), · · · , (ap,m), (γ,σ), (1, 1)

(b1, n), · · · , (bq, n), (β,α), (γ + νr, σ)
;wtσ

]
. (20)

Proof. Applying the Laplace transform on both sides of (19). Using (15) and (16) into
account, we get

L {N(t) : s} −N0 L

{
tγ−1

α,β

M
p,q; m,n

(wtσ) : s

}
= −cv L

{
0D
−ν
t N(t) : s

}
N(s) =

N0

1 +
(
c
s

)νL{tγ−1
α,β

M
p,q;m,n

(wtσ) : s

}
Next, by using (17) and the following binomial series expansion[

1 +
(c
s

)ν]−1
=

∞∑
r=0

(−1)r
(c
s

)vr
(c < |s|),
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we obtain

N(s) = N0

∞∑
r=0

(−1)r
(c
s

)νr ∞∑
k=0

(a1)km · · · (ap)km
(b1)kn · · · (bq)kn

Γ(γ + σk) Γ(k + 1)

Γ(αk + β)

wk

k!

1

sγ+σk

N(s) = N0

∞∑
r=0

(−cv)r
∞∑
k=0

(a1)km · · · (ap)km
(b1)kn · · · (bq)kn

Γ(γ + σk)Γ(k + 1)

Γ(αk + β)

wk

k!

1

sγ+νr+σk
. (21)

Now, taking inverse Laplace transform of (21) and using L−1 { s−ν : t} = tν−1

Γ(ν) , (< (v) > 0)

and L−1 {N(s): t} = N(t), we arrive at

L−1 {N(s) : t} = N0

∞∑
r=0

(−cv)r
∞∑
k=0

(a1)km · · · (ap)km
(b1)kn · · · (bq)kn

×Γ(γ + σk) Γ(k + 1)

Γ(αk + β)

wk

k!
L−1

{
1

sγ+νr+σk
: t

}
or

N(t) = N0

∞∑
r=0

(−cν)r
∞∑
k=0

(a1)km · · · (ap)km
(b1)kn · · · (bq)kn

Γ(γ + σk) Γ(k + 1)

Γ(αk + β)

wk

k!

tγ+νr+σk−1

Γ(γ + νr + σk)

= N0 t
γ−1 Γ(b1) · · ·Γ(bq)

Γ(a1) · · ·Γ(ap)

∞∑
r=0

(− cvtν)r

×
∞∑

k=0

Γ(a1 + mk) · · ·Γ(ap + mk)

Γ(b1 + nk) · · ·Γ(bq + nk)

Γ(γ + σk) Γ(k + 1)

Γ(αk + β) Γ(γ + νr + σk)

(wtσ)k

k!
.

Finally, by using (5), we get the desired result (20).
This complete the proof of Theorem 1.

If we set m = n = 1, then
α,β

M
p,q;m,n

(z) reduces to the generalized M -series
α,β

M
p,q

(z) [11], we

get the generalized fractional kinetic equation with its solution given as follows:

Corollary 1. Let c, w, ν, γ, σ ∈ R+;α, β, t ∈ C; m, n > 0 ; < (α) > 0 andp ≤ q + <(α).
Then, the solution of the equation

N(t)−N0 t
γ−1

α,β

M
p,q

(wtσ) = −cν0D−vt N(t) (22)

is given by

N(t) = N0 t
γ−1 Γ(b1) · · ·Γ(bq)

Γ(a1) · · ·Γ(ap)

∞∑
r=0

(− cvtν)r

× p + 2Ψq+2

[
(a1, l), · · · , (ap, 1), (γ,σ), (1, 1)

(b1, 1), · · · , (bq, 1), (β,α), (γ + νr, σ)
;wtσ

]
. (23)
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If we take β = 1 in (22), the generalized M -series
α,β

M
p,q

(z) reduces to the M -series
α

pMq(z)

[10], we arrive at

Corollary 2. Let c, w, ν, γ, σ ∈ R+;α, t ∈ C; m, n > 0 ; < (α) > 0. Then, the solution
of the equation

N(t) = N0 t
γ−1

α

pMq(wtσ) = −cν0D−vt N(t) (24)

is given by

N(t) = N0 t
γ−1 Γ(b1) · · ·Γ(bq)

Γ(a1) · · ·Γ(ap)

∞∑
r=o

(−cvtv)r

× p+2 Ψq+2

[
(a1, l), · · · , (ap, 1), (γ,σ), (1, 1)

(b1, 1), · · · , (bq, 1), (1, α), (γ + νr, σ)
;wtσ

]
. (25)

Further, if we put p = q = l, then
α,β

M
p,q;m,n

(z) reduces to the generalized Mittag–Leffler

function E
a1, b1,m
α, β, n

(z) [4], we obtain

Corollary 3. Let c, w, ν, γ, σ ∈ R+;α, β, t ∈ C; m, n > 0 ; < (α) > 0 andm ≤ n+<(α).
Then, the solution of the equation

N(t)−N0 t
γ−1E

a1, b1,m
α, β, n

(wtσ) = −cν0D−vt N(t) (26)

is given by

N(t) = N0 t
γ−1 Γ(b1)

Γ(a1)

∞∑
r=0

(−cvtv)r 3Ψ3

[
(a1,m), (γ,σ), (1, 1)

(b1, n), (β, α), (γ + νr, σ)
;wtσ

]
. (27)

Theorem 2. Let c, w, ν ∈ R+;α, β, t ∈ C; m, n > 0;< (α) > 0 and pm ≤ qn + <(α).
Then, the generalized fractional kinetic equation

N(t)−N0 t
β−1

α,β

M
p,q; m,n

(wtα) = −cν0D−vt N(t) (28)

has the solution

N(t) = N0 t
β−1 Γ(b1) · · ·Γ(bq)

Γ(a1) · · ·Γ(ap)

∞∑
r=0

(−cvtv)r

× p+1Ψq+1

[
(a1,m), · · · , (ap,m), (1, 1)

(b1, n), · · · , (bq, n), (β + νr, α)
;wtα

]
. (29)

Proof. The proof of result asserted by Theorem 2 runs parallel to that of Theorem 1.
Here, we make use (18) instead of (17) into account. Therefore, we omit the details of the
proof.

If we put m = n = 1, then
α,β

M
p,q; m,n

(z) reduces to
α,β

M
p,q

(z), we get the following corollary.
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Corollary 4. Let c, w, ν ∈ R+;α, β, t ∈ C; m, n > 0;< (α) > 0 and p ≤ q+<(α). Then,
the equation

N(t)−N0 t
β−1

α,β

M
p,q

(wtα) = −cν0D−vt N(t) (30)

has the solution

N(t) = N0 t
β−1 Γ(b1) · · ·Γ(bq)

Γ(a1) · · ·Γ(ap)

∞∑
r=0

(−cvtv)r

× p+1Ψq+1

[
(a1, 1), · · · , (ap,1), (1, 1)

(b1, 1), · · · , (bq, 1), (β + νr, α)
;wtα

]
. (31)

If we take β = 1 in (30), we have the solution of generalized fractional kinetic equation

involving M -series
α

pMq(z) as follows:

Corollary 5. Let c, w, ν ∈ R+;α, t ∈ C; m, n > 0;< (α) > 0. Then, the equation

N(t)−N0

α

pMq (wtα) = −cν0D−vt N(t) (32)

has the solution

N(t) = N0
Γ(b1) · · ·Γ(bq)

Γ(a1) · · ·Γ(ap)

∞∑
r=0

(−cvtv)r p+1Ψq+1

[
(a1, 1), · · · , (ap,1), (1, 1)

(b1, 1), · · · , (bq, 1), (1 + νr, α)
;wtα

]
.

(33)

Further, if we set p = q = 1 in (28), then
α,β

M
p,q; m,n

(z) reduces to E
a1, b1,m
α, β, n

(z) we have

the following corollary.

Corollary 6. Let c, w, ν ∈ R+;α, β, t ∈ C; m, n > 0;< (α) > 0 and m ≤ n + <(α).
Then, the equation

N(t)−N0 t
β−1 E

a1, b1,m
α, β, n

(wtα) = −cν0D−vt N(t) (34)

has the solution

N(t) = N0 t
β−1 Γ(b1)

Γ(a1)

∞∑
r=0

(−cvtv)r 2Ψ2

[
(a1,m), (1, 1)

(b1, n), (β + νr, α)
;wtα

]
. (35)

3. Solution of generalized fractional kinetic equations by using the
Sumudu transform

In this section, we will discuss the solution of the generalized fractional kinetic equation
(18) and (27) involving the generalized M -series [2] by applying another integral transform
(i.e. Sumudu transform) technique.
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Sumudu transform [13] of the function f(t) is defined as

S {f(t) : u} =

∫ ∞

0
e−tf(ut) dt. (36)

The convolution theorem for Sumudu transform is given by

S{f ∗ g : u} = uS{f : u}S{g : u}. (37)

If we apply (37) then, the Sumudu transform of the Riemann–Liouville fractional integral
operator (10) is given by

S
{

0D
−ν
t f (t) : u

}
= uS

{
tν−1

Γ (ν)

}
S {f (t) : u} (38)

and also
S {N(t) : u} = N(u). (39)

Now, we begin by stating and proving the following Lemmas.

Lemma 3. For min{<(γ),<(σ),< (u)} > 0, the Sumudu transform of the generalized

M -series
α,β

M
p,q; m,n

(z) is given by

S

{
tγ−1

α,β

M
p,q;m,n

(tσ) : u

}
= uγ−1 Γ(b1) · · ·Γ(bq)

Γ(a1) · · ·Γ(ap)
p+2Ψq+1

[
(a1,m), · · · , (ap,m), (γ,σ), (1, 1)

(b1, n), · · · , (bq, n), (β, α)
; uσ

]
. (40)

Proof. By taking (3) and (36) into account, we can easily obtain (40) after a little
simplification.

If we take γ = β and σ = α in (40), then a special case of the above Lemma 3 is given
by

Lemma 4. For min{<(α),<(β),< (u)} > 0, the following Sumuda transform of general-
ized M -series (3) holds true:

S

{
tβ−1

α,β

M
p,q;m,n

(tα) : u

}
= uβ−1 Γ(b1) · · ·Γ(bq)

Γ(a1) · · ·Γ(ap)
p+1Ψq

[
(a1,m), · · · , (ap,m), (1, 1)

(b1, n), · · · , (bq, n),
; uα

]
.

(41)

Discussion I. Let c, w, v, γ, σ ∈ R+ and < (u) > 0 with |u| < c−1(c 6= w). Also
α, β, t ∈ C; m,n > 0 ;<(α) > 0 and pm ≤ qn+<(α). Then, the solution of the generalized
fractional kinetic equation (19) is given by (20).

By taking the Sumudu transform on both side of (19). Using (38) and (39), we have

S {N(t) : u} −N0 S

{
tγ−1

α,β

M
p,q;m,n

(wtσ) : u

}
= −cνS

{
0D−vt N(t) : u

}
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N(u) =
N0

1 + cνuν
S

{
tγ−1

α,β

M
p,q;m,n

(wtσ) : u

}
. Next, by using (39) and the binomial series expansion (1 + cνuν)−1 =

∞∑
r=0

( − 1)r(cu)νr,

we obtain

N(u) = N0

∞∑
r=0

(− 1)r(cu)νr
∞∑
k=0

(a1)km· · · (ap)km

(b1)kn· · · (bq)kn

Γ(γ + σk) Γ(k + 1)

Γ(αk + β)

wk

k!
uγ+σk−1

= N0

∞∑
r=0

(−cν)r
∞∑
k=0

(a1)km· · · (ap)km

(b1)kn· · · (bq)kn

Γ(γ + σk) Γ(k + 1)

Γ(αk + β)

wk

k!
uγ+vr+σk−1. (42)

Now, taking inverse Sumudu transform of (42) and using

S−1
{
uv−1 : t

}
=
tν−1

Γ(ν)
, (min {<(ν),<(u)} > 0)

and S−1 {N(u) : t} = N(t), we get

S−1 {N(u) : t} = N0

∞∑
r=0

(− cν)r
∞∑

k=0

(a1)km· · · (ap)km

(b1)kn· · · (bq)kn

Γ(γ + σk) Γ(k + 1)

Γ(αk + β)

wk

k!

× S−1
{

uγ+νr+σk−1: t
}

or

N(t) = N0

∞∑
r=0

(−cν)r
∞∑
k=0

(a1)km· · · (ap)km

(b1)kn· · · (bq)kn

Γ(γ + σk) Γ(k + 1)

Γ(αk + β)

wk

k!

tγ+νr+σk−1

Γ(γ + νr + σk)
.

Finally, by using (5), we arrive at the desired result (20).

Discussion II. Let c, w, v ∈ R+ and < (u) > 0 with |u| < c−−1(c 6= w). Also
α, β, t ∈ C; m,n > 0 ;<(α) > 0 and pm ≤ qn+<(α). Then, the solution of the generalized
fractional kinetic equation (28) is given by (29).
As in the proof of the Theorem 2, we make use Sumudu transform instead of Laplace
transform into account, then we can obtain desired result (29).

4. Conclusion

In this paper we have introduced a new fractional generalization of the standard ki-
netic equation and derived their solutions in view of generalized M -Series, M -series and
generalized Mittag–Leffler function. We can also obtain the number of special functions
as the special cases of our main results, being of general nature, are shown to be some
unification and extension of many known results given, for example Saxena et al. [7, 8, 9],
Saxena and Kalla [6] etc.
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On an Inverse Boundary Value Problem For a Third
Order Partial Differential Equation With Non-classical
Boundary Conditions

A.I. Ismayilov

Abstract. In this work the inverse boundary value problem with unknown time-dependent co-
efficient for a third-order partial differential equation with non-classical boundary conditions is
studied. The definition of the classical solution of the stated problem is given. The essence of
the problem is that it is required together with the solution to determine an unknown coefficient.
The problem is considered in the rectangular domain. When solving the initial inverse boundary
value problem, the transition from the initial inverse problem to some auxiliary inverse problem is
performed. With the help of contraction mappings, the existence and uniqueness of the solution
of an auxiliary problem are proved. Then the transition to the original inverse problem is made
again, and as a result, a conclusion is made about the solvability of the initial inverse problem.
Key Words and Phrases: inverse problem, third order equations, existence and uniqueness of
a classical solution.

1. Introduction

In the present work, by the inverse problem for partial differential equations we mean
such a problem in which, together with the solution, it is required to determine the right-
hand side or (and) one or another coefficient (coefficients) of the equation itself. Inverse
problems arise in the most diverse areas of human activity, such as seismology, mineral
exploration, biology, medicine, quality control of industrial products, etc., which puts
them in a series of actual problems of modern mathematics. If in the inverse problem the
solution and the right-hand side are unknown, then such as inverse problem will be linear;
if the solution and at least one of the coefficients are unknown, then the inverse problem
will be nonlinear

Various inverse problems for particular types of partial differential equations have been
studied in many papers. We note here, first of all, the works of A.N. Tikhonov [1], M.M.
Lavrent’ev [2,3], V.K. Ivanov [4] and their students. For more details, see the monograph
by A.M. Denisov [5].

The goal of this paper is to prove the existence and uniqueness of the solution of an
inverse boundary value problem for a third order differential equation with nonclassical
boundary conditions.
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2. Statement of the inverse boundary value problem

Consider an inverse boundary value problem for the equation

utt(x, t)− a(t)utxx(x, t) = p(t)u(x, t) + q(t)ut(x, t) + f(x, t) (1)

in the domain DT = {(x, t) : 0 ≤ x ≤ 1, 0 ≤ t ≤ T} with initial conditions

u(x, 0) = ϕ(x) , ut(x, 0) = ψ(x) (0 ≤ x ≤ 1) , (2)

with Dirichlet boundary condition

u(0, t) = 0 (0 ≤ t ≤ T ) , (3)

with non-classical boundary condition

ux(1, t) + duxx(1, t) = 0 ( 0 ≤ t ≤ T ), (4)

and with an additional condition

u(xi, t) = hi(t) (i = 1, 2; 0 < x1, x2 < 1, x1 6= x2, 0 ≤ t ≤ T ), (5)

where d > 0 is a given number, a(t) > 0, f(x, t), ϕ(x), ψ(x), hi(t) (i = 1, 2)-are given
functions, u(x, t), p(t) and q(t) are required functions.

Let us introduce the notation

C̃2,2(DT ) = {u(x, t) : u(x, t) ∈ C2(DT ), utxx(x, t) ∈ C2(DT )} .

Definition 1. Under the classical solution of the inverse problem (1)-(5) we mean the
triple {u(x, t), p(t) , q(t)} of the functions u(x, t), p(t) , q(t), if u(x, t) ∈ C̃2,2(DT ), p(t) ∈
C[0, T ], q(t) ∈ C[0, T ] and relations (1) - (5) are satisfied in the usual sense.

First consider the following spectral problem [6,7] :

y′′(x) + λ y (x) = 0 (0 ≤ x ≤ 1),

y(0) = 0, y′(1) = dλ y (1), d > 0. (6)

This problem has only eigenfunctions yk(x) =
√

2 sin (
√
λkx) , k = 0, 1, 2, ..., with pos-

itive eigenvalues λ k from the equation ctg
√
λ = d

√
λ. The zero index is assigned to any

eigenfunction, and all the others are numbered in ascending order of eigenvalues.
The following theorem is true.

Theorem 1. Let f(x, t) ∈ C(DT ), ϕ(x), ψ(x) ∈ C[0, 1], hi(t) ∈ C2[0, T ] (i = 1, 2) ,
h(t) ≡ h1(t)h′2(t)− h2(t)h′1(t) 6= 0 (0 ≤ t ≤ T ), ϕ′(1) + dϕ′′(1) = 0 ,

ϕ(1) +
1

d sin
√
λ0

∫ 1

0
ϕ(x) sin(

√
λ0x)dx = 0 , (7)
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ψ(1) +
1

d sin
√
λ0

∫ 1

0
ψ(x) sin(

√
λ0x)dx = 0 , (8)

f(1, t) +
1

d sin
√
λ0

∫ 1

0
f(x, t) sin(

√
λ0x)dx = 0 (0 ≤ t ≤ T ), (9)

and the conditions of matching are satisfied

ϕ(xi) = hi(0 ), ψ (xi) = h′i(0) (i = 1, 2) . (10)

Then the problem of finding a classical solution of problem (1) - (5) is equivalent to the
problem of determining the functions u(x, t) ∈ C̃2,2(DT ), p(t) ∈ C[0, T ], q(t) ∈ C[0, T ],
satisfying the equation (1), conditions (2), (3) and the conditions

u(1, t) +
1

d sin
√
λ0

∫ 1

0
u(x, t) sin(

√
λ0x)dx = 0 ( 0 ≤ t ≤ T ), (11)

h′′i (t)− a(t)utxx(xi, t) = p(t)hi(t) + q(t)h′i(t) + f(xi, t) (i = 1, 2; 0 ≤ t ≤ T ). (12)

Proof. Let {u(x, t), p(t) , q(t)} be any solution of problem (1) - (5). Then from equation
(1), with considering (9), we have:[

utt(1, t) +
1

d sin
√
λ0

∫ 1

0
utt(x, t) sin(

√
λ0x)dx

]
−

−a(t)

[
utxx(1, t) +

1

d sin
√
λ0

∫ 1

0
utxx(x, t) sin(

√
λ0x)dx

]
=

= p(t)

[
u(1, t) +

1

d sin
√
λ0

∫ 1

0
u(x, t) sin(

√
λ0x)dx

]
+

+q(t)

[
ut(1, t) +

1

d sin
√
λ0

∫ 1

0
ut(x, t) sin(

√
λ0x)dx

]
(0 ≤ t ≤ T ). (13)

Integrating in parts twice, in view of (3), with the help of easy transformations we
find:

uxx(1, t) +
1

d sin
√
λ0

∫ 1

0
uxx(x, t) sin(

√
λ0x)dx =

1

d
(ux (1, t) + duxx (1, t))−

−λ0
[
u(1, t) +

1

d sin
√
λ0

∫ 1

0
u(x, t) sin(

√
λ0x)dx

]
. (14)

Substituting (14) into (13), we get:[
utt(1, t) +

1

d sin
√
λ0

∫ 1

0
utt(x, t) sin(

√
λ0x)dx

]
− a(t)

[
1

d
(utx (1, t) + dutxx (1, t))

]
=

= p(t)

[
u(1, t) +

1

d sin
√
λ0

∫ 1

0
u(x, t) sin(

√
λ0x)dx

]
+
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+(q(t)− λ0a(t))

[
ut(1, t) +

1

d sin
√
λ0

∫ 1

0
ut(x, t) sin(

√
λ0x)dx

]
(0 ≤ t ≤ T ). (15)

From (15), by virtue of (4), we find:

ω′′(t)− p(t)ω(t)− q (t)− λ0a(t))ω′(t) = 0 (0 ≤ t ≤ T ) , (16)

where

ω (t) ≡ u(1, t) +
1

d sin
√
λ0

∫ 1

0
u(x, t) sin(

√
λ0x)dx (0 ≤ t ≤ T ) . (17)

Further, by virtue of (2) and in view of (7), (8) we find :

ω (0) = ϕ(1) +
1

d sin
√
λ0

∫ 1

0
ϕ(x) sin(

√
λ0x)dx = 0 ,

ω′ (0) = ψ(1) +
1

d sin
√
λ0

∫ 1

0
ψ(x) sin(

√
λ0x)dx = 0 . (18)

It is obvious that the problem (16), (18) has only a trivial solution, i.e. ω(t) = 0 (0 ≤
t ≤ T ). Therefore, it is clear from (17) that condition (11) is also satisfied.

Further, from (5) it is clear that

ut(xi, t) = h′i(t), utt(xi, t) = h′′i (t) (i = 1, 2; 0 ≤ t ≤ T ) . (19)

Supplying x = xi (i = 1, 2) in equation (1), we have

utt(xi , t)−a(t)utxx(xi , t) = p(t)u(xi , t)+q(t)ut(xi , t)+f(xi , t)(i = 1, 2; 0 ≤ t ≤ T ). (20)

From here, taking into account (5) and (19), we arrive at the fulfilment of (12).
Now, suppose that {u(x, t), p(t), q(t)} is a solution to problem (1) - (3), (11), (12), and

the condition of matching (10) is satisfied.
Then from (15), in view of (11) we have:

utx (1, t) + dutxx (1, t) = 0. (21)

By virtue of (2) and ϕ′(1) + dϕ′′(1) = 0 it is obvious that

ux (1, 0) + duxx (1, 0) = ϕ′(1) + dϕ′′(1) = 0. (22)

From (21) and (22) we arrive at the fulfilment of (4).
Further, from (12) and (20) we obtain:

d2

dt2
(u(xi, t)− hi(t))− q(t)

d

dt
(u(xi, t)− hi(t))

−p(t)(u(xi, t)− hi(t)) = 0 (i = 1, 2; 0 ≤ t ≤ T ). (23)

By virtue of (2) and condition of matching (10), we have:

u(xi, 0)− hi(0) = ϕ(xi)− hi(0 ) = 0,

ut(xi, 0)− h′i(0) = ψ (xi)− h′i(0) = 0 (i = 1, 2). (24)

From (23) and (24) we conclude that condition (5) is satisfied. The theorem is proved.
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3. Auxiliary facts

Solving the homogeneous problem corresponding to problem (1) - (3), (11), (12), by
the method of separation of variables we arrive at the spectral problem

y′′(x) + λ y(x) = 0 ( 0 ≤ x ≤ 1),

y(0) = 0 , y(1) +
1

d sin
√
λ0

∫ 1

0
y(x) sin(

√
λ0x)dx = 0. (25)

It is known [6] that the spectral problem (25) is equivalent to the spectral problem (6)
without an eigenfunction corresponding to an eigenvalue λ0. Consequently, the spectral
problem (25) has only eigenfunctions yk(x) =

√
2 sin (

√
λkx) , k = 1, 2, ... with positive

eigenvalues λ k, defined from the equation ctg
√
λ = d

√
λ, numbered in increasing order.

Consequently, the spectral problem (25) has only eigenfunctions yk(x) =
√

2 sin (
√
λkx) ,

k = 1, 2, ... with positive eigenvalues λ k, determined from the equation ctg
√
λ = d

√
λ,

numbered in increasing order.
The following statements were formulated and substantiated in [6,7].

Lemma 1. Starting from some number N , the estimate

0 <
√
λk − πk < (dπk)−1 . (26)

Corollary 1. Let vk(x) =
√

2 sin(
√
µkx), where

√
µk = πk, k = 1, 2, 3, .... Then the

following inequalities are true

∞∑
k=N

‖yk(x)− vk(x)‖2L2(0,1)
≤ 1/(9d2). (27)

Lemma 2. Biorthogonally conjugated system {zk(x)} to the system {yk(x)}, k = 1, 2, 3, ...,
is determined by the formula

zk(x) =
√

2(sin(
√
λkx)− sin

√
λk(sin

√
λ0x)/(sin

√
λ0))/(1 + d sin2

√
λk). (28)

Theorem 2. Systems {yk(x)}, k = 1, 2, ..., form a Riesz basis for L2(0, 1).

Now, let ηk(x) =
√

2 cos(
√
λkx), ξk(x) =

√
2 cos(

√
µkx), k = 1, 2, 3, .... Then, simi-

larly to (27), the inequalities

∞∑
k=N

‖ηk(x)− ξk(x)‖2L2(0,1)
≤ 1/(9d2), (29)

are true. Suppose that g(x) ∈ L2(0, 1). Then, in view of (27), we obtain( ∞∑
k=1

(∫ 1

0
g(x)yk(x)dx

)2
)1/2

≤M ‖g(x)‖L2(0,1)
, (30)
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where

M =

[
N∑
k=1

∫ 1

0
y2k(x)dx+ 2/

(
9d2
)

+ 2

]1/2
. (31)

Similar to (30), taking into account (29), we find:( ∞∑
k=1

(∫ 1

0
g(x)ηk(x)dx

)2
)1/2

≤M ‖g(x)‖L2(0,1)
. (32)

Since the functions {yk(x)}, k = 1, 2, 3, ..., form a Riesz basis for space L2(0, 1), then
it is known that for any function g(x) ∈ L2(0, 1) the equality

g(x) =

∞∑
k=1

gkyk(x), (33)

is true, where

gk =

∫ 1

0
g(x)zk(x)dx (k = 1, 2, ....).

Further, it is not difficult to see that

gk =

√
2

αk

[∫ 1

0
g(x) sin (

√
λkx)dx− cos

√
λk

d
√
λk sin

√
λ0

∫ 1

0
g(x) sin

√
λ0xdx

]
, (34)

where

αk = 1 + d sin2
√
λk > 1.

Hence, in view of (30) we have:( ∞∑
k=1

g2k

)1/2

≤M0 ‖g(x)‖L2(0,1)
, (35)

where

M0 =

M +
1

d
∣∣sin√λ0∣∣

( ∞∑
k=1

1

λk

)1/2
 √2. (36)

Assume that g(x) ∈ C[0, 1], g′(x) ∈ L2(0, 1), g(0) = 0 and

J(g) ≡ g(1) +
1

d sin
√
λ0

∫ 1

0
g(x) sin(

√
λ0x)dx = 0.

Then from (34) we have:

gk =

√
2

αk

1√
λk

∫ 1

0
g′(x) cos

(√
λkx

)
dx. (37)
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Hence, in view of (29) we obtain:( ∞∑
k=1

(
√
λk |gk| )2

)1/2

≤M
∥∥g′(x)

∥∥
L2(0,1)

. (38)

Let g(x) ∈ C1[0, 1], g′′(x) ∈ L2(0, 1), g(0) = 0 and J(g) = 0. Then from (37) we
obtain:

gk = −
√

2

αk

[
1

λk

∫ 1

0
g′′(x) sin(

√
λkx)dx− cos

√
λk

dλk
√
λk
g′ (1)

]
. (39)

Hence, we get: ( ∞∑
k=1

(λk |gk| )2
)1/2

≤ m
∣∣g′(0)

∣∣+
√

2M
∥∥g′′(x)

∥∥
L2(0,1)

, (40)

where m =
√
2
d

(∑∞
k=1

1
λk

)1/2
.

Now, suppose that g(x) ∈ C2[0, 1], g′′′(x) ∈ L2(0, 1), g(0) = 0, J(g) = 0, g′′(0) = 0
and dg′′(1) + g′(1) = 0 . Then from (39) we have:

gk = −
√

2

αk

1

λk
√
λk

∫ 1

0
g′′′(x) cos(

√
λkx)dx.

Hence, in view of (29) we have :( ∞∑
k=1

(λk
√
λk |gk| )2

)1/2

≤M
∥∥g′′′(x)

∥∥
L2(0,1)

. (41)

1. Denote by B
3
2
, 3
2

2,T [8 ], the set of all functions u(x, t) of the form

u(x, t) =
∞∑
k=1

uk(t)yk(x) ,

considering in DT , where each of the functions uk(t) is continuously differentiable on [0, T ]
and

I(u) ≡

{ ∞∑
k=1

(λk
√
λk ‖uk(t)‖C[0,T ])

2

} 1
2

+

{ ∞∑
k=1

(λk
√
λk
∥∥u′k(t)∥∥C[0,T ]

)2

} 1
2

< +∞.

The norm on this set is defined as: ‖u(x, t)‖
B

3
2 ,

3
2

2,T

= I(u).

2. By E
3
2
, 3
2

T denote the space consisting of the topological product B
3
2
, 3
2

2,T × C[0, T ] ×
C[0, T ] . Norm of the element z = {u, p, q} is defined by the formula

‖z‖
E

3
2 ,

3
2

T

= ‖u(x, t)‖
B

3
2 ,

3
2

2,T

+ ‖p(t)‖C[0,T ] + ‖q(t)‖C[0,T ] .

It is known that B
3
2
, 3
2

2,T and E
3
2
, 3
2

T are Banach spaces.
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4. Solvability of an inverse boundary value problem

Taking into account Lemma 2 and Theorem 2, the first component u(x, t) of the
solution {u(x, t), p(t), q(t)} of the problem (1) - (3), (11), (12) we will be sought in the
form:

u(x, t) =

∞∑
k=1

uk(t)yk(x) , (42)

where

uk(t) =

∫ 1

0
u(x, t)zk(x)dx (k = 1, 2, ...).

We apply the method of separation of variables to determine the desired functions
uk(t) (k = 1, 2, ...; ). Then from (1) and (2) we have:

u′′k(t) + λka(t)u′k(t) = Fk(t;u, p, q) (k = 1, 2, ...; 0 ≤ t ≤ T ), (43)

uk(0) = ϕk, u
′
k(0) = ψk (k = 1, 2, ...), (44)

where

Fk(t;u, p, q) = fk(t) + p(t)uk(t) + q(t)u′k(t), fk(t) =

∫ 1

0
f(x, t)zk(x)dx,

ϕk =

∫ 1

0
ϕ(x)zk(x)dx, ψk =

∫ 1

0
ψ(x)zk(x)dx (k = 1, 2, ...).

Solving problem (43), (44), we find:

uk(t) = ϕk + ψk

∫ t

0
e−λk

∫ τ
0 a(s)dsdτ +

∫ t

0
Fk(τ ;u, p, q)

(∫ t

τ
e−λk

∫ ζ
τ a(s)dsdξ

)
dτ. (45)

Differentiating twice (45) we get:

u′k(t) = ψke
−λk

∫ t
0 a(s)ds +

∫ t

0
Fk(τ ;u, p, q)e−λk

∫ t
τ a(s)dsdτ (k = 1, 2, ...), (46)

u′′k(t) = −λka(t)ψke
−λk

∫ t
0 a(s)ds−

−λka(t)

∫ t

0
Fk(τ ;u, p, q)e−λk

∫ t
τ a(s)dsdτ + Fk(t;u, p, q)(k = 1, 2, ...). (47)

After substituting the expression uk(t) (k = 1, 2, . . .) from (45) into (42), we have:

u(x, t) =

∞∑
k=1

{
ϕk + ψk

∫ t

0
e−λk

∫ τ
0 a(s)dsdτ+

+

∫ t

0
Fk(τ ;u, p, q)

(∫ t

τ
e−λk

∫ ζ
τ a(s)dsdξ

)
dτ

}
yk(x) . (48)
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Now from (12), in view of (42), we get:

p(t) = [h(t)]−1 {h′2(t) (h′′1(t)− f(x1, t))− h′1(t) (h′′2(t)− f(x2, t))−

−a(t)
∞∑
k=1

λku
′
k(t)(h

′
2(t)yk(x1)− h′1(t)yk(x2))

}
, (49)

q(t) = [h(t)]−1 {h1(t) (h′′2(t)− f(x2, t))− h2(t)(h′′1(t)− f(x1, t))−

−a(t)
∞∑
k=1

λku
′
k(t)(h1(t)yk(x2)− h2(t)yk(x1))

}
, (50)

where
h(t) ≡ h1(t)h′2(t)− h2(t)h′1(t) 6= 0 (0 ≤ t ≤ T ).

In order to obtain the equation for the second and third components p(t), q(t) of the
solution {u(x, t), p(t), q(t)} of the problem (1)-(3), (11), (12) we substitute the expression
u′k(t) from (46) into (49), (50) respectively, we have:

p(t) = [h(t)]−1 {h′2(t) (h′′1(t)− f(x1, t))− h′1(t) (h′′2(t)− f(x2, t))−

−a(t)

∞∑
k=1

λk(h
′
2(t)yk(x1)− h′1(t)yk(x2))×

×
(
ψke

−λk
∫ t
0 a(s)ds +

∫ t

0
Fk(τ ;u, p, q)e−λk

∫ t
τ a(s)dsdτ

)}
, (51)

q(t) = [h(t)]−1 {h1(t) (h′′2(t)− f(x2, t))− h2(t)(h′′1(t)− f(x1, t))−

−a(t)

∞∑
k=1

λk (h1(t)yk(x2)− h2(t)yk(x1))×

×
(
ψke

−λk
∫ t
0 a(s)ds +

∫ t

0
Fk(τ ;u, p, q)e−λk

∫ t
τ a(s)dsdτ

)}
, (52)

Thus, the solution of problem (1)-(3), (11), (12) was reduced to the solution of system
(48), (51), (52) with respect to unknown functions, u(x, t),p(t) and q(t).

To study the question of the uniqueness of the solution of problem (1) - (3), (11), (12),
the following lemma plays an important role.

Lemma 3. If {u(x, t), p(t), q(t)} is any solution of the problem (1)-(3), (11), (12), then
the functions

uk(t) =

∫ 1

0
u(x, t)zk(x)dx(k = 1, 2, ...)

satisfy on [0, T ] the system (45).

Lemma 3 implies that the following holds.
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Corollary 2. Let system (48), (51), (52) have a unique solution. Then the problem (1)-
(3), (11), (12) cannot have more than one solution, i.e. if problem (1)-(3), (11), (12) has
a solution, then it is unique.

Now consider the operator in space E
3
2
, 3
2

T

Φ(u, p, q) = {Φ1(u, p, q),Φ2(u, p, q) , Φ3(u, p, q)} ,

where

Φ1(u, p, q) = ũ(x, t) ≡
∞∑
k=0

ũk(t)Xk(x),Φ2(u, p, q) = p̃(t), Φ3(u, p, q) = q̃(t),

and ũk(t) (k = 1, 2, ...), p̃(t) and q̃(t) are equal, respectively, right sides (45), (51) and
(52).

Using easy transformations, we find that inequalities( ∞∑
k=1

(
λk
√
λk ‖ũk(t)‖C[0,T ]

)2) 1
2

≤
√

5

( ∞∑
k=1

(
λk
√
λk |ϕk|

)2) 1
2

+

+
√

5T

( ∞∑
k=1

(
λk
√
λk |ψk|

)2) 1
2

+
√

5T

√T (∫ T

0

∞∑
k=1

(
λk
√
λk |fk(τ)|

)2
dτ

) 1
2

+

+T ‖p(t)‖C[0,T ]

( ∞∑
k=1

(
λk
√
λk ‖uk(t)‖C[0,T ]

)2) 1
2

+

+ T ‖q(t)‖C[0,T ]

( ∞∑
k=1

(
λk
√
λk
∥∥u′k(t)∥∥C[0,T ]

)2) 1
2

 , (53)

( ∞∑
k=1

(
λk
√
λk
∥∥ũ′k(t)∥∥C[0,T ]

)2) 1
2

≤ 2

( ∞∑
k=1

(
λk
√
λk |ψk|

)2) 1
2

+

+2T

√T (∫ T

0

∞∑
k=1

(
λk
√
λk |fk(τ)|

)2
dτ

) 1
2

+

+T ‖p(t)‖C[0,T ]

( ∞∑
k=1

(
λk
√
λk ‖uk(t)‖C[0,T ]

)2) 1
2

+

+ T ‖q(t)‖C[0,T ]

( ∞∑
k=1

(
λk
√
λk
∥∥u′k(t)∥∥C[0,T ]

)2) 1
2

 , (54)
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‖p̃(t)‖C[0,T ] ≤
∥∥∥[h(t)]−1

∥∥∥
C[0,T ]

×

×{
∥∥h′2(t) (h′′1(t)− f(x1, t))− h′1(t) (h′′2(t)− f(x2, t))

∥∥
C[0,T ]

+

+
√

2

( ∞∑
k=1

λ−1k

) 1
2 ∥∥a(t)(

∣∣h′1(t)∣∣+
∣∣h′2(t))∣∣∥∥C[0,T ]

( ∞∑
k=1

(
λk
√
λk |ψk|

)2) 1
2

+

+
√
T

(∫ T

0

∞∑
k=1

(
λk
√
λk |fk(τ)|

)2
dτ

) 1
2

+

+T ‖p(t)‖C[0,T ]

( ∞∑
k=1

(
λk
√
λk ‖uk(t)‖C[0,T ]

)2) 1
2

+

+ T ‖q(t)‖C[0,T ]

( ∞∑
k=1

(
λk
√
λk
∥∥u′k(t)∥∥C[0,T ]

)2) 1
2

  , (55)

‖q̃(t)‖C[0,T ] ≤
∥∥∥[h(t)]−1

∥∥∥
C[0,T ]

×

×{
∥∥h1(t) (h′′2(t)− f(x2, t))− h2(t)(h′′1(t)− f(x1, t))

∥∥
C[0,T ]

+

+
√

2

( ∞∑
k=1

λ−1k

) 1
2

‖a(t)(|h1(t)|+ |h2(t))|‖C[0,T ]

( ∞∑
k=1

(
λk
√
λk |ψk|

)2) 1
2

+

+
√
T

(∫ T

0

∞∑
k=1

(
λk
√
λk |fk(τ)|

)2
dτ

) 1
2

+

+T ‖p(t)‖C[0,T ]

( ∞∑
k=1

(
λk
√
λk ‖uk(t)‖C[0,T ]

)2) 1
2

+

+ T ‖q(t)‖C[0,T ]

( ∞∑
k=1

(
λk
√
λk
∥∥u′k(t)∥∥C[0,T ]

)2) 1
2

  , (56)

are true. Suppose that the data of the problem (1) - (3), (11), (12) satisfy the following
conditions:

1) ϕ(x) ∈ C2 [0, 1] , ϕ′′′(x) ∈ L2(0, 1), ϕ(0) = 0 , J(ϕ) = 0 , ϕ′′(0) = 0 ,

dϕ′′(1) + ϕ′(1) = 0 .

2) ψ(x) ∈ C2 [0, 1] , ψ′′(x) ∈ L2(0, 1), ψ(0) = 0 , J(ψ) = 0 , ψ′′(0) = 0 ,

dψ′′(1) + ψ′(1) = 0 .
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3) f(x, t), fx(x, t), fxx(x, t) ∈ C(DT ), fxxx(x, t) ∈ L2(DT ), f (0, t) = 0, J (f) = 0,
fxx(0, t) = 0,

dfxx(1, t) + fx(1, t) = 0 (0 ≤ t ≤ T ) .

4) 0 < a(t) ∈ C[0, T ], hi(t) ∈ C1[0, T ] (i = 1, 2),

h(t) ≡ h1(t)h′2(t)− h2(t)h′1(t) 6= 0 (0 ≤ t ≤ T ).

Then from (53) - (56), in view of (41), respectively, we obtain:

‖ũ(x, t)‖
B

3
2 ,

3
2

2,T

≤ A1(T ) +B1(T )(‖p(t)‖C[0,T ] + ‖q(t)‖C[0,T ]) ‖u(x, t)‖
B

3
2 ,

3
2

2,T

, (57)

‖p̃(t)‖C[0,T ] ≤ A2(T ) +B2(T )(‖p(t)‖C[0,T ] + ‖q(t)‖C[0,T ]) ‖u(x, t)‖
B

3
2 ,

3
2

2,T

, (58)

‖q̃(t)‖C[0,T ] ≤ A3(T ) +B3(T )(‖p(t)‖C[0,T ] + ‖q(t)‖C[0,T ]) ‖u(x, t)‖
B

3
2 ,

3
2

2,T

, (59)

where
A1(T ) =

√
5M

∥∥ϕ′′′(x)
∥∥
L2(0,1)

+ (
√

5T + 2)M
∥∥ϕ′′′(x)

∥∥
L2(0,1)

+

+(
√

5T + 2)
√
TM ‖fxxx(x, t)‖L2(DT )

, B1 (T ) = (
√

5T + 2)T,

A2(T ) =
∥∥∥[h(t)]−1

∥∥∥
C[0,T ]

×

×{
∥∥h′2(t) (h′′1(t)− f(x1, t))− h′1(t) (h′′2(t)− f(x2, t))

∥∥
C[0,T ]

+

+
√

2

( ∞∑
k=1

λ−1k

) 1
2 ∥∥a(t)(

∣∣h′1(t)∣∣+
∣∣h′2(t))∣∣∥∥C[0,T ]

[
M
∥∥ψ′′′(x)

∥∥
L2(0,1)

+

+
√
TM ‖fxxx(x, t)‖L2(DT )

] }
,

B2(T ) =
√

2
∥∥h−1(t)∥∥

C[0,T ]
T

( ∞∑
k=1

λ−1k

) 1
2 ∥∥a(t)(

∣∣h′1(t)∣∣+
∣∣h′2(t))∣∣∥∥C[0,T ]

,

A3(T ) =
∥∥∥[h(t)]−1

∥∥∥
C[0,T ]

×

×
{∥∥h1(t) (f(x2, t)− a1(t)h′2(t)

)
− h2(t)

(
f(x1, t)− a1(t)h′1(t)

)∥∥
C[0,T ]

+

+
√

2

( ∞∑
k=1

λ−1k

) 1
2 ∥∥a(t)(|h1(t)|+

∣∣h′2(t))∣∣∥∥C[0,T ]

[
M
∥∥ψ′′′(x)

∥∥
L2(0,1)

+

+
√
TM ‖fxxx(x, t)‖L2(DT )

] }
,

B3(T ) =
√

2
∥∥h−1(t)∥∥

C[0,T ]
T

( ∞∑
k=1

λ−1k

) 1
2 ∥∥a(t)(

∣∣h′1(t)∣∣+
∣∣h′2(t))∣∣∥∥C[0,T ]

.
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From inequalities (57) - (59) we conclude:

‖ũ(x, t)‖
B

3
2 ,

3
2

2,T

+ ‖p̃(t)‖C[0,T ] + ‖q̃(t)‖C[0,T ] ≤

≤ A(T ) +B(T )(‖p(t)‖C[0,T ] + ‖q(t)‖C[0,T ]) ‖u(x, t)‖
B

3
2 ,

3
2

2,T

, (60)

where

A(T ) = A1(T ) +A2(T ) +A3(T ), B(T ) = B1(T ) +B2(T ) +B3(T ).

So, we can prove the following theorem:

Theorem 3. Let the conditions 1)- 4 ) be fulfilled and

B(T )(A(T ) + 2)2 < 1. (61)

Then the problem (1)-(3), (11), (12) has the only solution in a ball K = KR(‖z‖
E

3
2 ,

3
2

T

≤

R = A(T ) + 2) from space E
3
2
, 3
2

T .

Proof. In space E
3
2
, 3
2

T we consider the equation

z = Φz, (62)

where z = {u, p, q}, components Φi(u, p, p )(i = 1, 2, 3) of operator Φ(u, p, q) are defined
by the right-hand sides of equations (48), (51), (52), respectively.

Consider the operator Φ(u, p, q) in the ball K = KR(‖z‖
E

3
2 ,

3
2

T

≤ R = A(T ) + 2) from

E
3
2
, 3
2

T . Similarly to (60), we obtain that for any z, z1, z2 ∈ KR valid the following estimates:

‖Φz‖
E

3
2 ,

3
2

T

≤ A(T ) +B(T )(‖p(t)‖C[0,T ] + ‖q(t)‖C[0,T ]) ‖u(x, t)‖
B

3
2 ,

3
2

2,T

≤

≤ A(T ) +B(T )(A(T ) + 2)2 , (63)

‖Φz1 − Φz2‖
E

3
2 ,

3
2

T

≤ B(T )R
(
‖p1(t)− p2(t)‖C[0,T ] +

+ ‖q1(t)− q2(t)‖C[0,T ] + ‖u1(x, t)− u2(x, t)‖
B

3
2 ,

3
2

2,T

)
. (64)

Then, from estimates (63) and (64), taking into account (61), it follows that the
operator Φ acts in a ball K = KR and is contractive. Therefore, in the ball K = KR,
the operator Φ has a unique fixed point {u, p, q}, which is the unique solution of equation
(62), i.e. is the unique solution of the system (48), (51), (52) in the ball K = KR.

The function u(x, t), as an element of space B
3
2
, 3
2

2,T , is continuous and has continuous
derivatives ux(x, t), uxx(x, t), utx(x, t), utxx(x, t) in DT .
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From (43), by virtue of (38), it is not difficult to see that( ∞∑
k=1

(
√
λk
∥∥u′′k(t)∥∥C[0,T ]

)2

) 1
2

≤
√

2 ‖a(t)‖C[0,T ]


( ∞∑
k=1

(λk
√
λk
∥∥u′k(t)∥∥C[0,T ]

)2

) 1
2

+

+M
∥∥∥‖fx(x, t) + p(t)ux(x, t) + p(t)utx(x, t)‖C[0,T ]

∥∥∥
L2(0,1)

}
.

It follows that utt(x, t) is continuous in DT .
It is easy to verify that equation (1) and conditions (2), (3), (11) and (12) are satisfied

in the usual sense. Consequently, {u(x, t), p(t), q(t)} is the solution of the problem (1) -
(3), (11), (12). By virtue of Corollary 2 of Lemma 3, it is unique in the ball K = KR.
The theorem is proved.

Using Theorem 1, we prove the following

Theorem 4. Let all the conditions of Theorem 3 be satisfied and the conditions of match-
ing

ϕ(xi) = hi(0 ), ψ (xi) = h′i(0) (i = 1, 2) .

Then problem (1) - (5) has a unique classical solution in ball K = KR(‖z‖
E

3
2 ,

3
2

T

≤ R =

A(T ) + 2) of space E
3
2
, 3
2

T .
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Abstract. In this paper we obtain the asymptotics of eigenvalues and eigenfunctions of one spec-
tral problem for a discontinuous second-order differential operator with a spectral parameter in
discontinuity conditions which arises by solving the problem on vibrations of a loaded string with
fixed ends.
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1. Introduction

Consider the following boundary value problem

−y′′ + q (x) y = λy , x ∈
(

0,
1

3

)⋃(
1

3
, 1

)
, (1)

y(0) = y(1) = 0,
y(−1

3) = y(+1
3),

y′(−1
3)− y′(+1

3) = λmy(13),

 (2)

which arises by solving the problem on vibrations of a loaded string with the fixed ends[1-3].
In the case when a load is placed in the middle of the string, this problem was investigated
in[4,5]. Similar questions for the problem on vibrations of a loaded string when the load
is fixed in one or two ends of a string, are investigated by [8-11].

For the case q (x) ≡ 0 the asymptotics of eigenvalues and eigenfunctions, also the basis
properties of eigenfunctions were investigated completely in [7].

http://www.cjamee.org 114 c© 2013 CJAMEE All rights reserved.
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2. The asymptotic of eigenvalues and eigenfunctions

We denote λ = ρ2, Imρ = τ . Suppose that q (x) is a complex valued summable
function on (−1, 1). Denote by y1 (x, λ) the solution of (1) satisfying the initial conditions

y1 (0) = 0,

y1
′
(0) = ρ,

}
(3)

and by y2 (x, λ) the solution of (1) satisfying the initial conditions

y2 (1) = 0,

y2
′
(1) = −ρ.

}
(4)

Lemma 1. The following integral representations hold:

y1(x, λ) = sin ρx+
1

ρ

∫ x

0
sin ρ (x− t) q (t) y1 (t, λ) dt, 0 < x <

1

3
, (5)

y′1(x, λ) = ρ cos ρx+

∫ x

0
cos ρ (x− t) q (t) y1 (t, λ) dt, 0 < x <

1

3
, (6)

y2(x, λ) = sin ρ (1− x) +
1

ρ

∫ 1

x
sin ρ (t− x) q (t) y2 (t, λ) dt,

1

3
< x < 1, (7)

y′2(x, λ) = −ρ cos ρ (1− x)−
∫ 1

x
cos ρ (t− x) q (t) y2 (t, λ) dt,

1

3
< x < 1. (8)

Proof. Since y1(x, λ) satisfies (1), then∫ x

0
sin ρ (x− t) q (t) y1 (t) dt =

∫ x

0
sin ρ (x− t) y1

′′
(t, λ) dt+ρ2

∫ x

0
sin ρ (x− t) y1 (t, λ) dt.

Integrating by part the first integral in the right-hand side of the last equation twice
and taking into account (3), we find∫ x

0
sin ρ (x− t) q (t) y1 (t) dt = −ρ sin ρx+ ρy1 (x, λ) ,

i.e. the equality (5).
The equality (6) is obtained by differentiating the equality (5).
The equalities (7) and (8) are obtained similarly.

Lemma 2. The following asymptotic formulas hold when ρ→∞

y1(x, λ) = O
(
e|τ |x

)
, (9)

y2(x, λ) = O
(
e|τ |(1−x)

)
, (10)
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more precisely

y1(x, λ) = sin ρx+O

(
e|τ |x

|ρ|

)
, (11)

y2(x, λ) = sin ρ (1− x) +O

(
e|τ |(1−x)

|ρ|

)
. (12)

All estimates are satisfied uniformly on x for y1(x, λ) when 0 ≤ x ≤ 1
3 and for y2(x, λ)

when 1
3 ≤ x ≤ 1.

The proof repeats that lemma in [6] word for word.
Denote

q1 (x) =
1

2

∫ x

0
q (t) dt,

q2 (x) =
1

2

∫ 1

x
q (t) dt.

Theorem 1. The spectrum of problem (1)-(2) consists of three sequences λi,n = ρ2i,n, i =
1, 2, 3; n = 1, 2, ..., of asymptotically simple eigenvalues:

ρ1,n = 3πn+ α1
n + o

(
1
n

)
ρ2,n = 3πn+ α2

n + o
(
1
n

)
ρ3,n = 3πn+ 3π

2 + α3
n + o

(
1
n

)
,

where αi, i = 1, 2, 3 are different numbers expressed by the values of the functions q1 (x)
and q2 (x) at the point 1

3 .

Proof. Substitute asymptotics for y1(x) from (11) in the right-hand side of (5):

y1 (x) = sin ρx+
1

ρ

∫ x

0
sin ρ (x− t) q (t)

[
sin ρt+O

(
e|τ |

ρ

)]
dt =

= sin ρx+
1

ρ

∫ x

0
sin ρ (x− t) sin ρt · q (t) dt+

+
1

ρ2

∫ x

0
sin ρ (x− t) q (t)O

(
e|τ |t

)
dt =

= sin ρx+
1

2ρ

∫ x

0
[cos ρ (x− 2t)− cos ρx] q (t) dt+

+
1

ρ2

∫ x

0
sin ρ (x− t) q (t)O

(
e|τ |t

)
=

= sin ρx+
1

2ρ

∫ x

0
cos ρ (x− 2t) q (t) dt− cos ρx

2ρ

∫ x

0
q (t) dt+
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+
1

ρ2

∫ x

0
sin ρ (x− t) q (t)O

(
e|τ |t

)
dt =

= sin ρx+
1

2ρ

∫ x

0
cos ρ (x− 2t) q (t) dt−

−1

ρ
cos ρx

(
1

2

∫ x

0
q (t) dt

)
+

+ +
e|τ |x

ρ2

∫ x

0

sin ρ (x− t)
e|τ |(x−t)

dt.

Hence,

y1 (x) = sin ρx− 1

ρ
q1 (x) cos ρx+

1

2ρ

∫ x

0
cos ρ (x− 2t) q (t) dt+O

(
e|τ |x

|ρ|2

)
(13)

Substitute asymptotics for y1 (x) from (11) in the right-hand side of (6):

y′1 (x) = ρ cos ρx+

∫ x

0
cos ρ (x− t) q (t) y1 (t, λ) dt =

= ρ cos ρx+

∫ x

0
cos ρ (x− t)

[
sin ρt+O

(
e|τ |t

|ρ|

)]
q (t) dt =

= ρ cos ρx+
1

2

∫ x

0
[sin ρx+ sin ρ (2t− x)] q (t) dt+

+

∫ x

0
cos ρ (x− t)O

(
e|τ |t

|ρ|

)
q (t) dt = ρ cos ρx+

+ +
1

2

∫ x

0
sin ρxq (t) dt+

1

2

∫ x

0
sin ρ (2t− x) q (t) dt+

+

∫ x

0
cos ρ (x− t)O

(
e|τ |t

|ρ|

)
dt = ρ cos ρx+ q1 (x) sin ρx+

+
1

2

∫ x

0
sin ρ (2t− x) q (t) dt+

e|τ |x

|ρ|

∫ x

0

cos ρ (x− t)
e|τ |(x−t)

O (1) q (t) dt

= ρ cos ρx+ q1 (x) sin ρx+
1

2

∫ x

0
sin ρ (2t− x) q (t) dt+

+O

(
e|τ |x

|ρ|

)
.

Hence,

y′1 (x) = ρ cos ρx+ q1 (x) sin ρx+
1

2

∫ x

0
sin ρ (2t− x) q (t) dt+O

(
e|τ |x

|ρ|

)
(14)
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The following asymptotic equalities are obtained analogously:

y2 (x) = sin ρ (1− x)− 1
ρq2 (x) cos ρ (1− x) +

+ 1
2ρ

∫ 1
x cos ρ (2t− x− 1) q (t) dt+O

(
e|τ |(1−x)

|ρ|2

) (15)

and
y′2 (x) = −ρ cos ρ (1− x)− q2 (x) sin ρ (1− x)−
−1

2

∫ 1
x q (t) sin ρ (1 + x− 2t) dt+O

(
e|τ |(1−x)

|ρ|

)
.

(16)

Obviously, for any λ 6= 0 the solution y (x, λ) of the problem (1)-(2) have to be in the
form

y (x) =

{
C1y1 (x) , for 0 < x < 1

3 ,
C2y2 (x) , for 1

3 < x < 1,

here C1 and C2 are complex numbers. λ 6= 0 is an eigenvalue of the problem (1)-(2) if and
only if

C1 and C2 are nontrivial solutions of following homogeneous system of linear equations:

C1

(
sin 1

3ρ−
1
ρq1
(
1
3

)
cos 1

3ρ+ 1
2ρ

∫ x
0 cos ρ

(
1
3 − 2t

)
q (t) dt+O

(
e
1
3 |τ |

|ρ|2

))
−

−C2

(
sin 2

3ρ−
1
ρq2
(
1
3

)
cos 2

3ρ+ 1
2ρ

∫ 1
1
3

cos
(
2t− 4

3

)
q (t) dt+O

(
e
2
3 |τ |

|ρ|2

))
= 0

C1

(
ρ cos 1

3ρ+ q1
(
1
3

)
sin 1

3ρ+ 1
2

∫ 1
3
0 sin ρ

(
2t− 1

3

)
q (t) dt+O

(
e
1
3 |τ |

|ρ|

))
−

−C2

(
−ρ cos 2

3ρ− q2
(
1
3

)
sin 2

3ρ−
1
2

∫ 1
1
3
q (t) sin

(
4
3 − 2t

)
dt+O

(
e
2
3 |τ |

|ρ|

))
=

= C1ρ
2m

(
sin 1

3ρ−
q1( 1

3)
ρ cos 1

3ρ+ 1
2ρ

∫ 1
3
0 cos ρ

(
1
3 − 2t

)
q (t) dt+O

(
e
1
3 |τ |

|ρ|2

))
To define eigenvalues we obtain following equation

∆ (λ) =

∣∣∣∣ a11 (ρ) a12 (ρ)
a21 (ρ) a22 (ρ)

∣∣∣∣ = 0,

here

a11 (ρ) = sin 1
3ρ−

1
ρq1
(
1
3

)
cos 1

3ρ+ 1
2ρ

∫ 1
3
0 cos ρ

(
1
3 − 2t

)
q (t) dt+O

(
e
1
3 |τ |

|ρ|2

)
a12 (ρ) = − sin 2

3ρ+ 1
ρq2
(
1
3

)
cos 2

3ρ−
1
2ρ

∫ 1
1
3

cos ρ
(
2t− 4

3

)
q (t) dt−O

(
e
2
3 |τ |

|ρ|2

)
a21 (ρ) =

(
ρ cos 1

3ρ− ρ
2m sin 1

3ρ
)

+
(
q1
(
1
3

)
sin 1

3ρ+ ρmq1
(
1
3

)
cos 1

3ρ
)

+

+

(
1
2

∫ 1
3
0 sin ρ

(
2t− 1

3

)
q (t) dt− ρm

2

∫ 1
3
0 cos ρ

(
1
3 − 2t

)
q (t) dt

)
+O

(
e

1
3
|τ |
)

a22 (ρ) = ρ cos 2
3ρ+ q2

(
1
3

)
sin 2

3ρ+ 1
2

∫ 1
1
3
q (t) sin

(
4
3 − 2t

)
dt−O

(
e
2
3 |τ |

|ρ|

)
Using that, for any complex number z .

|sin z| ≤ e|Imz|
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and
|cos z| ≤ e|Imz|,

we can write ∣∣cos ρ
(
1
3 − 2t

)∣∣ ≤ e 1
3
|τ |, for 0 ≤ t ≤ 1

3 ,∣∣cos ρ
(
2t− 4

3

)∣∣ ≤ e 4
3
|τ |, for 1

3 ≤ t ≤ 1,∣∣sin ρ (2t− 1
3

)∣∣ ≤ e 1
3
|τ |, for 0 ≤ t ≤ 1

3 ,∣∣sin ρ (43 − 2t
)∣∣ ≤ e 4

3
|τ |, for 1

3 ≤ t ≤ 1.

Taking into account the last inequalities, for |ρ| → ∞ we obtain:∫ 1
3
0 q (t) cos ρ

(
1
3 − 2t

)
dt = O

(
e

1 |τ |
)
,∫ 1

1
3
q (t) cos ρ

(
2t− 4

3

)
dt = O

(
e

4
3
|τ |
)
,∫ 1

3
0 q (t) sin ρ

(
2t− 1

3

)
dt = O

(
e

1
3
|τ |
)
,∫ 1

1
3
q (t) sin

(
4
3 − 2t

)
dt = O

(
e

4
3
|τ |
)
.

From the last asymptotic formulas we obtain that ∆ (λ) can be written as the form:

∆ (λ) =

∣∣∣∣ sin 1
3ρ − sin 2

3ρ
ρ cos 1

3ρ− ρ
2m sin 1

3ρ ρ cos 2
3ρ

∣∣∣∣+
+

∣∣∣∣ sin 1
3ρ

1
ρq2
(
1
3

)
cos 2

3ρ

ρ cos 1
3ρ− ρ

2m sin 1
3ρ q2

(
1
3

)
sin 2

3ρ

∣∣∣∣+
+

∣∣∣∣∣ sin 1
3ρ − 1

2ρ

∫ 1
1
3
q (t) cos ρ

(
2t− 4

3

)
dt

ρ cos 1
3ρ− ρ

2m sin 1
3ρ

1
2

∫ 1
1
3
q (t) sin

(
4
3 − 2t

)
dt

∣∣∣∣∣+
+

∣∣∣∣∣∣∣∣
sin 1

3ρ −O
(
e
2
3 |τ |

|ρ|2

)
ρ cos 1

3ρ− ρ
2m sin 1

3ρ O

(
e
2
3 |τ |

|ρ|

)
∣∣∣∣∣∣∣∣+

+

∣∣∣∣∣ − q1( 1
3)
ρ cos 1

3ρ − sin 2
3ρ

q1
(
1
3

)
sin 1

3 + ρmq1
(
1
3

)
cos 1

3ρ ρ cos 2
3ρ

∣∣∣∣∣+
+

∣∣∣∣∣ − q1( 1
3)
ρ cos 1

3ρ
1
ρq2
(
1
3

)
cos 2

3ρ

q1
(
1
3

)
sin 1

3 + ρmq1
(
1
3

)
cos 1

3ρ q2
(
1
3

)
sin 2

3ρ

∣∣∣∣∣+
+

∣∣∣∣∣∣ − q1( 1
3)
ρ cos 1

3ρ − 1
2ρ

∫ 1
1
3
q (t) cos ρ

(
2t− 4

3

)
dt

q1
(
1
3

)
sin 1

3 + ρmq1
(
1
3

)
cos 1

3ρ
1
2

∫ 1
1
3
q (t) sin

(
4
3 − 2t

)
dt

∣∣∣∣∣∣+

+

∣∣∣∣∣∣∣∣
− q1( 1

3)
ρ cos 1

3ρ −O
(
e
2
3 |τ |

|ρ|2

)
q1
(
1
3

)
sin 1

3 + ρmq1
(
1
3

)
cos 1

3ρ O

(
e
2
3 |τ |

|ρ|

)
∣∣∣∣∣∣∣∣+
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+

∣∣∣∣∣∣
1
2ρ

∫ 1
3
0 q (t) cos ρ

(
1
3 − 2t

)
dt − sin 2

3ρ

1
2

∫ 1
3
1

0 q (t) sin ρ
(
2t− 1

3

)
dt− ρm

2

∫ 1
3
0 q (t) cos ρ

(
1
3 − 2t

)
dt ρ cos 2

3ρ

∣∣∣∣∣∣+
+

∣∣∣∣∣∣
1
2ρ

∫ 1
3
0 q (t) cos ρ

(
1
3 − 2t

)
dt 1

ρq2
(
1
3

)
cos 2

3ρ

1
2

∫ 1
3
1

0 q (t) sin ρ
(
2t− 1

3

)
dt− ρm

2

∫ 1
3
0 q (t) cos ρ

(
1
3 − 2t

)
dt q2

(
1
3

)
sin 2

3ρ

∣∣∣∣∣∣+
+

∣∣∣∣∣∣∣
O

(
e
1
3 |τ |

|ρ|2

)
− sin 2

3ρ

O
(
e

1
3
|τ |
)

ρ cos 2
3ρ

∣∣∣∣∣∣∣+O

(
e|τ |

|ρ|

)

Opening all determinants in the last equality, we obtain the following for the function
∆ (λ):

∆ (λ) = cos3
1

3
ρ
(
2ρ2m− 4q2 − 4q1 − 2mq1q2

)
+

+ sin3 1

3

(
−4ρ− 2ρmq2 − 2ρmq1 +

4

ρ
q1q2

)
+

+ sin
1

3
ρ

(
3ρ+ ρmq2 + 2ρmq1 −

3

ρ
q1q2

)
+

+ cos 1
3ρ
(
−2ρ2m+ 3q2 + 3q1 +mq1q2

)
+ sin 1

3ρ×

×


1
2

∫ 1
1
3
q (t) sin

(
4
3 − 2t

)
dt− ρm

2

∫ 1
1
3
q (t) cos ρ

(
2t− 4

3

)
dt+O

(
e
2
3 |τ |

|ρ|

)
−

−mO
(
e

2
3
|τ |
)

+ 1
2ρq1

∫ 1
1
3
q (t) cos ρ

(
2t− 4

3

)
dt+ q1O

(
e
2
3 |τ |

|ρ|2

)
+

+ cos
1

3
ρ


1
2

∫ 1
1
3
q (t) cos ρ

(
2t− 4

3

)
dt+O

(
e
2
3 |τ |

|ρ|

)
− 1

2ρq1
∫ 1

1
3
q (t) sin ρ

(
4
3 − 2t

)
dt+

+m
2 q1

∫ 1
1
3
q (t) cos ρ

(
2t− 4

3

)
dt− q1O

(
e
2
3 |τ |

|ρ|2

)
+mq1O

(
e
2
3 |τ |

|ρ|

)
+

+ sin
1

3
ρ cos

1

3
ρ

 ∫ 1
3
0 q (t) sin ρ

(
2t− 1

3

)
dt− ρm

∫ 1
3
0 q (t) cos ρ

(
1
3 − 2t

)
dt+

+1
ρq2
(
1
3

) ∫ 1
3
0 q (t) cos ρ

(
1
3 − 2t

)
dt

+

+ cos
2

3
ρ

 1
2

∫ 1
3
0 q (t) cos ρ

(
1
3 − 2t

)
dt− 1

2ρq2
(
1
3

) ∫ 1
3
0 q (t) sin ρ

(
2t− 1

3

)
dt+

+m
2 q2

(
1
3

) ∫ 1
3
0 q (t) cos ρ

(
1
3 − 2t

)
dt+O

(
e
2
3 |τ |

|ρ|

) +

+O

(
e|τ |

|ρ|

)
. (17)

Circle the points ρ̃k = 3πk, k = 1, 2, . by the circles with radius π
4 . Out of these circles

the inequality

|δ (ρ)| ≥ C |ρ|2 e2|τ |
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holds for the function

δ (ρ) = ρ sin
ρ

3

(
−ρm sin

2ρ

3
+ 2 cos

2ρ

3
+ 1

)
here C > 0is a constant. Since modules of remained summands of the right-hand side of
equality(17) don’t exceed A |ρ| e2|τ | (here A > 0 is a constant), then by Rouchet theorem
for sufficiently large k function ∆ (λ) possesses exactly three zeroes multiplicity taking
into account in |Imρ| ≤ h, here h is a positive constant.

Since, all zeroes of ∆
(
ρ2
)

belong to strip |Imρ| ≤ h in a sequel assume that ρ runs only
in this strip. Under this assumptation the following asymptotic equalities are true for
|ρ| → +∞ :

O
(
e|τ |

ρ

)
= O

(
e
2
3 |τ |

ρ

)
= O

(
e
2
3 |τ |

ρ

)
= O

(
1,
ρ

)
O

(
e
2
3 |τ |

ρ2

)
= O

(
1
ρ2

)
,

O
(
e|τ |
)

= O (1)

 (18)

In the other hand, in the strip |Imρ| ≤ h

∫ 1
3
0 q (t) cos ρ

(
1
3 − 2t

)
dt =

=
∫ 1

1
3
q (t) cos ρ

(
2t− 4

3

)
dt =∫ 1

3
0 q (t) sin ρ

(
2t− 1

3

)
dt =∫ 1

1
3
q (t) sin

(
4
3 − 2t

)
dt = o (1)

(19)

for |ρ| → +∞.

Theorem is proved.

Now lets pass to study the asymptotic behavior of eigenfunctions of the problem (1)-(2).

Theorem 2. Let the function q (x) satisfies the conditions of the Theorem 1. Then the
eigenfunctions y1,n (x) corresponding to eigenvalues λ1,n = (ρ1,n)2 , the eigenfunctions
y2,n (x)corresponding to eigenvalues λ2,n = (ρ2,n)2 and the eigenfunctions y3,n (x) corre-
sponding to eigenvalues λ3,n = (ρ3,n)2 satisfies the following asymptotic equalities:

y1,n (x) =

{
sin 3πnx+O

(
1
n

)
, x ∈

[
0, 13
]
,

γ1,n sin 3πnx+O
(
1
n

)
, x ∈

[
1
3 , 1
]
,

y2,n (x) =

{
sin 3πnx+O

(
1
n

)
, x ∈

[
0, 13
]
,

γ2,n sin 3πnx+O
(
1
n

)
, x ∈

[
1
3 , 1
]
,

y3,n (x) =

{
O
(
1
n

)
, x ∈

[
0, 13
]
,

m cos 3π(n+ 1
2)x+O

(
1
n

)
, x ∈

[
1
3 , 1
]
.
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Proof. From the asymptotic equalities obtained for ρ1,n,ρ2,n and ρ3,n and asymptotic
expression for A22 (ρ) for the sufficiently large n we have

a22 (ρ1,n) 6= 0, a22 (ρ2,n) 6= 0 and a22 (ρ3,n) 6= 0.

Hence, for the sufficiently large n the eigenfunction of the problem (1)-(2) corresponding
to eigenvalue λ1,n = (ρ1,n)2 will be

y1,n (x) =

{
1

ρ1,n
a22 (ρ1,n) y1 (x, λ1,n) , for x ∈

[
0, 13
]
,

− 1
ρ1,n

a21 (ρ1,n) y2 (x, λ1,n) , for x ∈
[
1
3 , 1
]
,

and the eigenfunction corresponding to eigenvalue λ2,n = (ρ2,n)2 and λ3,n = (ρ3,n)2 will
be

y2,n (x) =

{
1

ρ2,n
a22 (ρ2,n) y1 (x, λ2,n) , for x ∈

[
0, 13
]
,

− 1
ρ2,n

a21 (ρ2,n) y2 (x, λ2n) , for x ∈
[
1
3 , 1
]
,

y3,n (x) =

{
1
ρ3n

a22 (ρ3,n) y1 (x, λ3,n) , for x ∈
[
0, 13
]
,

− 1
ρ3,n

a21 (ρ3,n) y2 (x, λ3n) , for x ∈
[
1
3 , 1
]
.

Let x ∈
[
0, 13
]
. Since,

cos z = 1 +O
(
z2
)
, z → 0,

sin z = z +O
(
z3 = O (z)

)
, z → 0.

.

Then we have:
1

ρ1,n
a22 (ρ1,n) = cos 2

3

(
3πn+ α1

n + o
(
1
n

))
+

+O
(
1
n

)
= cos

(
2πn+ 2α1

3n + o
(
1
n

))
+O

(
1
n

)
=

= 1 +O
(
1
n

)
y1 (x, λ) = sin ρ1,nx+O

(
1

n

)
,

sin ρ1,nx = sin
(
3πn+ α1

n + o
(
1
n

))
x =

= sin
(
3πnx+O

(
1
n

))
= sin 3πnx+O

(
1
n

)
,

− 1

ρ1,n
a21 (ρ1,n) = − cos

1

3
ρ1,n + ρ1,nm sin

1

3
ρ1n−

−mq1 cos
1

3
ρ1,n + o (1) = −

(
1 +mq1

(
1

3

))
×

× cos
1

3

(
3πn+

α1

n
+ o

(
1

n

))
+

+m

(
3πn+

α1

n
+ o

(
1

n

))
sin

1

3

(
3πn+

α1

n
+ o

(
1

n

))
+ o (1) =

= −
(

1 +mq1

(
1

3

))
cos

(
πn+

α1

3n
+ o

(
1

n

))
+
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+m

(
3πn+

α1

n
+ o

(
1

n

))
sin

(
πn+

α1

3n
+ o

(
1

n

))
=

= (−1)n+1m

(
3πn+

α1

n
+ o

(
1

n

))(
α1

n
+ o

(
1

n
+O

(
1

n3

)))
+ o (1) =

= (−1)n+1

(
1 +mq1

(
1

3

)
−mα1π

)
+ o (1) .

By the same way as for y1 (x, λ1,n) we can prove, that
y2 (x, λ1,n) = (−1)n+1 sin 3πnx+O

(
1
n

)
y2 (x, λ1,n) = (−1)n+1 sin 3πnx+O

(
1
n

)
.

Finally for x ∈
[
1
3 , 1
]

we have

y1,n (x) = γ1,n sin 3πnx+O

(
1

n

)
,

here

γ1,n =

(
1 +mq1

(
1

3

)
−mα1π

)
+ o (1) .

The following asymptotic equality for the eigenfunction y2,n (x) proves analogously:

y2,n (x) =

{
sin 3πnx+O

(
1
n

)
, x ∈

[
0, 13
]
,

γ2,n sin 3πnx+O
(
1
n

)
, x ∈

[
1
3 , 1
]
,

here

γ2,n = 1 +mq1

(
1

3

)
−mα2π + o (1) .

Now we derive formulae for y3,n (x). At first let x ∈
[
0, 13
]
. In this case we obtain

1

ρ23,n
a22 (ρ3,n) =

1

3π
(
n+ 1

2

)
+O

(
1
n

)×
× cos

2

3

(
3π

(
n+

1

2

)
+
α3

n
+ o

(
1

n

))
+O

(
1

n

)
= O

(
1

n

)
Consequently, for x ∈

[
0, 13
]

we obtain

y3n (x) = O

(
1

n

)
.

Now let x ∈
[
1
3 , 1
]
. In this case we obtain

− 1

ρ23,n
a21 (ρ1,n) = − 1

ρ3,n
cos

1

3
ρ3,n+

+m sin
1

3
ρ3,n −

q1
ρ3,n

sin
1

3
ρ3,n−
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−mq1
ρ23,n

cos
1

3
ρ3,n + o (1) =

= m sin

(
πn+

π

2
+O

(
1

n

))
+O

(
1

n

)
=

= −m cos

(
πn+O

(
1

n

))
+O

(
1

n

)
= m (−1)n+1 +O

(
1

n

)
.

sin ρ3n(1− x) = sin
(
3π
(
n+ 1

2

)
+O

(
1
n

))
(1− x) =

= (−1)n+1 cos
(
3π
(
n+ 1

2

))
x+O

(
1
n

)
.

Consequently, for x ∈
[
1
3 , 1
]
we obtain

y3,n (x) =

(
m (−1)n+1 +O

(
1

n

))
·
(

(−1)n+1 cos

(
3π

(
n+

1

2

)
x+O

(
1

n

)))
=

= m cos 3π

(
n+

1

2

)
x+O

(
1

n

)
.

Thus,

y3,n (x) =

{
O
(
1
n

)
, x ∈

[
0, 13
]
,

m cos 3π
(
n+ 1

2

)
x+O

(
1
n

)
, x ∈

[
1
3 , 1
]
.

Theorem is proved.
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Mathematical Approaches to Ground Objects Classifica-
tion According to Satellite Data

Z.C. Zabidov

Abstract. In modern times, many international organizations have been developing research
methods for remote diagnostic of ground objects. Over the last 15-20 years, despite the wide-scale
development of computer programs that allow space designs to be of qualitatively new materials
(up to 0.5 m accuracy) and to process cosmic images, the problem of using satellite imagery for
ground objects classification has not been solved practically.
Comparative mathematical approaches to solving the land classification of satellite data, and com-
parative mathematical approaches to solution are given. Satisfaction with the application of satel-
lite classification according to the satellite data of the classification and recognition methods.

Key Words and Phrases: satellite data, classification, metric distance, cluster algorithms.
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1. Introduction

Rapid development of computer science and the broad range of software systems (e.g.
Matlab, Mathematics, Mapple, etc.) have enabled the satellite data to be used for different
authentication and recognition issues, or stimulates the accuracy of solving algorithms.
The accuracy of the problem solved depends on many factors. Let’s note some of them.

1) The mathematical specificity of the problem, in other words, the mathematical
model’s realistic relevance, so certain assumptions (restrictions) are taken for the model’s
probability, which in turn creates possible errors;

2) Mathematical problems typically have inverse issues in nature, and these issues are
non-corrupt;

3) The solution of the problem is based on statistical data, the prices of these data are
coincidental and vary depending on many factors; Statistical data is insufficient;

4) Based on the solution of the problem, the division of the classroom is broken and the
classification criteria are different, and finally the solution depends on the chosen method;
and so on.

In general, the task of recognition is as follows. The most common definition of a
class is the following: a class is a collection (family) of objects that have some common

http://www.cjamee.org 3 c© 2013 CJAMEE All rights reserved.
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properties. Information about the properties of an object can be obtained by observations,
measurements, assessments, etc. and represented by a set of features, the values of which
are expressed in numerical scales. Objects belonging to the same class are considered
indistinguishable (equivalent), and each class of objects is characterized by a certain quality
that distinguishes it from other classes. Together, all classes must constitute the initial
set of objects [1].

Spectral images of objects on the earth’s surface are non-stationary, as they depend on
many factors, such as topography, soil type, climate, geographical location. To increase
the reliability of decisions, it is necessary to use a priori information about the geometry
of the survey, on the one hand, and the contextual information of the images themselves
- on the other.

For this reason, the application of new approaches and the comparative analysis of the
obtained results with known outcomes are of great importance both from the theoretical
and the point of view.

2. Methodical basis and calculation methodology

The offered work is devoted to the classification of ground objects (e.g. of soil types,
of aerosol-gas compounds) according to satellite data. The issue is as follows.

The classification of objects of the given area D is known in the coordinates (points)
{Pi : i = 1,m} ⊂ D. Let us point the known classification of objects, in other words,
objects classes with {Mk : k = 1, r} : Mi ∩ Mj = ∅, i 6= j. Thus for ∀i ∈ 1 : m =
{1; 2; ...;m}, ∃k (i) ∈ 1 : r

Pi ⊂Mk(i),

it is true. In addition, at each P ∈ D point the values of Wλk (P ) , k = 1, χ- satellite data
are known in the wave lengths {λk : k = 1, χ}. The problem is to find the class Mk, of
∀P ∈ D point, in other words, to find ∃k (p) ∈ 1 : r number for ∀P ∈ D, so that P ∈Mk(p)

is true.

First of all, it should be noted that, according to satellite data, the issue of ground
objects classification has particular peculiarities. Thus, the variability of ground objects
cover (eg: vegetation - natural or artificial, snow cover, other artificial covers, etc.) causes
the variability of satellite data (at the same time). This, in turn, contributes to the
distortion of the result. Thus, according to the satellite data, the reflection of object cover
is first identified, and in the next step it is necessary to analyze the relationship between
the value of reflection and object classification.

Now let’s look to the problem solving algorithm.

Let’s define the following set of indexes.

Ik = {i ∈ 1 : m/Pi ∈Mk} , k = 1, r.

It is obvious that,

Ii
⋂
Ij = ∅, i 6= j
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is true. The accuracy of the solution depends, of course, on the fact that the measurement
data, i.e. enough statistical data.

Another peculiarity of the problem is that statistics are not usually sufficient (e.g. in
large areas or in inaccessible areas). In this case, there is a need for new and deeper
analysis methods to increase accuracy.

Each P ∈ D point corresponds to the vector P (ω;W1; ...;Wκ) where ω is the ground
class of point P , where Wk, k = 1, κ - is satellite datas. In case of solving the problem,
each vector (W1; ...;Wκ) corresponds to a class. Let’s point this argument with π, i.e.
π (W1; ...;Wκ) = ω. Thus, the mathematical implication of the problem consists in the
construction of π : Rκ →

{
Mk : k = 1, r

}
. The values of the π judgment are sets, i.e.

clusters. In general, the problem does not have this kind of single solution. Since the
solution process is based on statistical data, the value of π is a coincidental number, for

each
−→
W = (W1; ...;Wκ) vector π

(−→
W
)

is a random quantity, i.e. π
(−→
W
)
∈ Mk, k = 1, r

occurs in a probability:
r∑

k=1

Pk

(−→
W
)

= 1.

Another approach to the study of π (•) is the application of phases theory methods.

In this case, the value of π
(−→
W
)

can belong to each Mk class by defining an affiliation

function. We will use Appendix I and II for the determination of π (•) in this case.

I. In this case, it is assumed that the classes are separated by satellite data, otherwise,
there is no single solution to the problem. The center of each class is found by:

−→
W

(k)
0 =

1

|Ik|
∑
i∈Ik

−→
Wi, k ∈ 1 : κ

here |Ik| - the number of elements in Ik.

Should be find Rk > 0 radius, that ORk

(−→
W

(k)
0

)
(
−→
W

(k)
0 center, Rk radius) balls

ORi

(−→
W

(i)
0

)⋂
ORj

(−→
W

(j)
0

)
= ∅, i 6= j

satisfy the condition and Mk ⊂ min
Rk>0

ORk

(−→
W

(k)
0

)
.

For random
−→
W ∈ Rκ (∀P

(
ω;
−→
W
)
∈ D point) if there is ∃k0 ∈ 1 : κ,

−→
W ∈ ORk0

(−→
W

(k0)
0

)
then the corresponding point belongs to the class Mk0 . Otherwise there is a need for
further analysis. For example

k0 = min
1≤k≤κ

∣∣∣−→W −−→W0
(k)
∣∣∣ (1)
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can be taken to p ∈ Mk0 . In the case of (1), if k0 is uniquely determined value, there is
still need for additional analysis.

The closeness of the point or the given
−→
W vector to any Mk class can be defined as a

mean distance from this vector to the Mk class vectors, i.e.,

ρ
(−→
W ;Mk

)
=

1

|Ik|
∑
i∈Ik

∥∥∥−→W −−→Wi

∥∥∥ .
Then

−→
W ∈Mk0 , where

k0 = min
k∈1:κ

ρ
(−→
W ;Mk

)
, (2)

can be accepted. There is a need for further analysis of the case (2), which is uniquely in
relation to k0 number.

II. In this approach, the probability of the point belonging to a particular class can be
determined by the degree of closeness to that class compared to all classes. Obviously, the
closer the point to the class, the greater the probability of belonging to that class. Thus,

the probability that the
−→
W vector belongs to the Mk class (Pk):

Pk =
1

r − 1

1−
ρ
(−→
W ;Mk

)
∑

i∈1:r ρ
(−→
W ;Mi

)
 , k ∈ 1 : r, (3)

can be calculated by formula. According to logic, if the
−→
W vector coincides with an element

of any class, then the probability that this element belongs to that class must be ”1”. But
according to the formula (3) it is not correct. Nevertheless, in the considered assumptions
the probability of being the smallest distance from the point to its class and ultimately
related to the class is greater.

Note that in the formulas (2) and (3), the probability of the distance is, for example,

the dispersion of the difference of Mk with the
−→
W vector and so oncan be taken. In general,

the distance is

ρ̃
(−→
W ;Mk

)
=

1

|Ik|

∑
i∈Ik

αk

∥∥∥−→W −−→Wi

∥∥∥ρ
1/ρ

,

where
∑

αk≥0 αk = 1 - weight coefficients, p ∈ [1; +∞) - numbers.

At the beginning of the article, the broad possibilities of various software systems (eg
Matlab, Mathematics, Mapple, etc.) were noted for the possibility of using satellite data
in different identification and recognition issues. On our part, the possibilities of applying
the automatic classification of ground object class for satellite data of the classification
and recognition methods included in the Matlab software system were investigated. The
pdist, the linkage, and the cluster included in the MATLAB packet programs were used
to perform calculations [2].
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3. The results of calculations

In the present study [4], the remote sensing data shown in his / her scientific work is
used. [4] uses a description of the September 13, 2006, satellite of Quickbird American
satellite, located in Canibek, a geographical area of 49.35-49.43 ◦ and a geographical
latitude of 46.75-46.84 .The images were taken by blue, green, red and NIR spectral
bands. The coverage area is 65 km 2. Surface measurements cover the years 2002-2009
and have been implemented by the author of the thesis. The total area of the survey is
50.6 km2, of which 16.1 km2 is the stationary.

As a result of the research, the author carried out the classification of the land at the
271 surface measurement point. It has been shown that there are mixed soil at 101 surface
measurement points and no soil type has been identified at these measuring points. Land
types have been identified at 172 surface measurement points. Land at the measurement
points - A (black earth); B (chestnut soil), C (deserted salt); D (salty) soil types. At the

point P (ω;W1; ...;Wκ), the set of values ω is {A, B, C, D}. Here, the elements of the
−→
W

vector are the indicator of the spectral reflection of the soil at the measuring point and the
numerical values mentioned in the spectral channels (blue, green, red and NIR interval,
MDVI Index). The number of points that the investigator points to different types of soil
is given below.

IA = 23, IB = 45, IC = 56, ID = 45.

In the present case, using the metric distances and classification methods, the classifica-
tion of the above described lands is carried out. The pdist, the linkage, and the cluster
included in the MATLAB packet programs were used to perform calculations [2]. The
number of points to different types was calculated using the possible variants of the met-
ric distance and the classification algorithms. The metric distance used and the name of
the classification algorithms and the results obtained are given in Table 2.

Table 2. Number of points on different types of soil
(according to the selected metric distance and classification algorithms)

The used metric distance and
cluster algorithms

IA IB IC ID

Euclidean distance and ”near-
est neighbor” algorithm

1 158 1 12

Euclidean distance and
”remote neighborhood” algo-
rithm

72 45 12 43

Euclidean distance and
”medium” algorithm

37 112 11 12

Euclidean distance and
”centralization” algorithm

55 49 12 56

Euclidean distance and
”step-by-step” algorithm

37 106 17 12
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Table 2 continuation

The used metric distance
and cluster algorithms

IA IB IC ID

Normalized Euclidean dis-
tance and ”nearest neigh-
bor” algorithm

1 158 1 12

Normalized Euclidean dis-
tance and ”remote neigh-
borhood” algorithm

2 92 12 66

Normalized Euclidean dis-
tance and
”medium” algorithm

39 107 14 12

Normalized Euclidean dis-
tance and
”centralization” algorithm

19 76 12 65

Normalized Euclidean dis-
tance and
”step-by-step” algorithm

38 108 14 12

Distance from the city
neighbourhood and ”near-
est neighbour” algorithm

1 168 2 1

Distance from city neigh-
bourhood and ”remote
neighbour” algorithm

38 86 39 9

Distance from city neigh-
nourhood and ”mid-
contact” algorithm

5 140 14 13

Distance from city neigh-
nourhood and the ”central-
ization” algorithm

9 108 13 42

Distance from city neigh-
nourhood and ”step-by-
step” algorithm

2 154 3 13
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Table 2 continuation

The used metric distance
and cluster algorithms

IA IB IC ID

Mahalanobis distance and
”nearest neighbor” algo-
rithm

1 158 1 12

Mahalanobis distance and
”remote neighbor” algo-
rithm

72 45 12 43

Mahalanobis distance
and the ”mid-contact”
algorithm

37 112 11 12

Mahalanobis distance and
the ”centralization” algo-
rithm

55 49 12 56

Mahalanobis distance and
”step-by-step” algorithm

37 106 17 12

Distance in Minkowski
metric and ”nearest neigh-
bor” algorithm

1 158 1 12

Distance in Minkowski
metric and ”remote neigh-
bor” algorithm

12 16 23 121

Distance in Minkowski
metric and the ”mid-
contact” algorithm

35 114 11 12

Distance in Minkowski
metric and the ”centraliza-
tion” algorithm

55 48 12 57

Distance in Minkowski
metric and
”step-by-step” algorithm

37 112 11 12

It appears from the table that the results obtained from the classifications and methods
used in calculations are not consistent with the type of soil types taken by the author of
the case.

4. Conclusion

According to satellite data, classification of ground object classification is mathemati-
cally correct and there are different mathematical approaches to the solution. The use of
standard clustering methods is not satisfactory for the classification of soil according to
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satellite data. The solution of the problem necessitates the application of non-standard
approaches and the comparative analysis of the obtained results with known outcomes.
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1. Introduction

As is known (see [1]), the boundary value problems for vector Laplace equations are
reduced to a singular integral equation which depends on the derivative of simple layer
logarithmic potential

V (x) =

∫
L

−−−→
gradxΦ(x, y) ρ(y)dLy, x = (x1, x2) ∈ L, (1)

where L ⊂ R2 is a simple closed Lyapunov curve with the index 0 < α ≤ 1, ρ(y) is
a continuous function on the curve L, Φ(x, y) is a fundamental solution of the Laplace
equation ∆u = 0, i.e.

Φ(x, y) =
1

2π
ln

1

|x− y|
, x, y ∈ R2, x 6= y,

and ∆ is a Laplace operator.
Counterexamples provided by Lyapunov show (see [2]) that the derivatives for the

simple and double layer potentials with continuous density do not exist in general. It
should be noted that in [3], the boundedness of the operator generated by the direct
value of the derivative of simple layer acoustic potential was proved in generalized Hölder
spaces, and in [4], the acceptable formula for the calculation of derivative of the double

http://www.cjamee.org 11 c© 2013 CJAMEE All rights reserved.
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layer acoustic potential was obtained and the basic properties of the operator generated
by the derivative of double layer acoustic potential were studied in generalized Hölder
spaces. Besides, based on these results, the approximate solutions of integral equations of
boundary value problems for the Helmholtz equation were studied in [5, 6, 7, 8]. However,
some basic properties of the operator (Aρ) (x) = V (x), x ∈ L in generalized Hölder spaces
have not been studied yet. This work is just dedicated to this matter.

2. Main Results

We denote by C (L) a space of all continuous functions on L with the norm ‖ρ‖∞ =
max
x∈L

|ρ (x)|, and we introduce a modulus of continuity of the form

ω(ϕ, δ) = δ sup
τ≥δ

ω̄(ϕ, τ)

τ
, δ > 0,

for the function ϕ(x) ∈ C (L), where ω̄(ϕ, τ) = max
|x−y|≤τ
x,y∈L

|ϕ(x)− ϕ(y)| .

Theorem 1. Let L be a simple closed Lyapunov curve with the index 0 < α ≤ 1 and

diamL∫
0

ω(ρ, t)

t
dt < +∞.

Then the integral (1) exists in the sense of the Cauchy principal value, with

sup
x∈L
|V (x) | ≤M∗

‖ρ‖∞ +

diamL∫
0

ω (ρ, t)

t
dt

 .

Proof. Let V (x) = (V1 (x) , V2 (x)) , where

Vm (x) =

∫
L

∂ Φ(x, y)

∂xm
ρ(y) dLy, x = (x1, x2) ∈ L (m = 1, 2) .

Simple calculation yields

Vm (x) =
1

2π

∫
L

ym − xm
|x− y|2

ρ (y) dLy.

Let d > 0 be a radius of a standard circle for L (see [9]), and ~n(x) be an outer unit
normal at the point x ∈ L. Then, for every point x ∈ L, the neighborhood Ld(x) =
{y ∈ L : |y − x| < d} either intersects the line parallel to the normal ~n(x) at one point

∗Hereinafter M denotes a positive constant which can be different in different inequalities.
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only or does not intersect it at all, i.e. the set Ld(x) is uniquely projected onto the interval
Ωd(x) lying on the line Γ(x) tangent to L at the point x. On some part of Ld(x), we choose
a local rectangular coordinate system (u, v) centered at the point x, where the axis v is
directed along the normal ~n(x), and the axis u is directed in the positive direction of the
tangent line Γ(x). It is known that the coordinates of the point x are (0, 0). Besides, in
this coordinate system the neighborhood Ld(x) can be given by the equation v = f(u),
u ∈ Ωd(x), where f ∈ H1,α(Ωd(x)) and f(0) = 0, f ′(0) = 0. Here H1,α(Ωd(x)) denotes
the linear space of all continuously differentiable functions f on Ωd(x), which satisfy the
condition ∣∣f ′(u1)− f ′(u2)

∣∣ ≤Mf |u1 − u2|α ,∀u1, u2 ∈ Ωd(x),

where Mf is a positive constant depending on f , but not on u1 and u2. Let Γd(x) be a
part of the tangent line Γ(x) at the point x ∈ L lying inside a circle of radius d centered
at x. Besides, let ỹ ∈ Γ(x) be a projection of the point y ∈ Ld(x). Then (see [10])

|x− ỹ| ≤ |x− y| ≤ C1 |x− ỹ| , mesLd(x) ≤ C2 mesΓd(x),

where C1 and C2 are positive constants depending only on L, and mesLd(x) denotes the
length of the curve Ld(x).

Obviously, ∫
L

ym − xm
|x− y|2

ρ (y) dLy =

∫
L\Ld(x)

ym − xm
|x− y|2

ρ (y) dLy+

+

∫
Ld(x)

ym − xm
|x− y|2

(ρ(y)− ρ(x)) dLy+

+ρ (x)

∫
Ld(x)

ym − xm
|x− y|2

dLy , x ∈ L (m = 1, 2) . (2)

As we can see, the first integral on the right-hand side of the last equality exists as a
proper integral, while the second one converges as an improper integral, with∣∣∣∣∣∣∣

∫
L/Ld(x)

ym − xm
|x− y|2

ρ (y) dLy

∣∣∣∣∣∣∣ ≤M ‖ρ‖∞ , ∀x ∈ L (m = 1, 2) (3)

and ∣∣∣∣∣∣∣
∫

Ld(x)

ym − xm
|x− y|2

(ρ(y)− ρ(x)) dLy

∣∣∣∣∣∣∣ ≤
≤M

diamL∫
0

ω (ρ, t)

t
dt < +∞, ∀x ∈ L (m = 1, 2) .

(4)
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It remains to prove that the integral∫
Ld(x)

ym − xm
|x− y|2

dLy (m = 1, 2)

exists in the sense of the Cauchy principal value. Let d0 = d/C1. It is clear that (−d0, d0) ⊂
Ωd(x). Using the calculation formula for curvilinear integral, we obtain

∫
Ld(x)

y1 − x1

|x− y|2
dLy =

∫
Ωd(x)\(−d0,d0)

u
√

1 + (f ′(u))2

u2 + (f(u))2 du +

d0∫
−d0

du

u
+

+

d0∫
−d0

u

(√
1 + (f ′(u))2 − 1

)
u2 + (f(u))2 du+

d0∫
−d0

u

(
1

u2 + (f(u))2 −
1

u2

)
du.

Denote the integrals on the right-hand side of the last equality by A1,A2, A3 and A4,
respectively.

As we can see, the integral A1 exists as a proper integral, while the integral A2 exists in
the sense of the Cauchy principal value and is equal to zero. Besides, taking into account
that ∣∣f ′(u)

∣∣ ≤M |u|α (5)

(see [9]), we find

|A3| =

∣∣∣∣∣∣∣∣
d0∫
−d0

u (f ′(u))2(
u2 + (f(u))2

) (
1 +

√
1 + (f ′(u))2

)du
∣∣∣∣∣∣∣∣ ≤M

d0∫
−d0

|u|2α−1 du ≤M.

As

| f(u)| = | f(u) − f(0) | ≤M |u| 1+α , (6)

we have

|A4 | =

∣∣∣∣∣∣
d0∫
−d0

u (f(u))2

u2
(
u2 + (f(u))2

) du
∣∣∣∣∣∣ ≤M

d0∫
−d0

|u|2α−1 du ≤M

and ∣∣∣∣∣∣∣
∫

Ld(x)

y2 − x2

|x− y|2
dLy

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
∫

Ωd(x)

f (u)
√

1 + (f ′ (u))2

u2 + (f(u))2 du

∣∣∣∣∣∣∣ ≤M
∫

Ωd(x)

|u|α−1 du ≤M.
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So we obtain∣∣∣∣∣∣∣ ρ (x)

∫
Ld(x)

ym − xm
|x− y |2

dLy

∣∣∣∣∣∣∣ ≤M ‖ρ‖∞ , ∀x ∈ L (m = 1, 2) . (7)

Considering the inequalities (3), (4) and (7) in (2), we finish the proof of the theorem.
Now let’s show the validity of the Zygmund estimate for the direct value of the deriva-

tive of simple layer logarithmic potential.

Theorem 2. Let L be a simple closed Lyapunov curve with the index 0 < α ≤ 1 and

diamL∫
0

ω(ρ, t)

t
dt < +∞.

Then for every m = 1, 2 and for any two points x′ , x′′ ∈ L the following estimates hold:∣∣Vm(x′)− Vm(x′′)
∣∣ ≤

≤Mρ

hα + ω (ρ, h) +

h∫
o

ω (ρ, t)

t
dt+ h

diamL∫
h

ω (ρ, t)

t2
dt

 if 0 < α < 1,

∣∣Vm(x′)− Vm(x′′)
∣∣ ≤

Mρ

h |lnh|+ ω (ρ, h) +

h∫
o

ω (ρ, t)

t
dt+ h

diamL∫
h

ω (ρ, t)

t2
dt

 if α = 1,

where h = |x′ − x′′ |, and Mρ is a positive constant depending only on L and ρ.

Proof. Let 0 < α < 1 and m = 1. Consider any two points x′, x′′ ∈ L such that h is
sufficiently small. It is not difficult to see that

V1(x′)− V1(x′′) =
1

2π

∫
L

(
(y1 − x′1) (ρ (y)− ρ (x′))

|x′ − y|2
−

− (y1 − x′′1) (ρ (y)− ρ (x′′))

|x′′ − y|2

)
dLy+

+

ρ (x′)

2π

∫
L

y1 − x′1
|x′ − y|2

dLy −
ρ (x′′)

2π

∫
L

y1 − x′′1
|x′′ − y|2

dLy

 .

Denote two terms on the right-hand side of the last equality by F (x′, x′′) and G(x′, x′′),
respectively.
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Estimate the integral F (x′, x′′).

F (x′, x′′) =

∫
L\Ld(x′)

(
(y1 − x′1) (ρ (y)− ρ (x′))

2π |x′ − y|2
− (y1 − x′′1) (ρ (y)− ρ (x′′))

2π |x′′ − y|2

)
dLy+

+

∫
Lh/2(x′)

(y1 − x′1) (ρ (y)− ρ (x′))

2π |x′ − y|2
dLy −

∫
Lh/2(x′′)

(y1 − x′′1) (ρ (y)− ρ (x′′))

2π |x′′ − y|2
dLy−

−
∫

Lh/2(x′)

(y1 − x′′1) (ρ (y)− ρ (x′′))

2π |x′′ − y|2
dLy +

∫
Lh/2(x′′)

(y1 − x′1) (ρ (y)− ρ (x′))

2π |x′ − y|2
dLy+

+

∫
Ld(x′)\(Lh/2(x′)

⋃
Lh/2(x′′))

(
y1 − x′1

) (
ρ (y)− ρ

(
x′
))
×

×
(

1

2π |x′ − y|2
− 1

2π |x′′ − y|2

)
dLy+

+

∫
Ld(x′)\(Lh/2(x′)

⋃
Lh/2(x′′))

(x′′1 − x′1) (ρ (y)− ρ (x′))

2π |x′′ − y|2
dLy+

+
(
ρ
(
x′′
)
− ρ

(
x′
)) ∫
Ld(x′)\(Lh/2(x′)

⋃
Lh/2(x′′))

y1 − x′′1
2π |x′′ − y|2

dLy.

Denote the terms on the right-hand side of the last equality by F1(x′, x′′), F2(x′, x′′),
F3(x′, x′′), F4(x′, x′′), F5(x′, x′′), F6(x′, x′′), F7(x′, x′′) and F8(x′, x′′), respectively.

Obviously, |F1(x′, x′′)| ≤M ‖ρ‖∞ h.

Using the calculation formula for curvilinear integral, we have

∣∣F2(x′, x′′)
∣∣ ≤M h∫

0

ω (ρ, t)

t
dt,

∣∣F3(x′, x′′)
∣∣ ≤M h∫

0

ω (ρ, t)

t
dt.

Besides, considering the inequalities

h/2 ≤
∣∣y − x′′∣∣ ≤ 3 h/2, y ∈ Lh/2(x′),

we obtain ∣∣F4(x′, x′′)
∣∣ ≤M ω (ρ, 3h/2)

h
mesLh/2(x′) ≤M ω (ρ, h) .

Similarly, taking into account the inequality

h/2 ≤
∣∣y − x′∣∣ ≤ 3 h/2, y ∈ Lh/2(x′′),
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we obtain |F5(x′, x′′)| ≤M ω (ρ, h).
For every y ∈ Ld(x′)\(Lh/2(x′)

⋃
Lh/2(x′′)) we have∣∣x′ − y∣∣ ≤ ∣∣x′ − x′′∣∣+

∣∣x′′ − y∣∣ ≤ 3
∣∣x′′ − y∣∣

and ∣∣x′′ − y∣∣ ≤ 3
∣∣x′ − y∣∣ ,

then ∣∣F6(x′, x′′)
∣∣ ≤Mh

d∫
h

ω (ρ, t)

t2
dt,

∣∣F7(x′, x′′)
∣∣ ≤Mh

d∫
h

ω (ρ, t)

t2
dt.

Let’s estimate the term F8(x′, x′′). To do so, we choose on some part of Ld(x
′) a local

rectangular coordinate system (u, v) centered at the point x′, where the axis v is directed
along the normal ~n(x′), and the axis u is directed in the positive direction of the tangent
line Γ(x′). The coordinates of the point x′ are (0 , 0), and the coordinates of the point x′′

are denoted by (u′′, f(u′′)). Let h0 = |u′′| and Ωh/2 (x′, x′′) denote the projection of the
set Lh/2 (x′)

⋃
Lh/2 (x′′) onto the tangent line Γ(x′).

By the calculation formula for curvilinear integral, we obtain

F8(x′, x′′) =
ρ (x′′)− ρ (x′)

2π

∫
Ωd(x′)\Ωh/2(x′,x′′)

u

(√
1 + (f ′ (u))2 − 1

)
u2 + (f(u))2 du+

+
ρ (x′′)− ρ (x′)

2π

∫
Ωd(x′)\Ωh/2(x′,x′′)

(
1

u2 + (f(u))2 −
1

u2

)
u du+

+
ρ (x′′)− ρ (x′)

2π

∫
Ωd(x′)\Ωh/2(x′,x′′)

du

u
.

Taking into account (5), we find√
1 + (f ′ (u))2 − 1 ≤M |u|2α , ∀u ∈ Ωd(x

′).

Besides, by virtue of (6) we obtain∣∣∣∣ 1

u2 + (f(u))2 −
1

u2

∣∣∣∣ ≤M |u|2α−2 , ∀u ∈ Ωd(x
′)\0.

Then ∣∣∣∣∣∣∣∣
ρ (x′′)− ρ (x′)

2π

∫
Ωd(x′)\Ωh/2(x′,x′′)

u

(√
1 + (f ′ (u))2 − 1

)
u2 + (f(u))2 du

∣∣∣∣∣∣∣∣ ≤Mω (ρ, h)
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and ∣∣∣∣∣∣∣
ρ (x′′)− ρ (x′)

2π

∫
Ωd(x′)\Ωh/2(x′,x′′)

(
1

u2 + (f(u))2 −
1

u2

)
u du

∣∣∣∣∣∣∣ ≤Mω (ρ, h) .

As ∫
(−d0,d0)\ (−2h,2h)

du

u
=

−2h∫
−d0

du

u
+

d0∫
2h

du

u
= 0,

we have ∣∣∣∣∣∣∣
ρ (x′′)− ρ (x′)

2π

∫
Ωd(x′)\Ωh/2(x′,x′′)

du

u

∣∣∣∣∣∣∣ =

=

∣∣∣∣∣∣∣
ρ (x′′)− ρ (x′)

2π

 ∫
Ωd(x′)\(−d0,d0)

du

u
+

∫
(−2h,2h)\Ωh/2(x′,x′′)

du

u


∣∣∣∣∣∣∣ ≤

≤ ω (ρ, h)

2π

M +M

2h∫
h/C1

du

u

 ≤Mω (ρ, h) ,

and, consequently, |F8(x′, x′′)| ≤M ω (ρ, h).

As a result, summing up the estimates obtained above for Fj(x
′, x′′), j = 1 , 8, we

find:

∣∣F (x′, x′′)
∣∣ ≤M

‖ρ‖∞ h+ ω (ρ, h) +

h∫
o

ω (ρ, t)

t
dt+ h

diamL∫
h

ω (ρ, t)

t2
dt

 .

Now let’s estimate the expression G(x′, x′′). It is clear that

G(x′, x′′) =
ρ (x′)− ρ (x′′)

2π

∫
L

y1 − x′1
|x′ − y|2

dLy+

+
ρ (x′′)

2π

 ∫
L\Ld(x′)

y1 − x′1
|x′ − y|2

dLy −
∫

L\Ld(x′)

y1 − x′′1
|x′′ − y|2

dLy

+

+
ρ (x′′)

2π

 ∫
Ld(x′)

y1 − x′1
|x′ − y|2

dLy −
∫

Ld(x′)

y1 − x′′1
|x′′ − y|2

dLy

 .
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Denote the terms on the right-hand side of the last equality by G1(x′, x′′), G2(x′, x′′)
and G3(x′, x′′), respectively.

As the integral ∫
L

y1 − x′1
|x′ − y|2

dLy

converges in the sense of the Cauchy principal value, we have∣∣G1(x′, x′′)
∣∣ ≤M ω (ρ, h) .

Besides, it is clear that ∣∣G2(x′, x′′)
∣∣ ≤M ‖ρ‖∞ h.

As is known, the following relations are true in the sense of the Cauchy principal value:

d0∫
−d0

du

u
= 0 and

u′′+d0−h0∫
u′′−d0+h0

du

u− u′′
= 0.

Then the term G3(x′, x′′) can be represented as follows:

G3(x′, x′′) =
ρ(x′′)

2π

− ∫
(−d0,d0)\(u′′−d0+h0,u′′+d0−h0)

du

u− u′′
+

+

∫
Ωd(x′)\(−d0,d0)

(
u

u2 + (f(u))2 −
u− u′′

(u− u′′)2 + (f(u)− f(u′′))2

)√
1 + (f ′(u))2du+

+

∫
(−d0,d0)\((−h0/2,h0/2)

⋃
(u′′−h0/2,u′′+h0/2))

u′′
(√

1 + (f ′(u))2 − 1

)
u2 + (f(u))2 du+

+

∫
(−d0,d0)\((−h0/2,h0/2)

⋃
(u′′−h0/2,u′′+h0/2))

(√
1 + (f ′(u))2 − 1

)
×

×
(u− u′′)

(
(u− u′′)2 − u2 + (f(u)− f(u′′))2 − (f(u))2

)
(
u2 + (f(u))2

) (
(u− u′′)2 + (f(u)− f(u′′))2

) du+

+

h0/2∫
−h0/2

u

(√
1 + (f ′(u))2 − 1

)
u2 + (f(u))2 du+
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+

u′′+h0/2∫
u′′−h0/2

u

(√
1 + (f ′(u))2 − 1

)
u2 + (f(u))2 du−

h0/2∫
−h0/2

(u− u′′)
(√

1 + (f ′(u))2 − 1

)
(u− u′′)2 + (f(u)− f(u′′))2 du−

−

√
1 + (f ′(u′′))2 − 1

1 + (f ′(u′′))2

u′′+h0/2∫
u′′−h0/2

du

u− u′′
−

−
u′′+h0/2∫
u′′−h0/2

(u− u′′)
(√

1 + (f ′(u))2 −
√

1 + (f ′(u′′))2

)
(u− u′′)2 + (f(u)− f(u′′))2 du−

−
(√

1 + (f ′(u′′))2 − 1

) u′′+h0/2∫
u′′−h0/2

1

u− u′′

(
(u− u′′)2

(u− u′′)2 + (f(u)− f(u′′))2 −

− 1

1 + (f ′(u′′))2

)
du+

∫
(−d0,d0)\(u′′−d0+h0,u′′+d0−h0)

(
u

(
1

u2 + (f(u))2 −
1

u2

)
−

−
(
u− u′′

)( 1

(u− u′′)2 + (f(u)− f(u′′))2 −
1

(u− u′′)2

))
du+

+

∫
(u′′−d0+h0,u′′+d0−h0)\((−h0/2,h0/2)

⋃
(u′′−h0/2,u′′+h0/2))

u′′
(

1

u2 + (f(u))2 −
1

u2

)
du+

+

∫
(u′′−d0+h0,u′′+d0−h0)\((−h0/2,h0/2)

⋃
(u′′−h0/2,u′′+h0/2))

((
1

u2 + (f(u))2−

− 1

(u− u′′)2 + (f(u)− f(u′′))2

)
+

 1

(u− u′′)2
(

1 + (f ′(u′′))2
) − 1

u2

×

×
(
u− u′′

)
du+

h0/2∫
−h0/2

(
1

u2 + (f(u))2 −
1

u2

)
u du+

+

u′′+h0/2∫
u′′−h0/2

(
1

u2 + (f(u))2 −
1

u2

)
u du+

h0/2∫
−h0/2

 1

(u− u′′)2
(

1 + (f ′(u′′))2
) −

− 1

(u− u′′)2 + (f(u)− f(u′′))2

) (
u− u′′

)
du+
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+

u′′+h0/2∫
u′′−h0/2

 1

(u− u′′)2
(

1 + (f ′(u′′))2
) − 1

(u− u′′)2 + (f(u)− f(u′′))2

 (
u− u′′

)
du

 .
As there exists a point u∗ = u′′ + θ (u− u′′) such that

f(u)− f(u′′) = f ′(u∗) (u− u′′),

where θ ∈ (0, 1), it is not difficult to show that∣∣G3(x′, x′′)
∣∣ ≤M ‖ρ‖∞ hα.

Consequently, ∣∣G(x′, x′′)
∣∣ ≤M (ω(ρ, h) + ‖ρ‖∞ h

α) .

Now, taking into account the estimates derived above for F (x′, x′′) and G(x′, x′′), we
arrive at the conclusion that if 0 < α < 1, then

∣∣V1(x′)− V1(x′′)
∣∣ ≤Mρ

(
hα + ω (ρ, h) +

∫ h

o

ω (ρ, t)

t
dt+ h

∫ diamL

h

ω (ρ, t)

t2
dt

)
.

Similarly, it is not difficult to prove that

∣∣V2(x′)− V2(x′′)
∣∣ ≤Mρ

(
hα + ω (ρ, h) +

∫ h

o

ω (ρ, t)

t
dt+ h

∫ diamL

h

ω (ρ, t)

t2
dt

)
.

It follows from the proof of the theorem that if α = 1, then

∣∣Vm(x′)− Vm(x′′)
∣∣ ≤Mρ

h |lnh|+ ω (ρ, h) +

h∫
o

ω (ρ, t)

t
dt+

+ h

diamL∫
h

ω (ρ, t)

t2
dt

 , m = 1, 2.

Theorem is proved.

Theorem 3. Let L be a simple closed Lyapunov curve with the index 0 < α ≤ 1 and∫ diamL

0

ω(ρ, t)

t
dt < +∞.

Then the following estimates hold:

ω (V, h) ≤Mρ

(
hα + ω (ρ, h) +

∫ h
o
ω (ρ,t)
t dt+ h

∫ diamL
h

ω(ρ,t)
t2

dt
)

if 0 < α < 1,

ω (V, h) ≤Mρ

(
h | ln h |+ ω (ρ, h) +

∫ h
o
ω(ρ,t)
t dt+ h

∫ diamL
h

ω (ρ,t)
t2

dt
)

if α = 1,

where Mρ is a positive constant depending only on L and ρ.
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Proof. Consider the function

ψ (h) =

{
hα + ω (ρ, h) +

∫ h
o
ω(ρ,t)
t dt+ h

∫ diamL
h

ω(ρ,t)
t2

dt, if 0 < α < 1,

h |lnh|+ ω (ρ, h) +
∫ h
o
ω(ρ,t)
t dt+ h

∫ diamL
h

ω(ρ,t)
t2

dt, if α = 1.

It is not difficult to show that lim
h→0

ψ (h) = 0, the function ψ (h) is non-decreasing, and

the function ψ (h) /h is non-increasing. Then, using Theorem 2, we finish the proof of the
theorem.

Introduce the following classes of functions on (0, diamL]:

χ =

{
ϕ : ϕ ↑, lim

δ→0
ϕ (δ) = 0, ϕ (δ) /δ ↓

}
,

J0 (S) =

ϕ ∈ χ :

diamL∫
0

ϕ (t)

t
dt < +∞

 .

Also consider the function

Z (h, ϕ) =


hα + ϕ (h) +

h∫
o

ϕ(t)
t dt+ h

∫ diamL
h

ϕ(t)
t2
dt, if 0 < α < 1,

h |lnh|+ ϕ (h) +
h∫
o

ϕ(t)
t dt+ h

diamL∫
h

ϕ(t)
t2
dt, if α = 1.

Where there is no misunderstanding, we will sometimes write Z (h), Z (ϕ) instead of
Z (h, ϕ). It is clear that lim

h→0
Z (h) = 0, the function Z (h) is non-decreasing, and the

function Z (h) /h is non-increasing.

Let ϕ ∈ χ. Denote by H (ϕ) the linear space of all continuous functions ρ on L which
satisfy the condition

|ρ (x)− ρ (y)| ≤ Cρϕ (|x− y|) , x, y ∈ L,

where Cρ is a positive constant depending on L and ρ, but not on x and y. It is known
(see [11]) that the space H (ϕ) is a Banach space equipped with the norm

‖ρ‖H(ϕ) = sup
x∈L
|ρ (x)|+ sup

x,y∈L
x 6=y

|ρ (x)− ρ (y)|
ϕ (|x− y|)

.

Theorem 3 implies

Theorem 4. Let ϕ ∈ J0 (L). Then the operator (Aρ) (x) = V (x), x ∈ L, acts boundedly
from H (ϕ) to H (Z (ϕ)), and

‖V ‖H(Z(ϕ)) ≤M ‖ρ‖H(ϕ) .
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Denote by Hβ (L) the space of all continuous functions f on L which satisfy the Hölder
condition

|f (x)− f (y) | ≤Mf |x− y|β , ∀x, y ∈ L,

where 0 < β ≤ 1 and Mf is a positive constant depending on f , but not on x and y. It is
known (see [11]) that the space Hβ (L) is a Banach space equipped with the norm

‖f‖β = sup
x∈L
|f (x)|+ sup

x,y∈L
x 6=y

|f (x)− f (y)|
|x− y|β

.

Corollary 1. Let L be a simple closed Lyapunov curve with the index 0 < α ≤ 1 and
ρ ∈ Hβ (L), 0 < β ≤ 1. The following assertions are true:

(a) if α < β, then V ∈ Hα (L) and ‖V ‖α ≤M ‖ρ‖β;

(b) if β ≤ α < 1, then V ∈ Hβ (L) and ‖V ‖β ≤M ‖ρ‖β;

(c) if α = 1, β < 1, then V ∈ Hβ (L) and ‖V ‖β ≤M ‖ρ‖β;

(d) if α = 1, β = 1, then V ∈ Hγ (L) and ‖V ‖γ ≤M ‖ρ‖1, where γ ∈ (0, 1).
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Abstract. In the present paper we consider the eigenvalue problem for ordinary differential equa-
tion of fourth order with a spectral parameter contained linearly in the two of boundary conditions.
The basic properties of the eigenvalues and eigenfunctions of this spectral problem are investigated.
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1. Introduction

We consider the following boundary-value problem

`(y)(x) ≡ y(4)(x)− (q(x)y′(x))′ = λy(x), 0 < x < 1, (1)

y(0) = y′(0) = 0, (2)

y′′(1)− (a1λ+ b1) y
′(1) = 0 (3)

Ty(1)− (a2λ+ b2)y(1) = 0, (4)

where λ ∈ C is spectral parameter, Ty ≡ y′′′ − qy′, q(x) is positive and absolutely contin-
uous function on [0, l], a1, a2, b1 and b2 are real constants such that a1 > 0 and a2 < 0.

The problem (1)-(4) describes small bending vibrations of a homogeneous rod, in cross-
sections of which the longitudinal force acts, the left end is fixed rigidly, the right end is
fixed elastically and in this end is concentrated the inertial mass (see [6, Ch. 8, § 5]).

The spectral properties of the eigenvalue problem (1)-(4) in the case b2 = 0 was
investigated in [4] (see also [3]). In these papers, the oscillation properties of eigenfunctions
and their derivatives, the basis properties of the system of eigenfunctions in Lp(0, 1), 1 <
p <∞, are studied. Similar questions in the case when the spectral parameter is contained
in one of the boundary conditions are studied in detail in the papers [1, 2, 5, 7].

http://www.cjamee.org 25 c© 2013 CJAMEE All rights reserved.
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Recall that boundary-value problem (1)-(4) reduces to a spectral problem for a self-
adjoint operator in the Hilbert space H = L2(0, 1)⊕C2 (see [3, 4]). Hence all eigenvalues
of this problem are real and simple.

In this paper, we study the general characteristic of the location of eigenvalues on
the real axis, the oscillatory properties of eigenfunctions of problem (1)-(4) and their
derivatives.

2. Operator interpretation of the boundary problem (1)-(4)

Let H = L2(0, 1)⊕ C2 be the Hilbert space with inner product

(û, v̂) = ({u,m, k}, {v, s, t}) =

1∫
0

u(x)v(x) dx+ |a1|−1ms̄ + |a2|−1kt̄.

It is well known (see [3, 4]) that the boundary-value problem (1)-(4) reduces to the
spectral problem for the linear operator L in the Hilbert space H, where

Lŷ = L{u,m, k} = {(Ty(x))′ , y′′(1)− b1y′(1), T y(1)− b2y(1)},

is an operator with the domain

D(L) = {{y (x), m, k} : y ∈W 4
2 (0, 1), (Ty(x))′ ∈ L2(0, 1),

y(0) = y′(0) = 0, m = a1y
′(1), n = a2y(1)} .

It is obvious that the operator L is well defined in H and problem (1)-(4) take the form

Lŷ = λŷ, ŷ ∈ D(L).

This means that the eigenvalues λnk, nk ∈ N, of problem (1)-(4) and of the operator L
coincide, and between the eigenvectors, there is a one-to-one correspondence

yn(x)↔ {yn(x), mn, kn}, mn = a1y
′
n(1), kn = a2yn (1).

Theorem 1. L is a self-adjoint discrete lower-semibounded operator in H. The system
of eigenvectors {ŷk}∞k=1, ŷk = {yk(x), mk, nk}, mk = a1y

′
k(1), nk = a2yk(1), of the

operator L forms forms an orthogonal basis in the space H (forms a Riesz basis (after
normalization) in H).

The proof of this theorem is similar to that of [3, Theorem 5.1].

Corollary 1. The eigenvalues of the operator L are real, simple and form an unboundedly
increasing sequence {λk}∞k=1.
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3. Oscillatory properties of eigenfunctions of the boundary-value
problem (1)-(4) and their derivatives

Theorem 2. For each fixed λ ∈ C there exists a unique nontrivial solution y(x, λ) of the
boundary-value problem (1), (2), (4) up to a constant factor. The solution y(x, λ) for each
fixed x ∈ [0, 1] is an entire function of λ .

The proof of this theorem is similar to that of [3, Theorem 3.1].

Remark 1. It follows from [7, Theorem 2.2] that the eigenvalues of the boundary value
problem

`(y)(x) = λy(x), x ∈ (0, 1),
y(0) = y′(0) = 0,
y′(1) cos γ + y′′(1) sin γ = 0, γ ∈ [0, π2 ],
T y(1)− (a2λ+ b2)y(1) = 0,

(5)

are real, simple and form an infinitely increasing sequence {λ(γ)k }
∞
k=1; λk(γ) > 0 for k ≥ 2

and there for each fixed γ exists b2(γ) < 0 such that λ1(γ) > 0 for b2 > b2(γ), λ1(γ) =

0 for b2 = b2(γ) and λ1(γ) < 0 for b2 < b2(γ). Moreover, the eigenfunction u
(γ)
k (x)

corresponding to the eigenvalue λk(γ) for k ≥ 2 has k − 1 simple zeros in the interval

(0, 1); the eigenfunction u
(γ)
1 (x) has no zeros for b2 ≥ b2(γ) and has arbitrary number of

zeros in (0, 1) for b2 < b2(γ).

Denote: Bk = (λk−1(0), λk(0)) , k ∈ N, where λ0(0) = −∞.
Clearly, the eigenvalues λk(0) and λk(π/2), k ∈ N, of problem (5) for γ = 0 and

γ = π/2 are zeros of the entire functions y′(1, λ) and y′′(1, λ), respectively. It is obvious
that the function

F (λ) = y′′(1, λ)
/
y′(1, λ)

is will defined for

λ ∈ B ≡

( ∞⋃
k=1

Bk

)⋃
(C\R),

and is meromorphic function of finite order. λk(0) and λk(π/2), k ∈ N, are the poles and
zeros of the function F (λ), respectively.

Lemma 1. The following relations

dF (λ)

dλ
= − 1

y′2(1, λ)


1∫

0

y2(x, λ)dx− a2y2(1, λ)

 , λ ∈ B. (6)

lim
λ→−∞

F (λ) = +∞, (7)

are true.
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The proof of this lemma is similar to that of [3, Lemmas 3.3 and 3.4].

It follows from the maximal minimal property of eigenvalues and (6) that

λ1

(π
2

)
< λ1(0) < λ2

(π
2

)
< λ2(0) < . . . . (8)

Note that the eigenvalues of problem (1)-(4) are the roots of the following equation

y′′(1, λ)− (a1λ+ b1) y
′(1, λ) = 0. (9)

Lemma 2. Let λ be an eigenvalue of the boundary-value problem (1)-(4). Then y′(1, λ) 6=
0.

Proof. Let λ be an eigenvalue of problem (1)-(4) and y′(1, λ) = 0. Then it follows
from boundary condition (3) that y′′(1, λ) = 0. Hence λ is an eigenvalue of problem (5) for
γ = 0 and γ = π

2 , which contradicts to relation (8). Thus y′(1, λ) 6= 0 if λ is an eigenvalue
of problem (1)-(4). The proof of this lemma is complete.

Remark 2. It follows from Lemma 2 that each root of (9) is also root of the equation

F (λ) = a1λ+ b1,

as well.

Theorem 3. There exists an unboundedly increasing sequence of eigenvalues λ1 < λ2 <
. . . < λk < . . . of the boundary value problem (1)-(4). Moreover, we have the following
location of these eigenvalues on the real axis:

(i) if λ1(0) > 0, then there exists a real number b1,0 such that sign b1,0 = signλ1 (π/2)
and λ1 < 0 for b1 > b1,0, λ1 = 0 for b1 = b1,0, λ1 > 0 for b1 < b1,0 and λk > 0 for k ≥ 2;

(ii) if λ1(0) = 0, then λ1 < 0 and λk > 0 for k ≥ 2;
(iii) if λ1(0) < 0, then λ1 < 0 and there exists a real number b1,1 > 0 such that λ1 < 0

for b1 > b1,1, λ1 = 0 for b1 = b1,1, λ1 > 0 for b1 < b1,1 and λk > 0 for k ≥ 3.

The proof of this theorem is similar to that of first part of [3, Theorem 4.1] with use
of Corollary 1, Theorem 2, Lemmas 1, 2 (relations (6) and (7)) and Remarks 1, 2.

Now let us take up the question of the number of zeros contained in the interval (0, 1)
of the functions y(x, λ) and y′(x, λ).

Remark 3. Following the corresponding reasoning carried out in [3, Lemmas 3.1, 3.2 and
3.6] we can show that the zeros contained in (0, 1] of the functions y(x, λ) and y′(x, λ)
are simple and C1 functions of λ. Moreover, for λ > 0 between consecutive zeros of the
function y′(x, λ) in (0, 1], there is exactly one zero of function y(x, λ); as λ > 0 increases
the number of zeros contained in (0, 1) does not decrease.

We denote by ε(λ) and κ(λ) the number of zeros contained in (0, 1) of the functions
y(x, λ) and y′(x, λ), respectively.
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Theorem 4. The functions y(x, λ) and y′(x, λ) have the following oscillation properties
depending on the parameter λ > 0:

(i) if λ1(0) ≥ 0, then

ε(λ) = κ(λ) = 0 for λ ∈ (0, λ1(0)],

ε(λ) = k − 2 or ε(λ) = k − 1 for λ ∈ (λk−1(0), λk(π/2)) at k ≥ 2,

ε(λ) = k − 1 for λ ∈ [λk(π/2), λk(0)] at k ≥ 2,

κ(λ) = k − 1 for λ ∈ (λk−1(0), λk(0)] at k ≥ 2;

(ii) if λ1(0) < 0, then

ε(λ) = κ(λ) = 0 for λ ∈ (0, λ2(0)],

ε(λ) = k − 3 or ε(λ) = k − 2 for λ ∈ (λk−1(0), λk(π/2)) at k ≥ 3,

ε(λ) = k − 2 for λ ∈ [λk(π/2), λk(0)] at k ≥ 3,

κ(λ) = k − 2 for λ ∈ (λk−1(0), λk(0)] at k ≥ 3.

The proof of this theorem is similar to that of [3, Theorem 3.2] with use of Theorem
3 and Remarks 1, 3.

By virtue of [3, Corollary 3.1] as λ < 0 varies, the functions y(x, λ) and y′(x, λ) can
lose or gain zeros only by these zeros leaving or entering the interval [0, 1] only through
the endpoint x = 0. If these zeros pass through the point x = 0, then x = 0 would be a
triple zero of function y(x, λ), i.e. y(0, λ) = y′(0, λ) = y′′(0, λ) = 0.

Assume that λ < 0 and µ is a real eigenvalue of the following spectral problem

`(y)(x) = λy(x), x ∈ (0, 1),
y(0) = y′(0) = y′′(0) = 0,
T y(1)− (a2λ+ b2)y(1) = 0.

(10)

The oscillation index of µ which we denote by i(λ) is the difference between the number of
zeros of the function y(x, λ) for λ = µ− 0 contained in the interval (0, 1) and the number
of the same zeros for λ = µ+ 0 (see [4, 5]). It follows from this definition that the number
of zeros of the solution y(x, λ) of problem (1), (2), (4) contained in (0, 1) is equal to the
sum of the oscillation indices of all eigenvalues of the spectral problem (10) contained in
the interval (λ, 0).

Assume that i(µk) is an oscillation index of the eigenvalue µk, k ∈ N, of problem (10),
which is negative and simple [4, Lemma 4.2]. If λ < 0, then by condition (2) we have

ε(λ) =
∑

µk∈ (λ,0)

i (µk), (11)

κ(λ) =
∑

µk∈ (λ,0)
i (µk) for λ1(0) ≥ 0,

κ(λ) =
∑

µk∈ (λ,0)
i (µk) +H(λ− λ1(0)) for λ1(0) < 0.

(12)

Theorem 5. The eigenfunctions yk(x), k = 1, 2, . . . of the boundary value problem (1)-
(4) and their derivatives have the following oscillation properties:
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i) if λ1(0) > 0, then:

the functions y1(x) and y′1(x) have no zeros in the case λ1 ≥ 0, have
∑

µk∈ (λ1,0)
i (µk)

simple zeros in the interval (0, 1) in the case λ1 < 0,

the function yk(x) for k ≥ 2 has either k−2 or k−1 simple zeros in the interval (0, 1),

the function y′k(x) has k − 1 simple zeros in the interval (0, 1);

ii) if λ1(0) = 0, then:

the functions y1(x) and y′1(x) have
∑

µk∈ (λ1,0)
i (µk) simple zeros in the interval (0, 1),

the function yk(x) for k ≥ 2 has either k−3 or k−2 simple zeros in the interval (0, 1),

the function y′k(x) has k − 2 simple zeros in the interval (0, 1);

iii) if λ1(0) < 0, then:

the function y1(x) has
∑

µk∈ (λ1,0)
i (µk) and the function y′1(x) has

∑
µk∈ (λ1,0)

i (µk)+H(λ1−

λ1(0)) simple zeros in the interval (0, 1),

y2(x) and y′2(x) have no zeros in the case λ2 ≥ 0, have
∑

µk∈ (λ1,0)
i (µk) simple zeros in

the interval (0, 1) in the case λ2 < 0,

the function yk(x) for k ≥ 3 has either k−3 or k−2 simple zeros in the interval (0, 1),

the function y′k(x) has k − 2 simple zeros in the interval (0, 1).

The proof of this theorem follows directly from Theorems 3, 4 and formulas (11), (12).

Remark 4. Using oscillation Theorems 3, 5 and applying the technique carried out in
[3], it is possible to establish sufficient conditions for the subsystems of eigenfunctions of
problem (1)-(4) to form a basis in the space Lp(0, 1), 1 < p <∞.
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Abstract. In this paper it is studied some class of extremal manifolds given by a system of smooth
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improper integrals like the special integral of Terry’s problem.
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1. Introduction.

In 1932 Mahler K. had advanced a conjecture about S-numbers. To formulate this con-
jecture let’s introduce some notations. We shall denote by Π a following set of polynomials
with integral coefficients of degree not exceeding n:

Π = {f(x) =
n∑
i=0

aix
i 6= 0|ai ∈ Z}.

The number
H(f) = max(|a0|, |a1|, ..., |an|)

is called to be the height of the polynomial

f(x) = a0 + a1x+ · · ·+ anx
n

with real coefficients. Let α be a transcendental number. Then f(α) 6= 0. Consider
some real number H > 0, and take all polynomials from the class Π with the heights not
exceeding H(f) ≤ H. Mahler had proven that the inequality

‖f(α)‖ > H−nκ;h(f) ≤ H

is satisfied for all polynomials in the class Π with the height not exceeding H for almost
all real transcendental numbers, in the Lebesgue sense. The value firstly established for

∗Corresponding author.
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the constant κ by Mahler was 4+ε, with arbitrarily small positive constant ε. Mahler had
conjectured that it is possible to take κ = 1 + ε. This conjecture was proven by Sprindzuk
V. G. in 1965 by the method of essential and non-essential domains (see [11]).

For a given real number H > 0 the number of polynomials with heights doesn’t ex-
ceeding H is finite. Denote by ωn(α) the supremum of that positive numbers γ > 0, for
which the inequality

|f(α)| < H−γ ; H = H(f) (1)

is satisfied for infinite number of polynomials from Π, when H → ∞. It means that for
arbitrary ε > 0 there is a non-bounded from above sequence H1, H2, ... such that (1) is
satisfied for all such Hm with

γ = ωn(α) + ε.

This number is defined for every given n, and, by this reason, one can define the number
(finite or infinite)

g = lim
n→∞

ωn(α)

n
.

Note that for transcendental numbers due to Dirichlet’s principle we always have
ωn(α) ≥ n and therefore, g ≥ 1. The Mahler hypothesis is consisted in the statement
that ωn(α) = n for almost all transcendental numbers α.

Consider now the system of inequalities

max (‖α1q‖ , ‖α2q‖ , ..., ‖αnq‖) < q−u, u > 0. (2)

Let u(α1, ..., αn) be defined as a sup of such u > 0 for which (2) is satisfied for infinite
set of natural numbers q. It is not difficult to show that u(α1, ..., αn) ≥ 1/n (see [10]).
From this definition it follows that the inequality (2) is satisfied for infinitely many natural
numbers q when u < 1/n. When u(α1, ..., αn) = 1/n for almost all points of the variety
(α1, ..., αn) ∈ Rn of less dimension, then we call this manifold as an extremal manifold.
By Khintchine’s Transference Principle (see [5, 9]), mentioned above Mahler hypothesis is
equivalent to the hypothesis on extremality of the variety (x, x2, . . . , xn).

In 1993 Karatsuba A. A. advanced an opinion that the question on extremality of some
algebraic varieties could be investigated by using of results on convergence exponent in
the Tarry’s problem (about the problem see [1]). This hypothesis was proven in [7].

Let we are given with some continuously differentiable n-dimensional manifold Γ =
(f1(x̄), ..., fN (x̄)), x̄ ∈ Ω ⊂ Rn, n < N . In this work we continue consideration of condi-
tions supplying the extremality of the manifold. Consider the integral (for some integral
h > 0) ∫ ∞

−∞

∫ ∞
−∞
· · ·
∫ ∞
−∞

∣∣∣∣∫
Ω
e2πi(α1f1(x̄)+α2f2(x̄)···+αnfn(x̄))dx̄

∣∣∣∣2h dα1dα2 · · · dαn.

The number γ is called to be the convergence exponent for the integral∫ ∞
−∞

∫ ∞
−∞
· · ·
∫ ∞
−∞

∣∣∣∣∫
Ω
e2πi(α1f1(x̄)+α2f2(x̄)···+αnf1(x̄))dx

∣∣∣∣2h dα1dα2 · · · dαn,
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if this integral is convergent when 2h > γ and divergent when 2h < γ. In the section
3 we prove the extremality of above manifold if the last integral has finite exponent of
convergence.

Authors express their sincere thanks to the professor M. Bayramoglu for useful discus-
sions concerning the result of the article.

2. Auxiliary statements

Following lemma is known as Borel-Kantelly’s lemma and plays an important role in
the questions concerning extremality of manifolds (see[10]).

Lemma 1. Let Aq (q = 1, 2, ...) be a sequence of measurable sets in Rn, and

∞∑
q=1

mesAq <∞.

Then the measure of a set E of such points x ∈ Rn which fall into infinite number of sets
Aq equals to zero.

Proof. For every x ∈ E ⊂ Rn and natural n there is a natural number m > n for
which x ∈ Am. Then for any x ∈ E and natural number n ∈ N

x ∈
∞⋃
k=n

Ak.

So,

E ⊂
∞⋃
k=n

Ak.

Since the series of measures is convergent, then for arbitrary ε > 0 there exist a number
n such that

mes
∞⋃
k=n

Ak ≤
∞∑
k=n

mesAk < ε.

From the said above we deduce that mesE = 0. Lemma 1 is proven.
Below we will use the symbol << introduced by Vinogradov I. M. For two quantities

A and B we write A << B if one can find a fixed contant c such that A ≤ cB.
Following lemma belongs to Kavalevskaja E. I. (see [4,8,10]).
Lemma 2. Let m, n, q be natural numbers, fj(x̄), j = 1, ..., N be a real measurable

functions defined in the cube Ω = [0, 1]r, 1 ≤ r ≤ N . Denote by µ(q) the measure of a set
of that x̄ ∈ Ω = [0, 1]r for which

‖fj(x̄)‖ < q−rj (1 ≤ j ≤ N).

Then,

µ(q) << q−r
∑
|c1|<qr1

· · ·
∑

|cN |<qrN

∣∣∣∣∫
Ω
e2πi(c1f1(x̄)+···+cNfN (x̄))dx̄

∣∣∣∣ ;
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here r = r1 + · · ·+ rN , and the constant in the symbol << depends on N only.
Let we are given with some continuously differentiable n-dimensional manifold Γ =

(f1(x̄), ..., fN (x̄)), x̄ ∈ Ω = [0, 1]n, n < N . Taking natural number h such that nh > N
consider the map

ϕj : Ωh → RN

defined by the equalities

ϕj(x̄) = ϕj(x̄1, ..., x̄h) = fj(x̄1) + · · ·+ fj(x̄h); x̄s = (xs1, ..., xsm).

Let the Jacoby matrix of the map (x̄1, ..., x̄) 7→ (ϕ1(x̄), ..., ϕh(x̄)), i. e. the matrix
composed of the gradients of the functions ϕ1(x̄), ..., ϕh(x̄), be the matrix of maximal
rank. It is easy to see that the Jacoby matrix has a view

∂ϕ1

∂x11
· · · ∂ϕ1

∂xhn
...

. . .
...

∂ϕN
∂x11

· · · ∂ϕN
∂xhn

 .

In the work [3] there was proven the following result.
Lemma. If the Jacoby matrix of the map (x̄1, ..., x̄h) 7→ (ϕ1(x̄), ..., ϕh(x̄)) has a

maximal rank for some natural h then the differentiable manifold Γ is extremal.

3. Main results.

Theorem 1. Let g(x̄) =
∑N

i=1 αifi(x̄). Then, in the conditions of the lemma the
following formula is fair∫ ∞

−∞
· · ·
∫ ∞
−∞

(∫
Ω
e2πig(x̄)dx̄

)2h

dα1 · · · dαN =

∫
Π

ds√
G0

,

where the surface integral at the right side of the equality is taken over the surface defined
by system of the equations

f1(x̄1) + f1(x̄2) + · · ·+ f1(x̄h)− f1(x̄h+1)− f1(x̄h+2)− · · · − f1(x̄2h) = 0,

f2(x̄1) + f2(x̄2) + · · ·+ f2(x̄h)− f2(x̄h+1)− f2(x̄h+2)− · · · − f2(x̄2h) = 0,

· · · · · · · · ·

fj(x̄1) + fj(x̄2) + · · ·+ fj(x̄h)− fj(x̄h+1)− fj(x̄h+2)− · · · − fj(x̄2h) = 0, (3)

· · · · · · · · ·

fN (x̄1) + fN (x̄2) + · · ·+ fN (x̄h)− fN (x̄h+1)− fN (x̄h+2)− · · · − fN (x̄2h) = 0

in Ω2h, G0 is a Gram determinant of gradients of functions standing on the left parts of
equations from the system (3).
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Remark. We can describe G0 more explicitly. Let’s designate

Fj(x̄) = fj(x̄1) + fj(x̄2) + · · ·+ fj(x̄h)−

−fj(x̄h+1)− fj(x̄h+2)− · · · − fj(x̄2h)

with x̄ = (x̄1, x̄2, ..., x̄2h) ∈ R2hn. It is easy to see that the gradient vector for the function
Fj(x̄) has a view

∇Fj(x̄) = (∇fj(x̄1),∇fj(x̄2), ...,∇fj(x̄h),

−∇fj(x̄h+1),−∇fj(x̄h+2), ...,−∇fj(x̄2h)).

Now we put

A0 =

 ∇F1(x̄)
...

∇FN (x̄)

 .

Then one can write G0 = det(A0A
T
0 ).

Proof of the theorem 1. Performing easy calculations we get(∫
Ω
e2πig(x̄)dx̄

)h
=

∫
Ω
· · ·
∫

Ω
e2πi(g(x̄1)+···+g(x̄h))dx̄1 · · · dx̄h, (4)

where the function g(x̄) stands for a linear combination of the functions f1(x̄), ..., f1(x̄):

g(x̄) = α1f1(x̄) + · · ·+ αNfN (x̄)

with real coefficients. Consider now the functions

ϕj(x̄) = uj = fj(x̄1) + · · ·+ fj(x̄h), j = 1, ..., N,

with x̄s = (xs1, ..., xsn). Since the considered functions are continuous and the domain
Ω is closed, then there exists a positive number η > 0 such that G ≥ η. Applying the
consequence of the lemma 1 from the work [2,6], we can represent the integral (4) as below∫

Ω
· · ·
∫

Ω
e2πi(α1(f1(x̄1)+···+f1(x̄h))+···+αN (fN (x̄1)+···+fN (x̄h)))dx̄1 · · · dx̄h =

=

∫ M1

m1

· · ·
∫ Mn

mn

(∫
Π

ds√
G

)
e2πi(α1u1+···+αnun)du1 · · · dun, (5)

designating by Π = Π(ū) the surface defined by the system of equations

fj(x̄1) + · · ·+ fj(x̄h) = uj , j = 1, ..., N,

and here the numbers mj , Mj stand for the minimal and maximal values of the function
ϕj(x̄). Then, considering the last integral as a Fourier transformation, we will have by
Parseval identity:∫ ∞

−∞
· · ·
∫ ∞
−∞

∣∣∣∣∫
Ω
e2πi(α1f1(x̄)+···+αNfN (x̄))dx̄

∣∣∣∣2h dα1 · · · dαN =
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= (2π)N
∫ M1

m1

· · ·
∫ Mn

mn

(∫
Π

ds√
G

)2

du1 · · · dun, (6)

and the equality is understood in the sense that from the convergence of one of its two
parts the convergence of other part follows, and the corresponding values are equal.

Now we will use (6) to prove the statement of the main theorem. Let’s assume that
the right side part of the equality (6) is convergent. Applying the lemma 1, we have:∫

Π(ū)

ds√
G

= lim
h→0

1

(2δ)N

∫
uj−δ<ϕj<uj+δ

dx̄. (7)

Therefore, designating the left part of (6) ϕD(ū), we can, represent the last integral by
the lemma 1 and its corollary write

∫ M1

m1

· · ·
∫ MN

mN

(∫
Π(ū)

ds√
G

)2

dū =

∫ M1

m1

· · ·
∫ MN

mN

ϕD(ū)ϕD(ū)dū =

=

∫ M1

m1

· · ·
∫ MN

mN

ϕD(ū) lim
h→0

1

(2δ)N

∫
uj−δ<ϕj<uj+δ

dx̄dū.

Applying the lemma 3 under integral on the right part it is possible to rearrange the
orders of integration and passing to the limit. For this purpose we put δ = δn with δn → 0
and apply the specified lemma to our integral, when δ = δn:∫ M1

m1

· · ·
∫ MN

mN

ϕD(ū)ϕD(ū)dū =

=

∫ M1

m1

· · ·
∫ MN

mN

ϕD(ū) lim
n→∞

1

(2δn)N

∫
uj−δn<ϕj<uj+δn

dx̄dū =

= lim
n→0

1

(2δn)N

∫ M1

m1

· · ·
∫ MN

mN

ϕD(ū)

∫
uj−δn<ϕj<uj+δn

dx̄dū =

= lim
h→0

1

(2δ)N

∫ M1

m1

· · ·
∫ MN

mN

(∫
Π′(ū)

ds′√
G′

)∫
uj − δ < ϕj < uj + δ

j = 1, ..., N

dx̄dū, (8)

where ds′ means an element of the area of the surface defined in Ω by the system of
equations fj(x̄

′
1) + · · · + fj(x̄

′
h) = uj , j = 1, ..., N , and is a Gram determinant for the

system of functions standing at the left side of this system of equations. For the points
x̄′ ∈ Ωh we introduce the function f(x̄′) defining its value at x̄′ ∈ Π′(ū) to be equal to the
inner integral:

f(x̄′) =

∫
uj − δ < ϕj < uj + δ

j = 1, ..., N

dx̄.
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Let’s consider, at fixed δ, inner integral in the last chain of equalities (8), i.e. the
integral ∫

Π′(ū)

∫ uj − δ < ϕj < uj + δ
j = 1, ..., N

dx̄

 ds′√
G′

=

∫
Π′(ū)

f(x̄′)
ds′√
G′
.

Let’s prove that the function f(x̄′) is continuous in Ωh. Let x̄′1, x̄
′
2 ∈ Ωh,x̄′1 =

(x̄11, ..., x̄1h), x̄′2 = (x̄21, ..., x̄2h); x̄ij = (x1
ij , ..., x

n
ij) ∈ Rn, i = 1, 2, and∑

j

∑
s

(xs1j − xs2j)2 ≤ ε

for given ε > 0. Then, denoting u1
j = ϕj(x̄

′
1), u2

j = ϕj(x̄
′
2) (here we use top indexing) we

in accordance with the formula on finite increments have:

∣∣u1
j − u2

j

∣∣ =

∣∣∣∣∣∣
∑

1≤s≤n

∑
1≤i≤h

(
∂fj(x̄

′
i + θ̄)

∂xis
(x′1i

s−x′2i
s
)

)∣∣∣∣∣∣ ≤M√nhε
for some θ̄, if

∑
s

∑
i(x
′
1i
s − x′2i

s)2 ≤ ε, and M stands for maximal value of partial
derivatives of the functions fj(x̄) in the considered domain. Therefore, recalling the defi-
nition of the function f(x̄′), we find:∣∣f(x̄′1))− f(x̄′2)

∣∣ =|
∫
u1
j − δ < ϕj < u1

j + δ

j = 1, ..., N

dx̄−

−
∫
u2
j − δ < ϕj < u21

j + δ

j = 1, ..., N

dx̄ | .

The integrals at the right side of this equality express volumes of pre-images of two cubes
with sufficiently close centers, when ε is small enough. From geometric representations
it is clear that the difference between these volumes coincides with the sum of volumes
of pre-images of parallelepipeds including lateral sides of the two initial cubes. Since the
number of lateral sides is not exceeding 2N , then we have∣∣f(x̄′1)− f(x̄′2)

∣∣ ≤ 2N max
j

∫
u1j−δ−M

√
nhε<ϕj<u1j−δ+M

√
nhε

dx̄+

+2N max
j

∫
u2j+δ−M

√
nhε<ϕj<u2j+δ+M

√
nhε

dx̄.

These integrals can be bounded by a similar way. Estimate first of them. We have∫
u2j+δ−M

√
nhε<ϕj<u2j+δ+M

√
nhε

dx̄ =
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√
nhε

u2j+δ−M
√
nhε

du1

∫ M2

m2

du2 · · ·
∫ MN

mN

duN

∫
Π(ū)

ds√
G
≤

≤ 2

N∏
k=2

(Mk −mk)

√
nhε

η
Π0; Π0 = max

ū

∫
Π(ū)

ds√
G

Since the domain Ω is bounded and the functions are continuous the last expression tends
to 0 as ε → 0. Therefore, the function f(x̄′) is continuous. Applying the consequence to
the lemma 1 of the work [6], we find:∫ M1

m1

· · ·
∫ MN

mN

∫
Π(ū)

dū

∫
uj − δ < ϕj < uj + δ

j = 1, ..., N

dx̄
ds′√
G′

=

∫ M1

m1

· · ·
∫ MN

mN

dū

∫
Π(ū)

f(x̄′)
ds′√
G′

=

∫
−δ < ϕj − ϕ′j < δ

j = 1, ..., N

dx̄dx̄′.

So, from the equality (8) we derive∫ M1

m1

· · ·
∫ MN

mN

ϕD(ū)ϕD(ū)dū =

= lim
h→0

1

(2δ)N

∫
−δ < ϕj − ϕ′j < δ

j = 1, ..., N

dx̄dx̄′ =

∫
Π0

ds√
G0

,

where G0 is defined above.

The left part of the received equality under condition of existence of the right or left
part of (8) coincides with the integral on the right part (8). It is clear that the all of
reasonings performed above can be made in opposite direction. So, the theorem 1 is
proven.

Theorem 2. Let the conditions of the theorem 1 be satisfied. If the integral∫ ∞
−∞

∫ ∞
−∞
· · ·
∫ ∞
−∞

∣∣∣∣∫
Ω
e2πi(α1f1(x̄)+α2f2(x̄)···+αnfn(x̄))dx

∣∣∣∣2h dα1dα2 · · · dαn,

has finite exponent of convergence, then the manifold Γ = (f1(x̄), f2(x̄), · · · , fn(x̄)) is
extremal.

This theorem is an easy consequence of the theorem 1.
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Abstract. In the paper we prove strong law of large numbers for the family of first passage times
for the level in random walk described by a non-linear function of autoregression process of order
one (AR (1)).
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1. Introduction

Let on some probability space (Ω, F, P ) we are given the sequence of independent
identically distributed random variables ξn = ξn (ω) , n ≥ 1, ω ∈ Ω.

As is known ([1]-[9]), autoregression process of order one is determined as the solution
of the equation

Xn = βXn−1 + ξn, n ≥ 1

where β is some fixed number and the initial value of the process X0 is independent of the
innovation {ξn}.

Assume

Tn =

n∑
k=1

XnXk−1 and Tn =
Tn
n
, n ≥ 1.

A number of asymptotic properties of distributed sums Tn, n ≥ 1 were studied in the
paper [1].

Let us consider the family of the first exit times

ta = inf
{
n ≥ 1 : n∆

(
Tn

)
> a

}
(1)

∗Corresponding author.
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for the level a ≥ 0, where ∆ (x), x ∈ R = (−∞,∞) is some Borel function.
The family of the stoppage time ta, a ≥ 0 of the form (1) play a significant roll in

applied fields of theory of probability and mathematical statistics ([1-6]). Note that the
boundary value problems related to the family of the first passage time

τa = inf

{
n ≥ 1 : n∆

(
Sn
n

)
> a

}
,

where

Sn =

n∑
k=1

ξk, n ≥ 1

(see [7], [10]) are on the base of classic theory of nonlinear renewal.
In the case ∆ (x) = x the limit theorems for the family of the first exit times ta of the

form (1) were studied in the monograph [10].
In the present paper we prove a theorem on strong law of large numbers for the family

τa, a ≥ 0.

2. Formulation and proof of the main result

For the function ∆ (x) we will suppose that it is positive and twice continuously-
differentiable in R.

In the paper [1] (see also [9], it was proved that under the continuous Eξ1 = 0, Dξ1 = 1,
|β| < 1 and EX2

0 < ∞ it holds the strong law of large numbers for the sequence of the
sums Tn, n ≥ 1:

Tn
n

a.s.→ β

1− β2
= λ as n→∞. (2)

By the made assumptions for the function ∆ (x) we have

n∆
(
Tn

)
= n∆ (λ) + u∆′ (λ)

(
Tn − λ

)
+

+
n

2
∆′′ (λn)

(
Tn − λ

)2
= n∆ (λ) + ∆′ (λ) (Tn − nλ) +

+
1

2
∆′′ (λ)

(
Tn − nλ√

n

)2

,

where λn is an intermediate point between λ and Tn, n ≥ 1.
Assume

Zn = n∆ (λ) + n∆ (λ) + ∆′ (λ) (Tn − nλ) =

n∑
k=1

ηk,

ηk = ∆ (λ) + ∆′ (λ) (XkXk−1 − λ)

and

εn =
1

2
∆′′ (λn)

(
Tn − nλ√

n

)2
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Hn = n∆
(
Tn

)
.

Then we have
Hn = Zn + εn. (3)

By (2),
Zn

n

a.s.→ ∆ (λ) and
εn
n

a.s.→ o (4)

as n→∞, by continuity
∆′′ (λn)

a.s.→ ∆′′ (λ) , n→∞.

Then from (3) and (4) it follows that

Hn

n

a.s.→ ∆ (ν) as n→∞. (5)

It holds

Theorem 1. Let |β| < 1, Eξ1 = 0, Dξ1 = 1 and EX2
0 < ∞. Assume that the above

mentioned conditions are fulfilled for the functions ∆ (x), moreover ∆ (λ) > 0.
Then

ta
a

a.s.→ 1

∆ (λ)
, a→∞.

Proof. From (5) it follows that sup
n
Hn =∞. Hence, by definition of the variable ta it

follows that P (ta <∞) = P

(
sup
n
Hn > a

)
= 1 for all a ≥ 0. Show that

ta
a.s.→ ∞ as a→∞

Indeed, by definition of the variable ta it increases as a function of a. Therefore

P
(
t∞ = lim

a→∞
ta ≤ ∞

)
= 1.

We have
P (t∞ ≤ n) = P

(
lim
a→∞

ta ≤ n
)

=

= lim
a→∞

P (ta ≤ n) = lim
a→∞

P

(
max
k≤n

Hk > a

)
= o

for all n ≥ 1.
This means that for all n ≥ 1

P (t∞ > n) = 1.

Hence it follows that P (t∞ =∞) = 1.
Thus, we have

P
(

lim
a→∞

ta =∞
)

= 1. (6)
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Prove that from (5) and (6) it follows that

Hta
ta

a.s.→ ∆ (ν) as a→∞. (7)

Denote

A =

{
ω :

Hn

n
→ ∆ (ν)

}

B = {ω : ta →∞}

C =

{
ω :

Hta

ta
→ ∆ (ν)

}
.

It is clear that

A ∩B ⊂ C. (8)

Taking into account P (A) = P (B) = 1, we have

P (A ∩B) = P (A) + P (B)− P (A ∪B) = 1

hence

P (A ∪B) = 1.

Then from (8) it follows that P (C) = 1. Thus, (7) is proved. By (7) the statement of
the theorem follows from the following two-sided inequality

Hta−1
ta

≤ a

ta
<
Hta

ta
,

whose validity follows from the definition of the first exit time ta of the form (1) .

From the proved theorem and the well known theorem on convergence of a sequence
of identically integrable random variables (see e.i. [10]) it follows the following result.

Corollary 1. Let the theorem conditions be fulfilled and the family ta
a , a > 0 be identically

integrable. Then

Eta
a
→ 1

∆ (ν)
, a→∞.

Remark 1. Note that the statement of the Corollary in the case ∆ (x) = x was proved in
the paper [4], where the sufficient condition was found for identically integrable family ta

a ,
a > 0.
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Queueing Systems
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Abstract. This article proposes a method for calculating steady-state probabilities of the
G/M/n/m queueing systems. The approach based on the use of fictitious phases and hyper-
exponential approximations with parameters of the paradoxical and complex type by method of
moments. The obtained results are verified using simulation models.

Key Words and Phrases: non-Markovian queueing system, hyperexponential approximation,
fictitious phases, method of moments.
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1. Introduction

For the study of non-Markovian process in queueing systems, phase-type distributions
are used with exponential distributions of delays in the phases [2, 5, 8]. In the case of
fixing the number of the phase, the states of the system has a Markov property that makes
it possible to represent the transitions between them in the form of a discrete Markov
process with continuous time. The order of approximation is the number of retained
initial moments of the original distribution.

Recently, interest in the hyperexponential distribution has increased since its use
showed its high performance in solving problems of summation of recurrent flows [4], in
computing characteristics of queuing systems with impatient customers [3] and Jackson’s
networks of queueing [6], and also in analyzing stock management systems [1].

Article [8] shows that the use of hyperexponential approximation (Hl) makes it possible
to determine with high accuracy the steady-state probabilities of non-Markovian single-
channel queuing systems. These probabilities are determined using solutions of a system of
linear algebraic equations obtained by the method of fictitious phases. To find parameters
of the Hl-approximation of a certain distribution it is sufficient to solve the system of
equations of the moments method. For the values V < 1 of the variation coefficient, roots
of this system are complex-valued or paradoxical (i.e., negative or with probabilities that
exceed the boundaries of the interval [0, 1] ) but in most cases as a result of summation of
probabilities of microstates, their complex-valued and paradoxical parts are annihilated.

∗Corresponding author.

http://www.cjamee.org 46 c© 2013 CJAMEE All rights reserved.



Calculating Steady-state Probabilities of the G/M/n/m Queueing Systems 47

The purpose of the paper is to use of the hyperexponential approximation method for
calculating steady-state probabilities of the G/M/n/m queueing systems. The obtained
results are verified using simulation models. We also indicate ways to evaluate the accuracy
of approach the obtained steady-state distribution to the true distribution without the
need to use simulation models.

2. Equations for steady-state probabilities of the Hl/M/n/m system

The hyperexponential distribution of order l is a phase-type distribution and provides
for choosing one of l alternative phases by a random process. With probability αs, the
process is at the sth phase and is in it during an exponentially distributed time with a
parameter λs.

Suppose that the times elapsed between two consecutive arrivals are independent ran-
dom variables distributed according to the hyperexponential law Hl (l ≥ 2) with probabil-
ities αs and parameters λs (1 ≤ s ≤ l) and the service time of each customer is distributed
exponentially with parameter µ. Let n and m denote the number of channels in the system
and limit on the queue length respectively.

Let us enumerate the Hl/M/n/m system’s states as follows: x0(s) corresponds to the
empty system and the time interval until the arrival of the first customer is in the phase s
(1 ≤ s ≤ l); xk(s) is the state, when there are k customers in the system (1 ≤ k ≤ n+m),
the time interval until the arrival of the next customer is in the phase s (1 ≤ s ≤ l). We
denote by p0(s) and pk(s) respectively, steady-state probabilities that the system is in the
each of these states. To calculate p0(s) and pk(s) we obtain the system of linear equations:

−λsp0(s) + µp1(s) = 0, 1 ≤ s ≤ l;

−(λs + kµ)pk(s) + αs

l∑
u=1

λupk−1(u) + (k + 1)µpk+1(s) = 0, 1 ≤ k ≤ n− 1, 1 ≤ s ≤ l;

−(λs + nµ)pk(s) + αs

l∑
u=1

λupk−1(u) + nµpk+1(s) = 0, n ≤ k ≤ n+m− 1, 1 ≤ s ≤ l;

−(λs + nµ)pn+m(s) + αs

l∑
u=1

λu
(
pn+m−1(u) + pn+m(u)

)
= 0, 1 ≤ s ≤ l;

n+m∑
k=0

l∑
u=1

pk(u) = 1.

(1)

Solving the system (1), we find the steady-state probabilities pk of the presence in the
queueing system of k customers using the formulas

pk =
l∑

u=1

pk(u), 0 ≤ k ≤ n+m. (2)
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3. Features of finding probabilities pk in the case of complex-valued or
paradoxical parameters of Hl-approximation

We calculate the approximate steady-state probabilities pk for the G/M/n/m system
using solutions of equations (1), written for the Hl/M/n/m system, considering the order
of approximation l from 2 to 6.

To find parameters ofHl-approximation of a certain distribution with a given coefficient
of variation it is sufficient to solve the system of equations of the moments method only
for the case of any one given mean value of this distribution since roots of the equations
of the moments method are invariant with respect to the scale transformation.

The system of equations of the moments method for approximating the distribution
of some random variable X using a random variable Yl distributed by law of Hl is of the
form

l∑
s=1

αs
λis

=
mi

i!
, 0 ≤ i ≤ 2l − 1;

l∑
s=1

αs = 1, (3)

where mi = E(Xi) is the initial moment of order i of the random variable X. The depen-
dence of the nature of the roots of system (3) on values of the variation coefficient V for
the original gamma distributions and Weibull distributions is described in [8]. For the val-
ues V < 1 of the variation coefficient, some of the roots of system (3) are complex-valued
but in most cases as a result of summation of probabilities of microstates the steady-state
probabilities pk are real-valued.

To illustrate this fact, we consider the solutions of system (1) for complex-valued
parameters αs and λs, limited to the case when l = 2, n = 1 and m = 1. In this case,
using the solutions of system (1) and formula (2), we obtain

p0 =
µ2

∆

(
(α2λ1 + α1λ2)µ

2+ α2λ
3
1 + α1λ

3
2+

+
(
α2(α1 + 2α2)λ

2
1 + 2α1α2λ1λ2 + α1(2α1 + α2)λ

2
2

)
µ
)
,

p1 =
λ1λ2µ

∆

(
µ2 + 2(α2λ1 + α1λ2)µ+ α2λ

2
1 + α1λ

2
2

)
, p2 = 1− p0 − p1,

∆ = (α2λ1 + α1λ2)
(
µ4 + ((α1 + 2α2)λ1 + (2α1 + α2)λ2) µ

3 + (λ1 + λ2)
2µ2+

+ ((2α1 + α2)λ1 + (α1 + 2α2)λ2)λ1λ2µ+ λ21λ
2
2

)
.

(4)

If parameters αs and λs (s = 1, 2) are complex-valued, then they can only be complex
conjugate, and all possible cases of alternation of signs before the imaginary unit can be
reduced to such two:

1) α1 = a+ ib, λ1 = c+ id; α2 = a− ib, λ2 = c− id;

2) α1 = a+ ib, λ1 = c− id; α2 = a− ib, λ2 = c+ id.
(5)

In each of these cases, the imaginary parts in expressions (4) for pk (k = 0, 1, 2) are
reduced, because the expressions

λ1 + λ2, λ1λ2, α1α2, λ21 + λ22, α2λ1 + α1λ2, α1λ1 + α2λ2,

α2λ
2
1 + α1λ

2
2, α2λ

3
1 + α1λ

3
2, α2

2λ
2
1 + α2

1λ
2
2
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of which consist pk, are real-valued.
In the case of complex-valued or paradoxical roots αs and λs of system (3), let us name

the function FHl
(t) = 1 −

l∑
s=1

αse
−λst ( t ≥ 0) the distribution pseudo-function by law of

Hl. Let us show that the function FHl
(t) is a real-valued function if αs and λs (1 ≤ s ≤ l)

are roots of system (3).
In fact, if some of the roots of system (3) are complex-valued, then they can only be

complex conjugate, and all possible cases of alternation of signs before the imaginary unit
can be reduced to two cases presented in (5). In each of these cases, the imaginary parts
in the expression for FHl

(t) are reduced, so the result is the real-valued function:

1) α1e
−λ1t + α2e

−λ2t = 2 e−ct (a · cos(dt) + b · sin(dt)) ;

2) α1e
−λ1t + α2e

−λ2t = 2 e−ct (a · cos(dt)− b · sin(dt)) .

The absolute deviation of the function of distribution by law G from a function FHl
(t)

which parameters are roots of system (3), we will evaluate with the help of integral

∆l(F ) =

∞∫
0

|FHl
(t)− FG(t)|dt,

where FG(t) is the probability distribution function by law G.
Let Γ(V ), W (V ) and U [a, b] denote the gamma distribution, Weibull distribution with

coefficients of variation V, and uniform distribution on the interval [a, b] respectively.
Table 1 gives deviation values of ∆l(F ) for l = 2, . . . , 6, calculated by results of approx-

imation of different distributions with means 1. With increasing order of Hl-distribution,
the value of deviation ∆l(F ) decreases, and with the increase of the coefficient of variation
for V > 1 the deviation increases, much faster for the Weibull distribution compared with
the gamma distribution. For distributions W (0.7), W (0.8), W (0.9) and W (0.95) for some
values of l the deviation ∆l(F ) =∞. In each of these cases, one of roots λs of system (3)
is real, but negative. Therefore, for the corresponding distribution pseudo-function, the
limit relation lim

t→∞
FHl

(t) =∞ is valid. For these values of l, the steady-state probabilities

pk, obtained using solutions of equations (1), written for the Hl/M/n/m system, can be
paradoxical.
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Table 1: Values of the absolute deviation ∆l(F ) for different distributions

Distribution name ∆2(F ) ∆3(F ) ∆4(F ) ∆5(F ) ∆6(F )

Γ(0.001) 0.3629 0.2605 0.2092 0.1773 0.1549
U [0, 2] 0.1139 0.0632 0.0411 0.0295 0.0224
Γ(0.7) 0.0007 7.2 · 10−5 1.4 · 10−5 3.7 · 10−6 1.2 · 10−6

W (0.7) 0.0071 0.0026 0.0006 ∞ 6.1 · 10−5

W (0.8) 0.0043 ∞ 0.0004 0.0001 ∞
W (0.9) 0.0049 0.0005 ∞ 0.0001 4.8 · 10−5

W (0.95) 0.0031 0.0005 0.0001 ∞ 3.5 · 10−5

Γ(4) 0.3146 0.1412 0.0787 0.0497 0.0340
W (3) 0.3973 0.2790 0.2170 0.1786 0.1524

Calculations show that properties of the solutions of system (1) almost repeats the form
of the roots αs (1 ≤ s ≤ l) of system (3). Let’s show it on examples of U [0, 0.25]/M/n/m
and Γ(0.7)/M/n/m queueing systems.

For the order of approximation l from 2 to 6 the roots of system (3) for uniform
distribution on the interval [0, 0.25] are as follows:

l = 2 : α1,2 = 0.5± 0.86603i, λ1,2 = 12± 6.92820i;

l = 3 : α1 = 2.65193, α2,3 = −0.82596± 0.60435i,

λ1 = 18.57748, λ2,3 = 14.7113± 14.03505i;

l = 4 : α1,2 = −0.58906∓ 0.89679i, α3,4 = 1.08906± 4.95602i,

λ1,2 = 16.83032± 21.25934i, λ3,4 = 23.16968± 6.93787i;

l = 5 : α1 = 15.24547, α2,3 = 1.02783∓ 0.49426i, α4,5 = −8.15056± 2.37119i,

λ1 = 29.17391, λ2,3 = 18.59739± 28.56818i, λ4,5 = 26.81565± 13.94129i;

l = 6 : α1,2 = 0.31983± 1.17903i, α3,4 = −3.40926∓ 12.71978i,

α5,6 = 3.58943± 36.22605i,

λ1,2 = 20.12746± 35.94138i, λ3,4 = 29.88567± 21.01018i;

λ5,6 = 33.98688± 6.94008i.

For l = 2 solutions of the corresponding system (1) are complex conjugate with positive
real parts; for l = 3 pk(1) > 0 ∀ k, pk(2) and pk(3) are complex conjugate with negative
real parts for most values of k. For l = 4 we have two pairs of complex conjugate solutions
with negative real parts for most values of k in the first pair and with positive real parts
∀ k in the second pair. For l = 5 pk(1) > 0 ∀ k, and for s = 2, 3 and s = 4, 5 we have
two pairs of complex conjugate solutions pk(s) with positive real parts in the first pair and
with negative real parts in the second pair for most values of k. For l = 6 we have three
pairs of complex conjugate solutions pk(s) with negative real parts in the second pair and
with positive real parts in the first and third pairs.
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For the order of approximation l from 2 to 6 the roots of system (3) for Γ(0.7) distri-
bution with mean 0.125 are as follows:

l = 2 : α1,2 = 0.5± 6.18520i, λ1,2 = 16± 1.31077i;

l = 3 : α1 = 0.02814, α2,3 = 0.48592± 15.70863i,

λ1 = 39.57700, λ2,3 = 16.21150± 0.53937i;

l = 4 : α1 = 0.00548, α2 = 0.08597, α3,4 = 0.45428± 29.37436i,

λ1 = 69.97401, λ2 = 25.49286, λ3,4 = 16.26656± 0.29607i;

l = 5 : α1 = 0.00186, α2 = 0.01855, α3 = 0.16685, α4,5 = 0.40637± 47.30434i,

λ1 = 108.92822, λ2 = 37.04067, λ3 = 21.45221,

λ4,5 = 16.28945± 0.18743i;

l = 6 : α1 = 0.00081, α2 = 0.00679, α3 = 0.03738, α4 = 0.26943,

α5,6 = 0.34279± 69.58145i,

λ1 = 156.50494, λ2 = 51.28750, λ3 = 27.95129, λ4 = 19.65369,

λ5,6 = 16.30125± 0.12940i.

For l from 2 to 6 properties of solutions pk(s) of system (1) in the sense of their signs
and whether they are real or complex, completely coincide with the properties of the roots
αs (1 ≤ s ≤ l) of system (3) with the same numbers.

4. Numerical results

Let us present the results of calculating steady-state probabilities on examples of the
U [0, 0.25]/M/10/15, U [0, 0.125]/M/20/15 systems and Γ(V )/M/n/15, W (0.9)/M/n/15
systems for n = 10, 20 and V = 0.001, 0.7, 4.

Let E(Tλ) denote the mean of the times elapsed between two consecutive arrivals. We
take E(Tλ) = 0.125 and E(Tλ) = 0.0625 for n = 10 and n = 20 respectively, and µ = 1 is
the parameter of exponential distribution of service times.

The obtained results are verified using simulation models constructed with the help of
the GPSS World tools [7]. The results obtained using GPSS World slightly differ from one
another for different numbers of library random-number generators used for simulating
random variables, i.e., times elapsed between two consecutive arrivals and service times.
Therefore, we use averaged results obtained using simulation models with different values
of random-numbers generators that take on values of natural numbers from 6 to 10.

Table 2. Results of the calculation of steady-state characteristics of the
G/M/10/15 and G/M/20/15 systems with different G-distributions
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G-distribuion Characte- Method of calculation and values of characteristics

name, ristic H2 H3 H4 H5 H6 GPSS
value of n name World

N 8.4783 8.4809 8.4809 8.4809 8.4809 8.4759
Γ(0.001), ∆l(sim) 0.0036 0.0026 0.0026 0.0026 0.0026 −
n = 10 ∆l,l−1 − 3.38 · 10−3 3.02 · 10−5 3.64 · 10−7 3.49 · 10−9 −

N 16.2230 16.2245 16.2245 16.2245 16.2245 16.1875
Γ(0.001), ∆l(sim) 0.0102 0.0095 0.0095 0.0095 0.0095 −
n = 20 ∆l,l−1 − 2.21 · 10−3 1.07 · 10−5 9.55 · 10−8 1.24 · 10−9 −

N 8.8186 8.8206 8.8206 8.8206 8.8206 8.8138
U [0, 1/8], ∆l(sim) 0.0034 0.0023 0.0023 0.0023 0.0023 −
n = 10 ∆l,l−1 − 2.73 · 10−3 4.64 · 10−5 1.16 · 10−6 3.57 · 10−8 −

N 16.4409 16.4422 16.4422 16.4422 16.4422 16.4356
U [0, 1/16], ∆l(sim) 0.0038 0.0038 0.0038 0.0038 0.0038 −
n = 20 ∆l,l−1 − 1.81 · 10−3 1.93 · 10−5 4.05 · 10−7 1.36 · 10−8 −

N 8.9531 8.9531 8.9531 8.9531 8.9531 8.9605
Γ(0.7), ∆l(sim) 0.0017 0.0017 0.0017 0.0017 0.0017 −
n = 10 ∆l,l−1 − 2.11 · 10−5 9.39 · 10−8 1.21 · 10−9 2.55 · 10−11 −

N 16.5339 16.5339 16.5339 16.5339 16.5339 16.5306
Γ(0.7), ∆l(sim) 0.0027 0.0027 0.0027 0.0027 0.0027 −
n = 20 ∆l,l−1 − 1.41 · 10−5 4.20 · 10−8 4.46 · 10−10 1.08 · 10−11 −

N 9.2464 9.2463 − 9.2463 9.2463 9.2428
W (0.9), ∆l(sim) 0.0019 0.0019 − 0.0019 0.0019 −
n = 10 ∆l,l−1 − 1.97 · 10−4 − − 4.55 · 10−9 −

N 16.7440 16.7440 − 16.7440 16.7440 16.7426
W (0.9), ∆l(sim) 0.0027 0.0027 − 0.0027 0.0027 −
n = 20 ∆l,l−1 − 1.40 · 10−4 − − 2.04 · 10−9 −

N 10.1667 9.7778 9.7522 9.7532 9.7536 9.7521
Γ(4), ∆l(sim) 0.0784 0.0216 0.0094 0.0052 0.0032 −
n = 10 ∆l,l−1 − 0.0680 0.0146 5.41 · 10−3 2.25 · 10−3 −

N 16.5677 16.2055 16.1864 16.1874 16.1876 16.1773
Γ(4), ∆l(sim) 0.0652 0.0183 0.0092 0.0062 0.0048 −
n = 20 ∆l,l−1 − 0.0576 0.0117 4.41 · 10−3 1.83 · 10−3 −
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Let us introduce the designation: N is the average number of customers in a queueing
system, and

∆(l,l−1) =
n+15∑
k=0

|pk(l) − pk(l−1)|, ∆l(sim) =
n+15∑
k=0

|pk(l) − pk(sim)|,

pk(sim) =
1

5

10∑
i=6

pk(sim,i), 0 ≤ k ≤ n+ 15, 2 ≤ l ≤ 6.

Here pk(l) are values of probabilities pk obtained using the Hl-approximation, pk(sim) is the
average value of probabilities pk(sim,i), obtained by means of the simulation model using
the number i of random-numbers generator for 6 ≤ i ≤ 10. Thus, the quantities ∆l(sim)

are measures of deviations of the distributions {pk(l)} from distribution {pk(sim)}, and the
quantities ∆(l,l−1) give an opportunity to estimate the deviation of distributions {pk(l)}
from distributions {pk(l−1)}.

In Table 2 we present the results of calculation of steady-state characteristics of the
G/M/10/15 and G/M/20/15 systems with the considered gamma, Weibull and uniform
distributions. The values of deviations ∆l(sim) and ∆(l,l−1) decrease with increasing order
of Hl-distributions in approximations, and it means that the values of distribution {pk(l)}
with each step getting closer to a true distribution {pk}. With the growth of the variation
coefficient of distributions after the value of V > 1, as expected taking into account the
behavior of deviations ∆l(F ), the values of the absolute deviations ∆l(sim) and ∆(l,l−1)
also increase. For the distribution W (0.9) the deviation ∆4(F ) = ∞ and, consequently,
some values of ”probabilities” of the distribution {pk(4)} go beyond the interval [0, 1].

Presented results show that increasing the number of channels of the G/M/n/m system
has no significant effect on accuracy of calculating the steady-state probabilities.

Testing the proposed method on the M/G/1/m systems, for which we can find exact
values of the steady-state distribution {pk}, shows that in cases where the deviation ∆(6,5)

is less than 10−2, the deviation of the distribution {pk(l)} from the true distribution {pk}
and deviation ∆(l+1,l) are numbers of the same order, and at the same time the deviations
of distribution {pk(sim)} from the distribution {pk} usually no less than 10−4. Thus, in
most cases we can use values ∆(l,l−1) to evaluate accuracy of the approximation of the
distribution {pk(l−1)} to the true {pk} for 3 ≤ k ≤ 6. In cases where ∆(l,l−1) < 10−4, we
can argue that the distribution {pk(l−1)} is more accurate approximation than {pk(sim)}.

5. Conclusions

This paper shows that the application of hyperexponential approximation of distribu-
tions the times elapsed between two consecutive arrivals allows us to calculate steady-state
probabilities of the G/M/n/m queueing systems with high accuracy (higher than in the
case of using simulation models). We find these probabilities using solutions of a system
of linear algebraic equations obtained by the method of fictitious phases.

To obtain parameters of Hl-approximation of a certain distribution it is necessary
to solve the system of equations of the moments method. For the values V < 1 of the



54 S.A. Aliyev, Y.I. Yeleyko, Y.V. Zhernovyi

variation coefficient, some of the roots of this system are complex-valued or, having a sense
of probabilities, go beyond the interval [0, 1], but in most cases the final result is close to
the desired distribution {pk}.

Computing deviations ∆(l,l−1) allows us to track the accuracy of approaching distribu-
tions {pk(l−1)} to the true distribution {pk} without the need to use simulation models.
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On the 3D Dynamic Normal Stress Field on the Inter-
face of the Bi-layered Hollow Cylinder Under Action a
Moving Load in the Interior of That

M.A. Mehdiyev

Abstract. The paper studies normal stress field on the interface surface of the bi-layered hollow
cylinder under action on the interior of that the moving load in the 3D state with utilizing the exact
equations and relations of the elastodynamics. It is assumed that in the interior of the cylinder
the point located with respect to the cylinder axis moving forces act and the distribution of these
forces is non-axisymmetric and is located within a certain central angle. To solve the corresponding
mathematical problem the moving coordinate system is used and the Fourier transform of with
respect to the axial coordinate is employed. These transforms are presented in the Fourier series
form with respect to the circumferential coordinate and the coefficients of these series are found
analytically from the corresponding field equations and relations. The inverses of the mentioned
transforms are determined numerically as a result of which normal radial stress acting on the
interface surface between the layers of the cylinder is analyzed. It is examined the influence of the
problem parameters such as moving load velocity, the thicknesses ration of the cylinder’s layers,
the ration of the inner layer thickness to the external radius of the cross-section of this layer and
material properties of the layers to the stress response to the moving load.

1. Introduction

In the paper [1, 2] studied the corresponding 3D dynamic problem for the system consisting
of the hollow cylinder and surrounding elastic medium and the review of the related other
investigations were considered in the papers [1 – 4]. Consequently, the present paper
attempt to develop the investigations started in the paper [1] for the bi-layered hollow
cylinder.
Note that detailed consideration of the dynamics of the bi-material elastic systems has
been made in the monograph [5] from which and from the other reviews made in the
papers [1- 4] follows that up to now the regarding investigations have been made mainly
for axisymmetric cases (except the study carried out in the papers [1, 2]). Therefore, each
investigation on the 3D dynamics of the cylindrical bi-material systems can be taken as
new knowledge in this field which has not only theoretical and application sense.
Taking the foregoing discussion into consideration, in the present paper it is made the
attempt to investigate, within the scope of the 3D elastodynamics, normal interface stress
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on the interface surface of the bi-layered hollow cylinder in the case wherein the interior
of the cylinder the moving load acting within a certain arc and point located with respect
to the axial coordinate moving load acts.

2. Formulation of the problem

We introduce to the consideration a bi-layered hollow cylinder the sketch of which is
illustrated in Fig. 1 and assume that the thicknesses of the walls of the inner and outer
cylindersareh(2)and h(1)respectively, and the external radius of the cross section of the
inner cylinder isR. We denote by the upper index (2) (by the upper index (1) the values
related to the inner (outer) layer of the cylinder and associate the cylindrical system
of coordinates Orzθ(Fig. 1a) with the axis of the cylinder. Moreover, we assume that
in the interior of the inner hollow cylinder a point located with respect to the cylinder
axis and that non-uniformly distributed in the circumferential direction (Fig. 1b) moving
normal forces act and these forces move with constant velocity V in the Oz axis direction.
Thus, within these framework we attempt to investigate the non-axisymmetric dynamic
response of the bi-layered hollow cylinder to the moving forces and analyze the response
of the interface normal stress to these forces.

Fig. 1.The sketch of the considered system (a) and the sketch of the distribu-
tion of the non-axisymmetric normal forces (b)

We write the following complete system of field equations of the 3D elastodynamics,
as well as the corresponding boundary and contact conditions within the framework of
which the present investigation will be made.

Equations of motion:
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Elasticity relations:
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The conventional notation is use in equations (1) and (2).
The corresponding boundary and contact conditions for the case under consideration can
be formulated as follows.

σ(2)rr

∣∣∣
r=R−h(2)

=

{
−Pαδ(z − V t) for − α/2 ≤ θ ≤ α/2
0 for θ ∈ ([−π,+π]− [−α/2, α/2])

,

σ
(2)
rθ

∣∣∣
r=R−h(2)

= 0, σ(2)rz

∣∣∣
r=R−h(2)

= 0,

σ(1)rr

∣∣∣
r=R+h(1)

= 0, σ
(1)
rθ

∣∣∣
r=R+h(1)

= 0, σ(1)rz

∣∣∣
r=R+h(1)

= 0, (3)

σ(1)rr

∣∣∣
r=R

= σ(2)rr

∣∣∣
r=R

, σ
(1)
rθ

∣∣∣
r=R

= σ
(2)
rθ

∣∣∣
r=R

, σ(1)rz

∣∣∣
r=R

= σ(2)rz

∣∣∣
r=R

,

u(1)r

∣∣∣
r=R

= u(2)r

∣∣∣
r=R

, u
(1)
θ

∣∣∣
r=R

= u
(2)
θ

∣∣∣
r=R

, u(1)z

∣∣∣
r=R

= u(2)z

∣∣∣
r=R

, (4)∣∣∣σ(1)rr

∣∣∣ ; ∣∣∣σ(1)θθ

∣∣∣ ; ∣∣∣σ(1)zz

∣∣∣ ; ∣∣∣σ(1)rθ

∣∣∣ ; ∣∣∣σ(1)rz

∣∣∣ ; ∣∣∣σ(1)θz

∣∣∣ ;∣∣∣u(1)r ∣∣∣ ; ∣∣∣u(1)θ ∣∣∣ ; ∣∣∣u(1)z ∣∣∣→ 0 as
√

(z − V t)2 → +∞, (5)

where in (3)Pα is determined from the following relation∫ +α/2

−α/2
Pα(R− h) cos θdθ = (R− h)P0 = const⇒ Pα = P0/(2 sin(α/2)). (6)

Thus, the investigation of the response of the interface normal stress to the mov-
ing load is reduced to the boundary-contact problem (1) – (5) for solution to which the
method developed in the papers [1,2] is employed. Now we consider some fragments of
the application of the mentioned method for the problem under consideration.
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3. Method of solution

As in the papers [1, 2] for solution to the foregoing mathematical problem, according
to [6], we use the following representation:

u(m)
r =

1

r

∂

∂θ
Ψ(m) − ∂2

∂r∂z
X(m), u

(m)
θ = − ∂

∂r
Ψ(m) − 1

r

∂2

∂θ∂z
X(m),

u(m)
z = (λ(m) + µ(m))−1

(
(λ(m) + 2µ(m))∆1+ µ(m) ∂

2

∂z2
− ρ(m) ∂

2

∂t2

)
X(m),

∆ 1 =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2
,m = 1, 2 (7)

In (7) the functions Ψ(m) and X(m) are the solutions of the equations(
∆1 +

∂2

∂z2
− ρ(k)

µ(k)
∂2

∂t2

)
Ψ(m) = 0,

[(
∆ 1 +

∂2

∂z2

)(
∆ 1 +

∂2

∂z2

)
−

−ρ(m) λ(m) + 3µ(m)

µ(m)(λ(m) + 2µ(m))
×

×(∆ 1 +
∂2

∂z2
)

)
∂2

∂t2
+

(ρ(m))2

µ(m)(λ(m) + 2µ(m))

∂4

∂t4

]
X(m) = 0. (8)

We introduce a moving cylindrical coordinate system O′r′θ′z′ which is connected with
the reference cylindrical coordinate system Orθz through the following relations:

r′ = r, θ′ = θ, z′ = z − V t. (9)

As a result of the employing of the moving coordinate system (9), the operators ∂2
/
∂t2

and ∂4
/
∂t4 in the foregoing equations are replaced with the operators V 2∂2

/
∂z′2 and

V 4∂4
/
∂z′4, respectively, and in this way, equations rewritten in the moving coordinate

system, are obtained. The exponential Fourier transform fF =
∫ +∞
−∞ f(z′)eisz

′
dz′ with

respect to the moving coordinate z′ (where s is a transformation parameter) is applied to
all the equations and relations rewritten with the moving coordinates.

Below, we will make all mathematical operations with the moving coordinates and will
omit the upper primes over them.

According to the problem statement,we use the following presentations for the originals
of the sought values. {

σ(m)
rr ; σ

(m)
θθ ;σ(m)

zz ;σ
(m)
rθ ;u(m)

r ;u
(m)
θ ; Ψ(m)

}
=

1

π

∫ +∞

0

{
σ
(m)
rrF ; σ

(m)
θθF ;σ

(m)
zzF ;σ

(m)
rθF ;u

(m)
rF ;u

(m)
θF ; Ψ

(m)
F

}
cos(sz)ds,

{
σ
(m)
θz ; σ(m)

rz ;u(m)
z ; X(m)

}
=

1

π

∫ +∞

0

{
σ
(m)
θzF ; σ

(m)
rzF ;u

(m)
zF ; X

(m)
F

}
sin(sz)ds. (10)



60 M.A. Mehdiyev

Substituting the expressions in Eq. (10) into the equations in (8) and into the rewritten
relations in the moving coordinate system, it is obtained the following equations for the

functions Ψ
(m)
F and X

(m)
F : (

∆ 1 − s2(1−
ρ(k)

µ(k)
V 2)

)
Ψ

(m)
F = 0,

[(
∆ 1 − s2

) (
∆ 1 − s2

)
− ρ(m) λ(m) + 3µ(m)

µ(m)(λ(m) + 2µ(m))
×

(∆1 − s2)
)

(−s2V 2) +
(ρ(m))2

µ(m)(λ(m) + 2µ(m))
s4V 4

]
X

(m)
F = 0. (11)

According to the periodicity of the problem under consideration with respect to the

circumferential coordinate θ, the Fourier transform of the functions Ψ
(m)
F and X

(m)
F can

be presented in the Fourier series form as follows.

Ψ
(m)
F (r, s, θ) =

∞∑
n=1

Ψ
(m)
Fn (r, s) sinnθ, X

(m)
F (r, s, θ) =

1

2
X

(m)
F0 (r, s) +

∞∑
n=1

X
(m)
Fn (r, s) cosnθ.

(12)
In this way, we obtain from expressions in (12) andequations in (11) the following

equation:

(
∆1n − (ζ

(m)
1 )2

)
ψ
(m)
Fn = 0,

(
∆ 1n − (ζ

(m)
2 )2

)(
∆ 1n − (ζ

(m)
3 )2

)
X

(m)
Fn = 0,

∆ 1n =
d2

dr2
+

d

rdr
− n2

r2
, (13)

where

(ζ
(m)
1 )2 = s2

(
1− ρ(m)V 2

µ(m)

)
(14)

(ζ
(m)
2 )2 and (ζ

(m)
3 )2 in (13) are determined from the solutions of the following equation.

µ(m)(ζ(m))4 − s2(ζ(m))2
[
−ρ(m)V 2 − (λ(m) + 2µ(m)) +

+
µ(m)

λ(m) + 2µ(m)

(
−ρ(m)V 2 − µ(m)

)
+

(λ(m) + µ(m))2

λ(m) + 2µ(m)

]
+

s4

(
−ρ(m)V 2

λ(m) + 2µ(m)
− 1

)(
−ρ(m)V 2 − µ(m)

)
= 0. (15)

The solutions to equations in (13) are determined as follows:

ψ
(m)
Fn = A

(m)
1n In(ζ

(m)
1 r) +B

(m)
1n Kn(ζ

(m)
1 r), χ

(m)
Fn = A

(m)
2n In(ζ

(m)
2 r) +A

(m)
3n In(ζ

(m)
3 r)+
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B
(m)
2n Kn(ζ

(m)
2 r) +B

(m)
3n Kn(ζ

(m)
3 r), m = 1, 2. (16)

Using (16), (12), (7) and (2) it is completely determined the Fourier transforms of
the sought values.Finally, using the algorithm developed and applied in the papers [1-4]
the originals of these values are determined. Note that one of the main procedures of

this algorithm is the determination of the unknown constants A
(m)
1n , B

(m)
1n , A

(m)
2n , B

(m)
2n ,

A
(m)
3n and B

(m)
3n for which it is obtained a complete system of algebraic equations from the

boundary and contact conditions in (3) and (4) respectively.

This completes the consideration of the solution method more detail version of which
is given in the papers [1, 2].

4. Numerical results

In the present paper, we will consider numerical results related to the interface normal
stress acting on the interface surface between the layers of the cylinder. The algorithm for
obtaining numerical results are detailed in the works [1-5 ] and therefore do not consider
here again that. Nevertheless, we note that under obtaining numerical results we take
twenty terms in the series in (12). Moreover, we note that these results are obtained for
the following two cases:

Case 1. E(1)
/
E(2) = 0.02, ρ(1)

/
ρ(2) = 0.01, ν(1) = ν(2) = 0.25,

Case 2. E(1)
/
E(2) = 0.5, ρ(2)

/
ρ(2) = 0.5, ν(1) = ν(2) = 0.3.

Assume that θ= 0, z/h = 0 and α=π/6, and consider the graphs of the dependencies
between

σrr = σ(1)rr

∣∣∣
r=R

= σ(2)rr

∣∣∣
r=R

(17)

and V/c
(2)
2 constructed for various values of the ratios R/h(2) and h(1)/h(2).

a b
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c
Fig.2. Response of the interface normal stress to the moving load velocity in
Case 1 under R/h(2) = 2(a), 5 (b) and 10 (c)

a b
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c
Fig.3. Response of the interface normal stress to the moving load velocity in
Case 2 under R/h(2) = 2(a), 5 (b) and 10 (c)

The mentioned graphs are presented in Figs. 2 and 3 for Case 1 and Case 2 respectively
for various values of the ratio h(1)/h(2) under R/h(2) = 2 (a), 5 (b) and 10 (c). Note that
these graphs have a discontinuity at certain values of the dimensionless moving velocity

V/c
(2)
2 which indicates the corresponding critical velocities. Moreover note that, in general,

in 3D moving load problems in the subsonic regime there exist two critical velocities,
however, in the axisymmetric moving load problems one.

Thus, it follows from the graphs that before the first critical velocity the absolute values

of the interface dimensionless normal stress σrrh
(2)/P0 increase monotonically with V/c

(2)
2 .

At the same time, an increase in the values of the ratio h(1)/h(2) also causes to increase
the absolute values of the stress and in the cases under consideration for h(1)/h(2) ≥ 7
coincide with the corresponding ones obtained in the paper [1], i.e. with the corresponding
results which were obtained for the “hollow cylinder + surrounding medium” system. This
statement confirms the validity of the calculation algorithm and PC programs used under
obtaining of the present results. Moreover, this statement agrees with the well-known
physicomechanical and engineering considerations.

Comparison of the results obtained for Case 1 (Fig. 2) with corresponding ones ob-
tained for Case 2 (Fig. 3) shows that the absolute values of the stress obtained in Case 2 is
greater significantly than those obtained in Case 1. This situation can be established with
the relation

(
E(1)

/
E(2)

)
Case1

�
(
E(1)

/
E(2)

)
Case2

which also agrees with the engineering
consideration.

With this, we restrict ourselves to consideration of the numerical results related to
the interface normal stresses obtained for problem under consideration and note that this
consideration will be continued in the further works by the author.
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5. Conclusions

Thus, in the present paper, the 3D dynamic problem of the moving load acting in the
interior of the bi-layered hollow cylinder is studied with employing 3D exact equations of
elastodynamics and the numerical results on the response of the interface normal stress to
the moving load velocity are presented and discussed. It is assumed that the forces acting
in the interior of the inner layer of the cylinder is point located with respect to the axial
coordinate and is distributed along a certain arc within the corresponding central angle.
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Abstract. The regularity properties of degenerate abstract convolution-elliptic equations are in-
vestigated. We prove that the corresponding convolution-elliptic operator is R−sectorial and is also
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1. Introduction, notations and background

Regularity properties of differential operator equations, especially elliptic and parabolic
type have been studied extensively e.g in [1], [2], [4], [7-8], [12] , [16-18] , [21-22] and
the references therein. Moreover, convolution-differential equations (CDEs) have been
treated e.g. in [4] , [15]. Convolution operators in Banach-valued functıon spaces studied
e.g. in [3] , [10] , [13], [16] , [17] , [18]. However, the convolution-differential operator
equations (CDOEs) are relatively less investigated subject. In [4] the parabolic type
CDEs with bounded operator coefficient was investigated. In [18] regularity properties of
degenerate CDOEs are studied. The main aim of the present paper is to study the maximal
Lp−regularity properties of the following degenerate integro-differential equations

∑
|α|≤l

aα ∗D[α]um +
∞∑
m=1

dm ∗ um = fm, (1.1)

in concrete weighted Banach space Lp,γ (Rn; lq), where l is a natural number, aα = aα (x)
are complex-valued functions, dj = dj (x) , uj = uj(x), fm = fm(x), α = (α1, α2, ..., αn) ,

αk are nonnegative integers, |α| =
n∑
k=1

αk, λ is a complex parameter and A = A (x) is a

linear operator in a Banach space E for x ∈ Rn.

http://www.cjamee.org 65 c© 2013 CJAMEE All rights reserved.
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In this paper, first we establish the uniform separability properties of the linear CDOEs
and the uniform maximal regularity of the infinite system of degenrate integro-differential
equations (1.1). Moreover, we prove that the operator generated by problem linear CDOEs
is R−sectorial. Since the equation (1.1) has an unbounded operator coefficient, some
difficulties occur. This fact is derived by using the representation formula for the solution of
corresponding convolution equation and operator valued multipliers in E− valued weighted
Lp− spaces.

We start by giving the notation and definitions to be used in paper.
Let E be a Banach space and γ = γ(x), x = (x1, x2, ..., xn) be a positive measurable

weighted function on a measurable subset Ω ⊂ Rn. Let Lp,γ(Ω;E) denote the space of
strongly E−valued functions that are defined on Ω with the norm

‖f‖Lp,γ = ‖f‖Lp,γ(Ω;E) =

∫
Ω

‖f(x)‖pE γ(x)dx

1/p

, 1 ≤ p <∞,

‖f‖L∞,γ(Ω;E) = ess sup
x∈Ω

[γ(x) ‖f(x)‖E ] .

The weight γ = γ (x) satisfy an Ap condition, i.e., γ ∈ Ap, p ∈ (1,∞) if there is a
positive constant C such that

sup
Q

 1

|Q|

∫
Q

γ(x)dx


 1

|Q|

∫
Q

γ
−

1

p− 1 (x)dx


p−1

≤ C

for all cubes Q ⊂ Rn (see e.g [11, Ch.9]).
The result [20] implies that the space lq for q ∈ (1,∞) satisfies multiplier condition with

respect to p ∈ (1,∞) and the weight functions γ (x) =
n∏
k=1

|xk|ν for − 1
n < ν < 1

n (p− 1).

Here, N denotes the set of natural numbers. R denotes the set of real numbers. Let C
be the set of complex numbers and

Sϕ = {λ ∈ C, |arg λ| ≤ ϕ} ∪ {0} , 0 ≤ ϕ < π.

Let E1 and E2 be two Banach spaces and let B (E1, E2) denote the space of bounded
linear operators from E1 to E2. For E1 = E2 = E we denote B (E,E) by B (E) .

Let D (A), R (A) denote the domain and range of the linear operator in E, respectively.
Let Ker A denote a null space of A.

A closed linear operator A is said to be ϕ− sectorial (or sectorial for ϕ = 0) in a
Banach space E with bound M > 0 if Ker A = {0}, D (A) and R (A) are dense on E, and∥∥∥(A+ λI)−1

∥∥∥
B(E)

≤ M |λ|−1 for all λ ∈ Sϕ, ϕ ∈ [0, π), where I is an identity operator

in E. Sometimes A+ λI will be written as A+ λ and will be denoted by Aλ. It is known
(see e.g. [19, §1.15.1]) that the fractional powers of the operator A are well defined.

Let E(Aθ) denote the space D(Aθ) with the graph norm
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‖u‖E(Aθ) =
(
‖u‖pE +

∥∥∥Aθu∥∥∥p
E

)1

p , 1 ≤ p <∞, −∞ < θ <∞.

Note that the above norms are equivalent for p ∈ [1,∞) .

Here, S = S(Rn;E) denotes the E−valued Schwartz class, i.e. the space of E−valued
rapidly decreasing smooth functions on Rn, equipped with its usual topology generated
by seminorms. S(Rn;C) will be denoted by just S.

Let S′(Rn;E) denote the space of all continuous linear operators, L : S → E, equipped
with topology of bounded convergence. Recall S(Rn;E) is norm dense in Lp,γ(Rn;E) when
1 < p <∞, γ ∈ Ap.

Let Ω be a domain in Rn. C(Ω, E) and C(m)(Ω;E) will denote the spaces of E−valued
uniformly bounded strongly continuous and m−times continuously differentiable functions
on Ω, respectively.

Here, α = (α1, α2, ..., αn), where αi are integers. An E−valued generalized function
Dαf is called a generalized derivative in the sense of Schwartz distributions of the function
f ∈ S(Rn;E) if

〈Dαf, ϕ〉 = (−1)|α| 〈f,Dαϕ〉

holds for all ϕ ∈ S.
Let F denote the Fourier transform. Throughout this section the Fourier transforma-

tion of a function f will be denoted by f̂ and F−1f = f̌ . It is known that

F (Dα
xf) = (iξ1)α1 ...(iξn)αn f̂ , Dα

ξ (F (f)) = F [(−ix1)α1 ...(−ixn)αnf ]

for all f ∈ S′
(Rn;E).

Suppose E1 and E2 are two Banach spaces. A function Ψ ∈ L∞(Rn;B(E1, E2)) is
called a Fourier multiplier from Lp,γ(Rn;E1) to Lp,γ(Rn;E2) for p ∈ (1,∞) if the map
u → Tu = F−1Ψ(ξ)Fu, u ∈ S(Rn;E1) is well defined and extends to a bounded linear
operator

T : Lp,γ(Rn;E1)→ Lp,γ(Rn;E2).

A Banach space E is called a UMD space (see e.g [5], [6]) if the Hilbert operator

(Hf)(x) = lim
ε→0

∫
|x−y|>ε

f(y)

x− y
dy

is initially defined on S(R;E) and is bounded in Lp(R;E), p ∈ (1,∞) (see e.g. [6], [8]).
UMD spaces include e.g. Lp, lp spaces and Lorentz spaces Lpq, p, q ∈ (1,∞).

A set K ⊂ B(E1, E2) is called R−bounded (see e.g [7], [21]) if there is a constant
C > 0 such that for all T1, T2, ..., Tm ∈ K and u1, u2, ..., um ∈ E1, m ∈ N
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1∫
0

∥∥∥∥∥∥
m∑
j=1

rj(y)Tjuj

∥∥∥∥∥∥
E2

dy ≤ C
1∫

0

∥∥∥∥∥∥
m∑
j=1

rj(y)uj

∥∥∥∥∥∥
E1

dy,

where {rj} is a sequence of independent symmetric {−1; 1}−valued random variables on
[0, 1] . The smallest C for which the above estimate holds is called the R−bound of K and
denoted by R (K) .

A Banach space E is said to be a space satisfying the multiplier condition with respect
to weighted function γ and p ∈ (1,∞) (or multiplier condition with respect to p ∈ (1,∞)
when γ (x) ≡ 1) if for any Ψ ∈ C(n) (Rn\ {0} ;B (E)) the R−boundedness of the set{

|ξ||β|Dβ
ξ Ψ (ξ) : ξ ∈ Rn\ {0} , β = (β1, β2, ..., βn) , βk ∈ {0, 1}

}
implies that Ψ is a Fourier multiplier in Lp,γ (Rn;E).

Note that, if E is UMD space then it satisfies the multiplier condition with respect to
p ∈ (1,∞) (see e.g. [7] , [10] , [21]).

A sectorial operator A (x) , x ∈ Rn is said to be uniformly R−sectorial in a Banach
space E if there exists a ϕ ∈ [0 , π) such that

sup
x∈Rn

R
({[

A (x) (A (x) + ξI)−1
]

: ξ ∈ Sϕ
})
≤M.

Note that, in Hilbert spaces every norm bounded set is R−bounded. Therefore, in
Hilbert spaces all sectorial operators are R−sectorial.

Let A = A (x) , x ∈ Rn be closed linear operator in E with domain D (A) independent
of x. The Fourier transformation of A (x) is a linear operator with the domain D (A)
defined as

Â (ξ)u (ϕ) = A (x)u (ϕ̂) for u ∈ S′ (Rn;D (A)) , ϕ ∈ S (Rn) .

(For details see e.g [2, Section 3]).

Let E0 and E be two Banach spaces, where E0 is continuously and densely embedded
into E. Let l be a natural number. W l

p,γ (Rn;E0, E) denotes the space of all functions

from S′ (Rn;E0) such that u ∈ Lp,γ (Rn;E0) and the generalized derivatives Dl
ku = ∂lu

∂xlk
∈

Lp,γ (Rn;E) with the norm

‖u‖W l
p,γ(Rn;E0,E) = ‖u‖Lp,γ(Rn;E0) +

n∑
k=1

∥∥∥Dl
ku
∥∥∥
Lp,γ(Rn;E)

<∞.

It is clear that

W l
p,γ (Rn;E0, E) = W l

p,γ (Rn;E) ∩ Lp,γ (Rn;E0) .
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W
[l]
p,γ (Rn;E0, E) denotes the space of all functions from S′ (Rn;E0) such that u ∈ Lp (Rn;E0)

and D
[l]
k u ∈ Lp (Rn;E) with the norm

‖u‖
W

[l]
p,γ(Rn;E0,E)

= ‖u‖Lp(Rn;E0) +

n∑
k=1

∥∥∥D[l]
k u
∥∥∥
Lp(Rn;E)

<∞.

Note that if l ≥ 2, E is a space satisfying the multiplier condition with respect to
weighted function γ and p ∈ (1,∞), then the above definitions are equivalent with usual
definitions, i.e.

‖u‖W l
p,γ(Rn;E0,E) ' ‖u‖Lp,γ(Rn;E0) +

∑
|α|≤l

‖Dαu‖Lp,γ(Rn;E) ,

‖u‖
W

[l]
p,γ(Rn;E0,E)

' ‖u‖Lp(Rn;E0) +
∑
|α|≤l

∥∥∥D[α]u
∥∥∥
Lp(Rn;E)

.

In a similar way as [7, Theorem 3.25] we obtain:
Proposition A. Let E be a UMD space and γ ∈ Ap. Assume Ψh is a set of operator

functions in C(n) (Rn\ {0} ;B (E)) depending on the parameter h ∈ Q ∈ R and there exists
a positive constant K such that

sup
h∈Q

R
({
|ξ||β|DβΨh (ξ) : ξ ∈ Rn\ {0} , βk ∈ {0, 1}

})
≤ K.

Then the set Ψh is a uniformly bounded collection of Fourier multipliers in Lp,γ (Rn;E) .

2. Convolution-elliptic equations

The main aim of the present section is to study the maximal Lp−regularity properties
of the degenerate linear CDOEs∑

|α|≤l

aα ∗D[α]u+ (A+ λ) ∗ u = f(x), x ∈ Rn, (2.1)

in E− valued weighted Lp− spaces, where l is a natural number, aα = aα (x) are complex-

valued functions, α = (α1, α2, ..., αn) , αk are nonnegative integers, |α| =
n∑
k=1

αk, λ is a

complex parameter and A = A (x) is a linear operator in a Banach space E for x ∈ Rn.

Here, the convolutions aα ∗D[α]u, A ∗ u are defined in the distribution sense (see e.g.
[2]). γ = γ (x) is a positive measurable function on Ω ⊂ Rn and

D[α] = D[α1]
x1 D[α2]

x2 ...D[αn]
xn , D[αi]

xi =

(
γ (x)

∂

∂xi

)αi
.

First we consider the following nondegenerate CDOE
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∑
|α|≤l

aα ∗Dαu+ (A+ λ) ∗ u = f, (2.2)

where λ are parameters, aα are complex-valued functions defined in (2.1) and A is a
linear operator in a Banach space E.

Condition 2.1. Suppose the following are satisfied:
(1) L(ξ) =

∑
|α|≤l

âα(ξ)(iξ)α ∈ Sϕ1 , ϕ1 ∈ [0,π) for ξ ∈ Rn,

|L(ξ)| ≥ C
n∑
k=1

∣∣âα(l,k)

∣∣ |ξk|l , α(l, k) = (0, 0, ..., l, 0, 0, ..., 0) i.e.αi = 0, i 6= k, αk = l;

(2) âα ∈ C(n)(Rn) and |ξ||β|
∣∣Dβ âα (ξ)

∣∣ ≤ C1, βk ∈ {0, 1} , 0 ≤ |β| ≤ n;

(3) for 0 ≤ |β| ≤ n, ξ, ξ0 ∈ Rn\ {0} ,
[
DβÂ (ξ)

]
Â−1 (ξ0) ∈ C (Rn;B(E)) ,

|ξ||β|
∥∥∥[DβÂ (ξ)

]
Â−1 (ξ0)

∥∥∥ ≤ C2.

In a similar way as [16, Theorem 2.7] we obtain:
Theorem 2.1. Assume that Condition 2.1 holds and E is a Banach space satisfying

the multiplier condition with respect to weighted function γ ∈ Ap and p ∈ (1,∞). Let Â be
a uniformly R−sectorial operator in E with ϕ ∈ [0, π) , λ ∈ Sϕ2 and 0 ≤ ϕ+ϕ1 +ϕ2 < π.
Then, problem (2.2) has a unique solution u and the coercive uniform estimate holds

∑
|α|≤l

|λ|1−
|α|
l ‖aα ∗Dαu‖Lp,γ(Rn;E) + ‖A ∗ u‖Lp,γ(Rn;E) + |λ| ‖u‖Lp,γ(Rn;E) ≤ C ‖f‖Lp,γ(Rn;E)

(2.3)
for all f ∈ Lp,γ (Rn;E) .

Let O be an operator in Lp,γ (Rn;E) generated by problem (2.2) for λ = 0, i.e.

D (O) ⊂W l
p,γ (Rn;E (A) , E) , Ou =

∑
|α|≤l

aα ∗Dαu+A ∗ u.

From Theorem 2.1 we have:
Result 2.1. Assume that the all conditions of Theorem 2.1 hold. Then, for all λ ∈ Sϕ2

the following uniform coercive estimate holds∑
|α|≤l

|λ|1−
|α|
l

∥∥∥aα ∗Dα (O + λ)−1
∥∥∥
B(Lp,γ(Rn;E))

+

∥∥∥A ∗ (O + λ)−1
∥∥∥
B(Lp,γ(Rn;E))

+
∥∥∥λ (O + λ)−1

∥∥∥
B(Lp,γ(Rn;E))

≤ C.

Result 2.2. Theorem 2.1, particularly implies that the operator O is uniformly
sectorial in Lp,γ (Rn;E); moreover, if Â is uniformly R−sectorial for ϕ ∈

(
π
2 , π

)
, then

the operator O is a negative generator of an analytic semigroup in Lp,γ (Rn;E) (see e.g.
[19, §1.14.5]).
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From Theorem 2.1 and Proposition A we obtain:

Result 2.3. Let conditions of Theorem 2.1 hold for E ∈ UMD. Then the assertions
of Theorem 2.1 are valid.

We find sufficient conditions that guarantee the separability of the problem (2.1). For
this purpose we need the following

Remark 2.1. Consider the following substitution

yk =

xk∫
0

γ−1(z)dz, k = 1, 2, ..., n. (2.4)

It is clear that, under the substitution (2.4), D[α]u transforms to Dαu. Moreover,

the spaces Lp (Rn;E) , W
[l]
p,γ (Rn;E (A) , E) are mapped isomorphically onto the weighted

spaces Lp,γ(Rn;E) and W l
p,γ(Rn;E(A), E) respectively where,

γ = γ̃(y) = γ(x(y)) = γ (x1 (y1) , x2 (y2) , ..., xn (yn)) .

Moreover, under (2.4) the degenerate problem (2.1) considered in Lp (Rn;E) is transformed
into the non degenerate problem (2.2) in Lp,γ(Rn;E), where

aα = aα (y) = aα(γ̃(y)), u = u (y) = ũ(y) = u(γ̃(y)),

A = A (y) = Ã(y) = A(γ̃(y)), f = f (y) = f̃(y) = f(γ̃(y)).

Let

X̃ = Lp (Rn;E) , Ỹ = W [l]
p,γ (Rn;E (A) , E) , p ∈ (1,∞) .

In this section we show the following result:

Theorem 2.2. Assume that Condition 2.1 holds for aα = aα (y) and E is a Banach
space satisfying the multiplier condition with respect to weighted function γ ∈ Ap and
p ∈ (1,∞). Let Â be a uniformly R−sectorial operator in E with ϕ ∈ [0, π) , λ ∈ Sϕ2 and
0 ≤ ϕ + ϕ1 + ϕ2 < π for A = A (y). Then for all f ∈ X̃ there is a unique solution of the
problem (2.1) and the following coercive uniform estimate holds:∑

|α|≤l

|λ|1−
|α|
l

∥∥∥aα ∗D[α]u
∥∥∥
X̃

+ ‖A ∗ u‖X̃ + |λ| ‖u‖X̃ ≤ C ‖f‖X̃ . (2.5)

Proof. By Remark 2.1, the degenerate problem (2.1) is transformed into the non
degenerate problem (2.2) considered in the weighted space Lp,γ(Rn;E). Then in view of
Theorem 2.1 we obtain the estimate (2.5).

3. Degenerate convolution equations in the space Lp,γ (Rn; lq)
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Consider the following system of convolution equations

∑
|α|≤l

aα ∗D[α]um +
∞∑
m=1

dm ∗ um = fm, (3.1)

in the concrete Banach space Lp,γ (Rn; lq), where l is a natural number, aα = aα (x) are
complex-valued functions, α = (α1, α2, ..., αn) , αk are nonnegative integers, dm = dm(x),
um = um (x) , fm = fm (x) , x ∈ Rn. The convolutions aα ∗D[α]u, dm ∗ um are defined in
the distribution sense and

D[α] = D[α1]
x1 D[α2]

x2 ...D[αn]
xn , D[αk]

xk
=

(
γ (x)

∂

∂xk

)αk
.

γ (x) =

n∏
k=1

|xk|γ , −
1

n
< γ <

p− 1

n
,

is a positive measurable weighted function.

For 1 < q <∞ we set

lq =

{
ξ; ξ = {ξi}∞i=1 ; ‖ξ‖lq =

( ∞∑
i=1
|ξi|q

)1/q

<∞, ξi − complex numbers

}
.

Moreover, if γ(x) is a positive measurable function, and if 1 < p <∞, then

Lp,γ(Rn; lq) =

{
f ; f = {fi(x)}∞i=1 , ‖f‖Lp,γ(Rn;lq)

=

( ∫
Rn
‖{fi(x)}‖plq γ(x)dx

)1/p

<∞

}
.

Clearly, Lp,γ(Rn; lq) is a Banach space. It is known that

‖f‖Lp,γ(Rn;lq)
=

( ∫
Rn

( ∞∑
i=1
|fi(x)|q

) p
q

γ(x)dx

) 1
p

.

Let d(x) = {dm(x)} , dm > 0, u = {um} , d ∗ u = {dm ∗ um} , lq(d) =u ∈ lq, ‖u‖lq(d) =

( ∞∑
m=1

|dm (x) ∗ um|q
) 1

q

<∞

 , 1 < q <∞,

X = Lp (Rn; lq) , Y = W [l]
p,γ(Rn; lq(d), lq), B = B (X) ,

and Q denote the differential operator in Lp (Rn; lq) generated by (3.1) , i.e., D (Q) =

W
[l]
p,γ (Rn; lq(d), lq) , Qu =

∑
|α|≤l

aα ∗D[α]u+ d ∗ u

Condition 3.1. Assume that there exist positive constants C1 and C2 such that for
{dm (x)}∞1 ∈ lq for all x ∈ Rn and some x0 ∈ Rn,

C1 |dm (x0)| ≤ |dm (x)| ≤ C2 |dm (x0)| .
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Suppose âα, d̂m ∈ C(n) (Rn) and there exist positive constants M1 and M2 such that

|ξ||β|
∣∣∣Dβ âα(ξ)

∣∣∣ ≤M1, |ξ||β|
∣∣∣Dβ d̂m(ξ)

∣∣∣ ≤M2,

ξ ∈ Rn\ {0} , βk ∈ {0, 1} , 0 ≤ |β| ≤ n.

Applying Theorem 2.2. we have:

Theorem 3.1. Suppose Condition 3.1 and the (1) part of Condition 2.1 are satisfied.
Then:

(a) for all f (x) = {fm (x)}∞1 ∈ Lp (Rn; lq (d)) , for λ ∈ Sϕ, ϕ ∈ [0, π) problem (3.1) has
a unique solution u = {um (x)}∞1 that belongs to Y and the following coercive estimate
holds

∑
|α|≤l

∫
Rn

( ∞∑
m=1

∣∣∣aα ∗D[α]um

∣∣∣q) p
q

dx

 1
p

+

∫
Rn

( ∞∑
m=1

|dm ∗ um|q
) p

q

dx

 1
p

≤ C

∫
Rn

( ∞∑
m=1

|fm|q
) p

q

dx

 1
p

.

(b) For λ ∈ Sϕ there exists a resolvent (Q+ λ)−1 and∑
|α|≤l

|λ|1−
|α|
l

∥∥∥aα ∗ [D[α] (Q+ λ)−1
]∥∥∥

B
+

∥∥∥d ∗ (Q+ λ)−1
∥∥∥
B

+
∥∥∥λ (Q+ λ)−1

∥∥∥
B
≤ C.

Proof. In fact, let E = lq and A = [dm (x) δjm] , m, j = 1, 2, ...∞, where δjm is the

Kronecker symbol (δjm = 1 for j = m, δjm = 0 for j 6= m). Then it is easy to see that

Â (ξ) =
[
d̂m (ξ) δjm

]
is uniformly R−sectorial in lq and the all conditions of Theorem 2.2

hold. Moreover, by [20] we get that the space lq satisfies the multiplier condition with
respect to power weighted function γ (x) = |x|γ , − 1

n < γ < p−1
n and p ∈ (1,∞). Therefore,

by virtue of Theorem 2.2 we obtain the
∑
|α|≤l

∥∥aα ∗D[α]u
∥∥
X

+ ‖d ∗ u‖X ≤ C ‖f‖X . From

this we get that assertion (a). Taking into account Theorem 2.2 and Remark 2.1 we have
for all λ ∈ Sϕ there exist the resolvent of operator Q and has the estimate∑
|α|≤l

|λ|1−
|α|
l

∥∥∥aα ∗D[α] (Q+ λ)−1
∥∥∥
B(X)

+
∥∥∥d ∗ (Q+ λ)−1

∥∥∥
B(X)

+
∥∥∥λ (Q+ λ)−1

∥∥∥
B(X)

≤ C.

This means that the assertion (b) is obtained.
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Remark 3.1. There are a lot of sectorial operators in concrete Banach spaces.
Therefore, putting in (2.1) concrete Banach spaces instead of E and concrete sectorial
differential, pseudo differential operators, or finite, infinite matrices, etc. instead of A, by
virtue of Theorem 2.2 we can obtain the maximal regularity properties of different class
of convolution equations.
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