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1. Introduction

An integral of a view ∫
Ω
G(x̄)e2πiF (x̄)dx̄ (1)

is called a multiple trigonometric integral; here Ω denotes some domain of n dimensional
space Rn, and on the functions G(x) and F (x) one imposes definite conditions on bound-
edness or smoothness. Many investigations (see [1, 2, 3, 4, 7, 8, 9, 10, 11, 18, 19]) were
devoted to estimations of trigonometric integrals. The first result in this direction belongs
to Van der Corput and E.Landau (see [11]). The result established in the work [4] where
the authors have received a non-improvable estimation for trigonometric integrals has im-
portant applications. The multidimensional case also was investigated in the literature.
Unlike one-dimensional case, estimating of multiple trigonometric integrals of a view (1)
in which Ω is some Jordan domain with a smooth boundary and the functions G(x),F (x)
are from a certain class of smoothness is much more difficult.

The scheme of finding of estimates for integrals of a view (1) is similar to the scheme
of one-dimensional case. After some transformations (see [11]) the integral reduces to the
view ∫ b

a
V (u)e2πiudu,

where V (u) represents the surface integral depending on parameter u.
Let Ω be a bounded closed domain of n-dimensional space Rn, n ≥ 2. Let’s assume

that in Ω an n− 1-dimensional surface be given by means of a polynomial equation

f(x̄) = 0 (2)
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with the gradient ∇f = (∂f/dx1, ..., ∂f/dxn) which has everywhere in Ω a non-vanishing
norm. In this article we consider surface trigonometric integrals taken over hypersurface
Π given by the polynomial equation (2):∫

Π
g(x̄)e2πiF (x̄)ds; (3)

here g(x̄) is some algebraic function. Such integrals arise after of transformations by using
Stokes type formulae. Trivial estimation of integral (3) can be obtained as follows∫

Π
g(x̄)e2πiF (x̄)ds ≤

∫
Π
|g(x̄)|ds.

Non-trivial estimation for the integrals of such type can be useful in applications to the
questions connected with the distribution of integral points in multidimensional domains.

2. Auxiliary statements

Let Ω be a bounded closed domain of n-dimensional space Rn, n > 1. Let’s assume that
in Ω some r-dimensional surface be given by means of a system of polynomial equations

fj(x̄) = 0, j = 1, ..., n− r, 0 ≤ r ≤ n, (4)

with a Jacoby matrix

J = J(x̄) = ‖∂fj
∂xi
‖, i = 1, ..., n, j = 1, ..., n− r

which has everywhere in Ω a maximal rank.
Let A0 = A0(x̄) be some functional matrix written down in a form

A0 = A0 = ‖fij(x̄)‖ , 1 ≤ i ≤ r, 1 ≤ j ≤ m, rm ≥ n

with smooth entries. Arranging the entries of columns of this matrix in a line as below

f11(x̄), ..., fr1(x̄), f12(x̄), ..., fr2(x̄), ..., f1m(x̄), ..., frm(x̄),

let’s take the transposed Jacoby matrix of this system of functions designating it as A1:

A1 = A1(x̄) =

∥∥∥∥∥∥∥
∂f11
∂x1

· · · ∂fr1
∂x1

· · · ∂f1m
∂x1

· · · ∂frm
∂x1

· · · · · · · · · · · · · · · · · · · · ·
∂f11
∂xn

· · · ∂fr1
∂xn

· · · ∂f1m
∂xn

· · · ∂frm
∂xn

∥∥∥∥∥∥∥ .
Then, entries of columns of this matrix, consequently as above, we arrange in a line,

and take the transposed Jacoby matrix A2 = A2(x̄) = A′1(x̄) of the received system of
functions. Let’s continue this procedure while we have not received a matrix Ak = A′k−1(x̄)
for a given k ≥ 1. The last matrix defined by such procedure consists of all possible
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partial derivatives of the same order k of entries of the matrix A0 = A0(x̄) and has the
size n × nk−1rm. Let’s assume that Aj(x̄) has in Ω a maximal rank equal to n. Let’s
designate by Gj(x̄) the product of the last (smallest) r singular numbers of the matrix
Aj(x̄), j = 0, ..., k. We put

E = E(H) = {x̄ ∈ Ω|G0(x̄) ≤ H} , H > 0.

If ϕik(x̄) are entries of the matrix Aj(x̄) we will accept the following designations

Lj(x̄) =

∑
i,k

|ϕik(x̄)|2
 ,

L = max
j

max
x̄∈Ω

Lj(x̄), Gj = min
x̄∈Ω

Gj(x̄), j = 0, ..., k.

The cases r = n−1 and r = n−2 we will consider separately. Assume that the domain
Ω can be dissected into such parts that on each of them the equation (2) allows one sheeted
and one valued solvability, and in every of them one of minors of the matrix Aj(x̄) (also one
of partial derivatives of the function) has the maximal absolute values among all minors.
So, doesn’t destroying a generality, we assume that in Ω some of minors, say the minor
placed on the first n − 1 columns of the Jacoby matrix, has positive maximal absolute
values. Then, by the theorem on implicit functions ([5, 12, 15, 17]), we may solve the
equation (2) with respect to the first n− 1 variables. Denote by ξ̄ = (ξ2, ..., ξn) a vector of
independent variables. Then, x1 is possible to represent as a function x1 = x1(ξ̄) of these
independent variables. Denote by A0(ξ̄) the matrix constructed from the matrix A0(x̄) by
replacing of the variable x1 by the function x1 = x1(ξ̄). In other words we consider the
functional matrix A0(ξ̄) as a matrix depending on ξ̄. Denote by G(1) the minimal value
of Gram determinant for gradients of entries of the matrix A0(ξ̄) (differentiation is taken
with regard to ξ̄), i.e.

G(1) = min
ξ̄

det
(
A1ξ̄ ·At1ξ̄

)
.

Thus, A1ξ̄ means the matrix of a size (n− 1)× rm received from A0 by differentiation
in regard to ξ̄, A1ξ̄ = A′0(ξ̄). So, the matrix A1(x̄) being considered as a matrix of ξ̄,
differs fromA1ξ̄. Similarly, we can, beginning from the matrix Aj−1, form a matrix Ajξ̄
assuming that G(j) > 0 for all considered j > 0. For a positive number a > 0 we write
h(a) = a+ a−1. We have a ≤ h(a), h(a) = h(a−1), and h(ab) ≤ h(a)h(b), for a, b > 0.

Lemma 1. Let ΠH be a part of a surface (4) included in E(H), k > 1 and G(k) > 0.
Then under the conditions above we have:

µ (ΠH) ≤ KH1/k ·G−1/k
(k) ·Qn

k ;

Qk = log H̃; H̃ = max
{
h(H), h(C(1)), ..., h(C(k−1)), h(G(k)), h(L)

}
,

and K is a constant, and numbers C(2), ..., C(k−1) are defined by equalities

C(1) = H1/2C
1/2
(2) , C(2) = H1/3C

1/3
(3) , ..., G(k) = H1/kC

1/k
(k−1).
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The proof of the lemma 1 is given in [11, 13]. Following lemma is a generalization of
this lemma ([11, 13]).

Lemma 2. Under the conditions of the lemma 1 there exist an absolute constant K1 such
that:

µ (ΠH) ≤ K1H
1/k ·G−1/k

k · Q̃nk .

Let F (x̄) be some polynomial. Let’s consider the trigonometric integral (3), in the
domain Ω with a boundary consisted of finite number of algebraic surfaces. Gradient of
this function is a matrix A0:

A0 = ∇F =

∥∥∥∥ ∂F∂x1
, ...,

∂F

∂xn

∥∥∥∥ .
Let everywhere in Ω

‖∇F‖ =

√(
∂F

∂x1

)2

+ · · ·+
(
∂F

∂xn

)2

6= 0.

We assume that the boundary of the domain Ω is a union of surfaces defined by finite
number of algebraic equations of a view H(x̄) = 0. Not breaking a generality, we can take
this number equal to 1. Assume, also, that the Jacoby matrix of the system of functions
F,H has rank 2.

It is clear that the matrix A1(x̄) looks like

A1 = A1(x̄) =

∥∥∥∥∥∥∥
∂2F
∂x21

... ∂2F
∂x1∂xr

· · · · · ·
∂2F

∂xr∂x1
...∂

2F
∂x2r

∥∥∥∥∥∥∥ , (5)

and the matrix Ak−1(x̄) is combined of all partial derivatives of order k ≥ 2 of the function
F (x̄). Let now G̃k−1 be a minimal value of the product of n − 2 least singular numbers
of the matrix Ak−1. Similarly, we can, beginning from the matrix Aj−1, form a matrix
Ajξ̄ assuming that G̃(j) > 0 for all considered j > 0. Now we formulate analogs of the

lemmas 1 and 2 for the case r = n− 2 designating the numbers G(j) and Gj as G̃(j) and

G̃j , respectively.

Lemma 3. Let ΠH be a part of a surface (4) included in E(H) and G̃1 > 0. Then for
the area µ(ΠH) we have the bound

µ(ΠH) ≤ C0HG̃
−1
(1)℘̃

r,

where

℘̃ = r2 log
[
h
(
G̃(1)

)
h (H)h (L)

]
,

and C0 is an absolute constant.
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Lemma 4. Let k ≥ 1 and G̃(k) > 0. Then under the conditions of the lemma 1 we have:

µ (ΠH) << H1/kG̃
−1/k
(k) ℘rk;

℘̃k = 3r2 log H̃; H̃ = max
{
h (H) , h

(
C̃(1)

)
, ..., h

(
C̃(k−1)

)
, h
(
G̃(k)

)
, h (L)

}
,

and numbers C̃(1), ..., C̃(k−1), G̃(k) are defined by equalities

C̃(1) = H1/2C̃
1/2
(2) , ..., C̃(k−1) = H1/kG̃

1/k
(k)

Lemma 5. Let k ≥ 1 and G̃k > 0. Then, under the conditions of the lemma 2, one has:

µ (ΠH) << H1/kG̃
−1/k
k ℘rk.

Lemma 6. There exist such a dissection of the domain Ω into the union of no more than
finite number of subdomains so that the surface integral ϕ(u) =

∫
F (x̄)=u

g(x̄)ds
‖∇F‖ , respectively,

breaks into the sum of the surface integrals being monotonous functions of a variable u,
moreover, the number of addends of the last sum depends on the degree of a polynomial F
only.

Proof. Proof of this lemma we will spend using reasonings of the proof of analogical
lemma from the work [11]. Having given to the variable u some increment, we can write

ϕ(u+ ∆u)− ϕ(u) =

∫
F (x̄)=u+∆u

g(x̄)ds

‖∇F‖
−
∫
F (x̄)=u

g(x̄)ds

‖∇F‖
.

As the domain Ω is closed, the gradient of functions F (x̄) and g(x̄) and their partial
derivatives of the second order are bounded. Consider the Taylor decomposition of the
function F (x̄) in a neighborhood of the point x̄, lying on the surface F (x̄) = u, in the
gradient direction:

F (x̄+ λ∇F )− F (x̄) = λ∇F · ∇F + o(λ).

Let’s pick up λ so that the point F (x̄ + λ∇F ) was placing on the surface F = u + ∆u .
Then, we get

∆u = λ∇F · ∇F + o(λ).

When ∆u is sufficiently small, the second term on the right part is small also. So,

λ =
∆u

∇F · ∇F
+ o(∆u) =

∆u

‖∇F‖2
+ o(∆u).

After of shifting of the argument in the gradient direction the function g(x̄)
‖F‖ takes on an

increment δ which can be written as follows:

δ = ∇
(
g(x̄)

‖F‖

)
· λ∇F (1 + o(λ)) =
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= λ
n∑
i=1

∂F

∂xi

∂g/∂xi
‖F‖

− g

‖F‖3

 n∑
j=1

∂F

∂xj

∂2F

∂xj∂xi

+ o(λ)) =

= λ
∇F · ∇g
‖F‖

− λg
n∑
i=1

∂F

∂xi

 g

‖F‖3

 n∑
j=1

∂F

∂xj

∂2F

∂xj∂xi

+ o(λ)).

Using definition of the matrix A1 given above and denoting ∇̄ = ∇F/ ‖∇F‖, we can
rewrite the last equality as below:

δ =
λ

‖F‖
(
∇F · ∇g − g(A1∇̄, ∇̄)

)
=

∆u

‖F‖3
(
∇g · ∇F − g(A1∇̄, ∇̄)

)
.

Under the conditions imposed on a gradient, as shown above, the domain Ω may be
dissected into finite number of subdomains which pairwisely intersecting by parts of the
boundary only, and where the equation F (x̄) = u allows one sheeted solvability with
respect to one and the same variable. Let’s consider one of them where the mentioned
equation is solved with respect, say, to x1:

x1 = ψ(x2, ..., xn); (x2, ..., xn) ∈ ω,

and ω is an domain of changing for independent variables. Having fixed any point ξ̄0 ∈ ω
, we will define the mapping ψ̄ in ω − ξ̄0 = {∆y ∈ Rn−1|ξ̄0 + ∆y ∈ ω} which puts to each
point ∆y in correspondence the point (ψ(ξ0 + ∆y), ξ0 + ∆y) on the surface F = u, and
will consider tangential linear mapping

Φ : ∆y 7→ ψ(ξ̄0) + ψ(ξ̄0) ·∆y; ∆y ∈ ω − ξ̄0. (6)

The image of this mapping is a tangential linear variety (hyper plane) to the surface F = u
in the point (ψ(ξ̄0), ξ̄0). Let’s notice that the point (Φ(ξ̄), ξ̄) of the tangential hyper plane
will situated from the corresponding point (ψ(ξ̄), ξ̄) on the surface F = u at a distance
o
(∣∣Φ(∆y)− ψ̄(∆y)

∣∣) which is of order o(∆u). At each point x̄ of the surface F = u the
gradient ∇F is orthogonal to the tangential hyper plane. Really,

∇F · Φ′(~ξ)∆x =

(
∂F

∂x1
, ...,

∂F

∂xn

)
·

·

((
∂F

∂x1

)−1(
− ∂F
∂x2

∆x2−, , ,−
∂F

∂xn
∆xn

)
,∆x2, ...,∆xn

)
= 0.

When λ is defined as above, the point x̄ + λ∇F where x̄ ∈ Π(u), belongs to the surface
Π(u + ∆u); here by Π(u) we designate the surface defined by the equation F = u in a
wider open domain Ω′ ⊃ Ω . For any open domain Ω′ the surface Π(u+ ∆u)

⋂
Ω entirely

lies in Ω′ for all enough small values of |∆u|. The mapping Ψ : Π(u) → Ω′ defined as
Ψ(x̄) = x̄+ λ∇F is one-one mapping when |∆u| is sufficiently small. Really,

Ψ(x̄) = x̄+

(
∆u

‖∇F‖2
+ o(|∆u|)

)
∇F = x̄+ ∆u

∆F

‖∇F‖2
+ o(|∆u|),
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and at sufficiently small |∆u| the Jacoby matrix of this mapping can be represented as a
sum of identity matrix and a Jacoby matrix of the mapping

x̄ 7→ Ψ(x̄)− x̄.

Note that when u and ∆u are fixed then we have Ψ(x̄) − x̄ = λ(x̄)∇F (x̄), and we can
define partial derivatives of the function λ(x̄) from the identity

F (x̄+ λ(x̄)∇F (x̄))− F (x̄) = ∆u.

If we take partial derivatives both sides of this identity with respect to the variables of
x̄ then we get the system of linear equations from which we can define required partial
derivatives. Since the domain is closed and the matrix A1(x̄) (see (4)) is not degenerating,
then as it follows from Cramer’s Rule all of obtained partial derivatives will be bounded.
So, at sufficiently small values of ∆u, determinant of the Jacoby matrix of the mapping
x̄ 7→ Ψ(x̄) tends to 1 as ∆u→ 0, i.e. this determinant will be distinct from zero everywhere
in considered domain. So, Ψ is a bijective mapping for sufficiently small |∆u|.

We put: D(u) = {x̄ ∈ Ω|F (x̄) = u}. Then, the surface D(u + ∆u) tends to D(u) as
∆u→ 0 (pointwisely and uniformly). Ψ(D(u)) is a closed subset of D(u+ ∆u). Further,
a prototype D(u+ ∆u) of the same mapping we will designate as D′(u+ ∆u). Then, we
have:

ϕ(u+ ∆u)− ϕ(u) =

∫
D′(u+∆u)

⋂
D(u)

(
g(x̄+ λ∇F )

‖∇F (x̄+ λ∇F )‖
− g(x̄)

‖∇F (x̄)‖

)
ds+

+

∫
D(u+∆u)\Ψ(D(u))

g(x̄)ds

‖∇F (x̄)‖
−
∫
D(u)\D′(u+∆u)

g(x̄)ds

‖∇F (x̄)‖
. (7)

Substituting the value found above for an increment, we find for the first surface
integral the following expression:

−∆u(1 + o(1))

∫
F (x̄)=u

(
∇g · ∇F − g(A1∇̄, ∇̄)

)
‖F‖3

ds.

Consider now two remained surface integrals on the right hand side of the equality (6).
They will be transformed by one and the same way. The first integral is taken over the
surface D(u + ∆u)\Ψ(D(u)) which is included between the boundaries D(u + ∆u) and
Ψ(D(u)). It is clear that this piece narrowing, will be pulled off along n− 2-dimensional
surface of an intersection D(u+∆u)

⋂
∂Ω, which tends to the limiting position D(u)

⋂
∂Ω

(it may be empty), as ∆u→ 0.
Let’s denote ω′ an n−1-dimensional domain being a projection of theD(u+∆u)\Ψ(D(u))

(we will use designation ψ′ instead of ψ for the solution of the equation F (x̄) = u+ ∆u).
Dissect now the projection of the boundary D(u+ ∆u)

⋂
∂Ω into the small parts Ei, i =

1, ..., N with the maximal diameter not exceeding ∆u. Now taking any point (ψ′(ξ̄i), ξ̄i)
on Ei draw the ray lying on the tangential hyper plane, being orthogonal to the boundary
D(u+ ∆u)

⋂
∂Ω and intersecting the last at this point. The set of all such rays set up a
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surface. We restrict this surface by a such way that the projection of the got piece of the
surface was coincide with ω′. This surface, consisted of pieces set up by all restricted rays
with top points at Ei. The piece corresponding Ei we denote as Fi = Fi(u,∆u). They set
up something like a tiled covering for the surface D(u+∆u)\Ψ(D(u)), area of which differs
from the area of the surface D(u + ∆u)\Ψ(D(u)) by a value o(∆u). Let ξ̄i ∈ Ei be any
point, ρi be a vector lying on the constructed tangential space to the surface F = u+ ∆u
at the point (ψ′(ξ̄i), ξ̄i), orthogonal to D(u + ∆u)

⋂
∂Ω, and with the endpoint at η̄i of

the boundary of corresponding piece Fi = Fi(u,∆u). For small ∆u we have: |Fi| = |Ei|hi
(here |Ei| expresses n − 2-dimensional volume of Ei), and hi = |ρi| (1 + o(1)), i.e. hi
plays a role of height of Fi which approximately we take as a cylindroid with the base
∆i = {(ψ′(ξ̄i), ξ̄i)|ξ̄i ∈ Ei)} (with an error of order o(∆u) for n − 2-dimensional volume).
Then, we have:∫

D(u+∆u)\Ψ(D(ū))

g(x̄)ds

‖∇F (x̄)‖
=

N∑
j=1

∫
(∆i)

g(x̄)ds

‖∇F (x̄)‖
(1 + o(1)).

Intersection of tangential hyper planes, respectively, to ∂Ω and D(u+∆u) at the point
(ψ′(ξ̄i), ξ̄i) is a tangential n−2- dimensional subspace to D(u+∆u)

⋂
∂Ω at the same point.

Let’s consider three points: a point Pi = (ψ′(ξ̄i), ξ̄i), a point η̄i and a point Ψ−1(ηi). Let
αi be an angle between an external normal vector n̄ to the boundary of Ω and a gradient
∇F . An angle between the segment [η̄i, Pi] and the gradient ∇F , at small ∇u, differs from
the angle αi by a value o(∆u) (or their sum is close to π). From a rectangular triangle we
receive (the told above segment [Ψ−1(ηi), Pi] is here an hypotenuse):

h̄i = |λ| · ‖∇F‖ ctgαi(1 + o(1)) =
∆u

‖∇F‖
ctgαi(1 + o(1)).

As cosαi = n̄ · ∇F, ctgαi = n̄ · ∇F/
√

1− (n̄ · ∇F )2 , then we have:∫
D(u+∆u)\Ψ(D(u))

g(x̄)ds

‖∇F (x̄)‖
=

N∑
j=1

∫
(∆i)

g(x̄)ds

‖∇F (x̄)‖
(1 + o(1)) =

=

N∑
j=1

∆u

∫
(∆i)

g(x̄)ctgαidσ

‖∇F (x̄)‖2
(1 + o(1)) = ∆u(1 + o(1))

∫
Z

g(x̄)∇̄ · n̄√
1− (∇̄ · n̄)2

dσ

‖∇F‖2
,

where dσ designates n−2-dimensional element of the volume, and Z denotes an intersection
of surfaces F = u and ∂Ω (it can consist of several pieces). The similar formula is true for
the third surface integral in (6). Therefore, from the formula (6) one can derive:

ϕ′(u) = lim
∆u→0

ϕ(u+ ∆u)− ϕ(u)

∆u
= −

∫
F (x̄)=u

(
∇g · ∇F − g(A1∇̄, ∇̄)

)
‖F‖3

ds+

+

∫
Z

g(x̄)∇̄ · n̄√
1− (∇̄ · n̄)2

dσ

‖∇F‖2
, (8)
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and the sign before the integral is counted by the scalar product ∇̄ · n̄.
To apply the Stokes formula ([5, p. 645], [16, p. 261]) to the second integral at the

right side of (8), we note that the boundary Z is defined by the system of equations of a
view F = u, H = c. Gram determinant of the functions standing at the left sides of the
equations is non-zero. By this reason surface integral is possible to represent as below:∫

Z

g(x̄)∇̄ · n̄√
1− (∇̄ · n̄)2

dσ

‖∇F‖2
=

∫
∂D(u)

g(x̄)∇̄ · n̄√
1− (∇̄ · n̄)2

√
G0

|J0|
dξ3 · · · dξn
‖∇F‖2

,

and the variables ξ3, ..., ξn denote independent variables after of suitable solution of the
considered system, say, with respect to the first two variables. So, we get integral of a
differential form:

η = Wdξ3 ∧ · · · ∧ dξn; W =
g(x̄)∇̄ · n̄√
1− (∇̄ · n̄)2

√
G0

|J0|
1

‖∇F‖2

and G0 is a Gram determinant of considered functions F, H, J0 is a determinant

J0 =

∣∣∣∣∣ ∂F
∂x1

∂F
∂x2

∂H
∂x1

∂H
∂x2

∣∣∣∣∣ .
Now we have

dη =

(
∂W

∂x1
dx1 +

∂W

∂x2
dx2 + · · ·+ ∂W

∂xn
dxn

)
∧ dξ3 ∧ · · · ∧ dξn.

Further at the surface F = u, after of solving this equation, the variable x1 stands a
function of independent variables ξ2, ..., ξn (we suppose that this is possible, not breaking
a generality). Then,

dη =

(
∂W

∂x1
dx1 +

∂W

∂x2
dx2 + · · ·+ ∂W

∂xn
dxn

)
∧ dξ3 ∧ · · · ∧ dξn =

dη =

(
∂W

∂x1

(
∂x1

∂ξ2
dξ2 + · · ·+ ∂x1

∂ξn
dξn

)
+
∂W

∂x2
dx2 + · · ·+ ∂W

∂xn
dxn

)
∧dξ3 ∧ · · · ∧ dξn =

=

(
∂W

∂x1

∂x1

∂ξ2
+
∂W

∂x2

)
dξ2 ∧ dξ3 ∧ · · · ∧ dξn + · · ·+

+

(
∂x1

∂ξn

∂W

∂x1
+
∂W

∂xn

)
dξn ∧ dξ3 ∧ · · · ∧ dξn =

=

(
∂W

∂x1

∂x1

∂ξ2
+
∂W

∂x2

)
dξ2 ∧ dξ3 ∧ · · · ∧ dξn.

Now in consent with the Stokes formula (see [12, p. 261]):∫
∂D(u)

η =

∫
D(u)

dη.
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It is obviously, that right hand side of this relation is possible to represent as a surface
integral taken over the surface F = u after of multiplying and dividing by a positive
element of area. Then, from (8) we derive:

ϕ′(u) =

∫
F (x̄)=0

G1(x̄)ds, (9)

where

G1(x̄) =
∂F/∂x1

‖∇F‖

(
∂W

∂x1

∂x1

∂ξ2
+
∂W

∂x2

)
−
(
∇g · ∇F − g(A1∇̄, ∇̄)

)
‖F‖3

.

It is clear that the function G1 is an algebraic function in Ω. Now, let’s dissect the domain
Ω into a finite number of such subdomains Ωi in every of which the function G1 keeps own
sign invariable. Then, the integral (8) splits into the sum of several surface integrals:

ϕ′(u) =
∑

ϕ′i(u), ϕ′i(u) =

∫
Ωi,F (x̄)=u

G(x̄)ds (10)

(notice that when we consider the sum of the integrals
∫
S⊂Z taken on the different sides

of the piece S of a surface, the normal vector n̄ changes the sign, and consequently, such
a sum is equal to zero); the number of domains on the right part of (9) depends on Ω and
a degree of the polynomial F . Let’s designate, in the consent with (9)

ϕ(u) =
∑

ϕi(u), ϕi(u) =

∫
Ωi,F (x̄)=u

g(x̄)ds

‖∇F‖
.

Thus, the equality φ′ (u) =
∑

i φ
′
i (u) =

∑
i

∫
Ωi,F=uG (x̄) ds is true. Since the function

under the surface integral does not change its sign, the function is a monotone function.
The lemma 6 is proved.

Lemma 7. Let Ω be a bounded closed domain of n-dimensional space Rn, n > 1. Let’s
assume that in Ω some r-dimensional surface be given by means of a system of equations

fj(x̄) = 0, j = 1, ..., n− r, 0 ≤ r ≤ n,

with a Jacoby matrix

J = J(x̄) = ‖∂fj
∂xi
‖, i = 1, ..., n, j = 1, ..., n− r

which has, everywhere in Ω, a maximal rank and smooth entries. Let, further a mapping
ξ̄ 7→ x̄ maps some domain Ω′ ⊂ R into Ω with non-degenerating in Ω′ Jacoby matrix

Q = Q(ξ̄) = ‖∂fj
∂xi
‖

with continuous entries. Then for any continuous in the Ω function f(x̄) the formula∫
M
f(x̄)

ds√
G

=

∫
M ′
| detQ | f(x̄(ξ̄))

dσ√
G′
, G′ = det(JQ ·QtJ t)

holds; here M ′ denotes a pre-image of the piece of the surface on given surface, dσ desig-
nates the surface element in coordinates ξ̄.

Proof of this lemma is given in [11, p.92].
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3. Basic results

Consider now the integral (3): ∫
Π
g(x̄)e2πiF (x̄)ds.

Our goal is proving following theorems concerning estimations of surface trigonometric
integrals. Let’s denote

H = max
x̄∈Ω
‖∇F‖, g0 = max

x̄∈Ω
|g(x̄)|.

Designate by Gk−2 and G̃k−2 a minimal value of the product of, respectively, n − 1 and
n− 2 least singular numbers of the matrix Ak−2.

Theorem 1. If k > 2 then there exist a positive constant c0 = c0(r, k, degF ) such that∣∣∣∣∫
Π
g(x̄)e2πiF (x̄)ds

∣∣∣∣ ≤ c0g0 max
(
G−1

1 , H(n−1)/(k−1)G
−1/(k−1)
k−2 ·Qn−1

k−2

)
;

Qk−2 = log H̃; H̃ = max
{
h(H), h(G(1)), ..., h(G(k−2)), h(L)

}
.

Theorem 2. Suppose that the Jacoby matrix Λ0 of the system of functions f(x̄), F (x̄)
has a rank 2. If k > 2 and n ≥ 3 then there exist a positive constant c1 = c1(r, k, degF )
such that ∣∣∣∣∫

Π
g(x̄)e2πiF (x̄)ds

∣∣∣∣ ≤ c1g0 max
(
G̃−1

1 , H(n−3)/(k−1)G̃
−1/(k−1)
k−2 ℘n−2

k−2

)
;

℘̃k−2 = log H̃; H̃ = max
{
h (H) , h

(
G̃(1)

)
, ..., h

(
G̃(k−2)

)
, h (L)

}
,

Note. When k = 2 estimations of these theorems remains valid if to take the first
expression in the sign of maximum.

Proofs of the theorems. Using the formula of the lemma 1 of the work [13] we can
represent the integral ∫

Π
g(x̄)e2πiF (x̄)ds

as a limit

lim
h→0

1

2h

∫
|f(x̄)|≤h,x̄∈Ω

g(x̄) ‖∇f‖ e2πiF (x̄)dx̄. (11)

For every h > 0 the condition |f(x̄)| ≤ h defines some closed subdomain in Ω. We
suppose, in agree with the lemma 6 above, that in the considered domain the surface
integral ∫

F (x̄)=u

‖∇f‖ g(x̄)ds

‖∇F‖
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is a monotone function of u. We can apply the reasonings of the work [13] to transform
the integral under the limit (11) as follows∫

|f(x̄)|≤h,x̄∈Ω
g(x̄) ‖∇f‖ e2πiF (x̄)dx̄ =

∫ M

m
e2πiu

(∫
|f(x̄)|≤h,F (x̄)=u

‖∇f‖ g(x̄)ds

‖∇F‖

)
du.

So, we have: ∫
Π
g(x̄)e2πiF (x̄)ds = lim

h→0

1

2h
×

×
∫ M

m

(∫
F (x̄)=u,|f(x̄)|≤h

‖∇f‖ g(x̄)ds

‖∇F‖

)
(cos 2πu+ i sin 2πu) du.

Applying of the lemma 3, [13] allows us to pass to the limit under the sign of integration.
Then we get: ∫

Π
g(x̄)e2πiF (x̄)ds =

∫ M

m
(cos 2πu+ i sin 2πu)×

× lim
h→0

1

2h

(∫
F (x̄)=u,|f(x̄)|≤h

‖∇f‖ g(x̄)ds

‖∇F‖

)
du.

Using the known method of estimation of this integral (see [2]), one may get a following
bound ∣∣∣∣∫

Π
g(x̄)e2πiF (x̄)ds

∣∣∣∣≤ 2 max
u

∣∣∣∣∣ limh→0

1

2h

(∫
F (x̄)=u,|f(x̄)|≤h

‖∇f‖ g(x̄)ds

‖∇F‖

)∣∣∣∣∣ ≤
≤ 2g0 max

u

(∫
Π,F (x̄)=u

ds

‖∇F‖

)
. (12)

Assume that K ≤ H = max
x̄∈Ω
‖∇F‖. As the norm of the gradient is a square root of the

polynomial ‖∇F‖2, then the subset of the domain Ω where ‖∇F‖ = 0, as a closed subset,
is a Jourdan set with zero measure. Then writing Ω′ = {x̄ ∈ Ω| ‖∇F‖ > 0} we find∣∣∣∣∣

∫
Π
⋂

Ω
g(x̄)e2πiF (x̄)ds

∣∣∣∣∣ =

∣∣∣∣∣
∫

Π
⋂

Ω′
g(x̄)e2πiF (x̄)ds

∣∣∣∣∣ =

=
∞∑
j=1

lim
h→0

1

2h

∣∣∣∣∣
∫
|f(x̄)|≤h,x̄∈Ω(j)

g(x̄) ‖∇f‖ e2πiF (x̄)dx̄

∣∣∣∣∣ ; (13)

here the subdomains Ω(j) defined as below

Ω(j) = {x̄ ∈ Ω|2−jK ≤ ‖∇F‖ ≤ 21−jK}.



52 G. Hasanova

To estimate the integral over Ω(j) firstly let’s make change of variables Φ : x̄ 7→ ∇F (x̄):

u1 =
∂F

∂x1
, ..., ur =

∂F

∂xr
.

Then we have: ∣∣∣∣∣
∫

Π
⋂

Ω(j)

g(x̄)e2πiF (x̄)ds

∣∣∣∣∣ =

= lim
h→0

1

2h

∣∣∣∣∣∣∣∣
∫ ∣∣f(Φ−1(ū))

∣∣ ≤ h
2−jK ≤ ‖ū‖ ≤ 21−jK

g(Φ−1(ū)) ‖∇f‖ e2πiF (Φ−1(ū))(detA1)−1dū

∣∣∣∣∣∣∣∣ ≤

≤ lim
h→0

1

2h

∣∣∣∣∣∣∣∣
∫

f(Φ−1(ū)) = 0
2−jK ≤ ‖ū‖ ≤ 21−jK

g(Φ−1(ū)) ‖∇f‖ (detA1)−1dū

∣∣∣∣∣∣∣∣ =

=

∫
f(Φ−1(ū))=0,2−jK≤‖ū‖≤21−jK

‖∇f‖ g(Φ−1(ū))(detA1)−1ds∥∥A−1
1 (∇f)

∥∥ ≤

≤ g0R

∫
f(Φ−1(ū))=0,2−jK≤‖ū‖≤21−jK

ds; (14)

here

R = max
x̄∈Ω

‖∇f‖ (detA1)−1∥∥A−1
1 (∇f)

∥∥ .

It is easy to note that ∥∥A−1
1 (∇f)

∥∥ ≥ λ−1
1 ‖∇f‖ ,

where λ1 is a maximal singular number of the matrix A1. Then we realize that

R ≤ G−1
1 ,

and G1 is a minimal value of the product of all singular numbers of the matrix A1, with
exception of λ1.

Consider now the surface integral at last chain of (14). The algebraic equation

f(x1, x2, ..., xn) = 0

has a set of solutions consisted of finite number of connected hypersurfaces (see [12]) of
a view x1 = ϕ(x2, ..., xn). This connected sets will be mapped one-valudely to connected
n− 1 dimensional manifolds of a view ū = Φ(x̄) = (ϕ1(x̄), ..., ϕn(x̄)) with

ϕi(x̄) =
∂F

∂xi
(ϕ(x2, ..., xn), x2, ..., xn)
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Then these manifolds are defined by the equation

f(Φ−1(ū)) = 0. (15)

From the compactness it follows that the set of solutions of this equation decomposes
into n subsets every of which is a finite union of open simple connected components. In
every component partial derivatives of the left hand side of the equation (15) takes maximal
absolute values with respect to one of the variables u1, u2, ..., un. Since the mapping Φ is
one to one mapping then all of open components is possible to include into one subset.
Then, surface integral splits into the union of n integrals of following view:∫

2−jK≤‖ū‖≤21−jK
du1...dun−1 ≤ c0

(
21−jK

)n−1
.

So, summing this estimation for all j = 1, 2, ..., we get the estimation∣∣∣∣∣
∫

Π
⋂

Ω
g(x̄)e2πiF (x̄)ds

∣∣∣∣∣ ≤ 4c0g0K
n−1G−1

1 . (16)

Taking some parameter T > 0 we estimate the part of the integral over the subset Π
⋂

Ω1,
where G1 ≥ T , as below∣∣∣∣∣

∫
Π
⋂

Ω1

g(x̄)e2πiF (x̄)ds

∣∣∣∣∣ ≤ 4c0g0K
n−1T−1.

The integral over remaining part of the surface where G1 ≤ T we estimate applying the
lemma 2 as follows:∣∣∣∣∣

∫
Π
⋂

Ω1

g(x̄)e2πiF (x̄)ds

∣∣∣∣∣ << T 1/k−2 ·G−1/(k−2)
k−2 · Q̃n−1

k−2 .

Define now the parameter T from the equality

Kn−1T−1 = T 1/(k−2)G
−1/(k−2)
k−2 ⇒ T = K

(k−2)(n−1)
k−1 G

1/(k−1)
k−2 .

Then we find: ∫
Π
⋂

Ω
g(x̄)e2πiF (x̄)ds << K

n−1
k−1G

−1/(k−1)
k−2 · Q̃n−1

k−2 .

Theorem 1 is proven.
Consider now the estimation of the integral under the limit (11) by another method.

We have ∣∣∣∣∣
∫

Π
⋂

Ω(j)

g(x̄)e2πiF (x̄)ds

∣∣∣∣∣≤ 2g0 max
u

(∫
Π
⋂

Ω(j),F (x̄)=u

ds

‖∇F‖

)
≤

≤ 2g0K
−1 max

u

(∫
Π
⋂

Ω(j),F (x̄)=u
ds

)
. (17)
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Now we apply the lemma 7, and make change of variables u1 = ∂F
∂x1

, ..., ur = ∂F
∂xr

. Then
this surface will be transformed into the surface defined by the system of equations

f(Φ−1(ū)) = 0, F (Φ−1(ū)) = 0. (18)

By the conditions of the theorem the Jacoby matrix Λ0 of the system of functions
f(x̄), F (x̄) has a rank 2. Applying the lemma 7, we get∫

Π
⋂

Ω(j),F (x̄)=u
ds ≤

∫
2−jK≤‖∇F‖≤21−jK

1×

×
√

det(Λ0 · Λt0)

|detA1|
√∣∣∣det(Λ0A

−1
1 · (At1)

−1
Λt0)
∣∣∣dσ; (19)

here dσ is an surface element at the transformed surface (18), and the sign t over the matrix
means a transposition. Consider square root of the determinant at the denominator of the
expression under integral. There is an integral representation (see [13, p. 131) for it:

1√∣∣∣det(Λ0A
−1
1 · (At1)

−1
Λt0)
∣∣∣ =

= π

∫∫∥∥∥∥∥∥(At
1)
−1

Λt
0

 x
y

∥∥∥∥∥∥≤1

dxdy =
π√

det(Λ0 · Λt0)

∫
∥∥∥(At

1)
−1
ū
∥∥∥≤1

ds;

here the last integral is a surface integral taken over the two-dimensional subspace of Rn
which is a linear span of the gradient vectors of the functions f(x̄), F (x̄). If we substitute
this surface integral by maximal its value taken over all two dimensional subspaces, we
get, in accordance with the theorem 6, §11, ch. 7 (in the suitable form) of the book [6,
p.148] (see also [14, 20]), exactly the product of inverted minimal singular numbers of the
matrix A−1

1 , i. e. maximal singular numbers of the matrix A1. So, the integral at the
right hand side of the equality (19) can be represented as follows:∫

2−jK≤
√
u23+···+u2n≤21−jK

dσ

Σn−2(A1)
,

where Σn−2(A1) means the product of least n − 2 singular numbers of the matrix A1.
Hence, we have the bound∫

2−jK≤
√
u23+···+u2n≤21−jK

dσ

Σn−2(A1)
≤

≤ C2
n

Γ(1 + (n− 2)/2)

π(n−2)/2
(21−jK)n−2G̃−1

1 << Kn−2G̃−1
1 .
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here G̃1 = min
x̄∈Ω

Σn−2(A1) denotes the minimal value of product of last n − 2 (smallest)

singular numbers of the matrix A1. Therefore, we have∣∣∣∣∣
∫
‖∇F‖≤21−jK

g(x̄)e2πiF (x̄)ds

∣∣∣∣∣ ≤ 2n−1 Γ(1 + (n− 2)/2)

π(n−2)/2
g0K

−1(21−jK)n−2G̃−1
1 .

Summarizing over all j = 1, 2, ..., we obtain:∣∣∣∣∣
∫

Π
⋂

Ω
g(x̄)e2πiF (x̄)ds

∣∣∣∣∣ ≤ Cg0K
n−3G̃−1

1 ; (20)

C = 22nΓ(1 + (n− 2)/2)

π(n−2)/2
.

This estimation is got using constraints over the gradient and the matrix A1. Applying
the lemma 4 we can prove the estimation in the terms of high order derivatives. This
lemma can be applied by following way. Denote by Ω1 subdomain in Ω for all points of
which the condition G̃1 ≤ T is satisfied. We have, in consent with the lemma 4, the bound

µ
(

ΠH

⋂
Ω1

)
<< T 1/(k−2)G̃

−1/(k−2)
k−2 ℘n−2

k−2 ;

℘̃k−2 = 3(n− 2)2 log H̃; H̃ = max {h (H) , h (G1) , ..., h (Gk−2) , h (L)} .

The value of the parameter T can be defined by the condition

Kn−3T−1 = T 1/(k−2)G̃
−1/(k−2)
k−2 .

We have:

T = K
(k−2)(n−3)

k−1 G̃
1/(k−1)
k−2 .

So, we find when n ≥ 2:∣∣∣∣∣
∫

Π
⋂

Ω
g(x̄)e2πiF (x̄)ds

∣∣∣∣∣ << K
n−3
k−1 G̃

−1/(k−1)
k−2 ℘n−2

k−2 . (21)

Theorem 2 is now proven.
The authors are expressing their sincere thanks to the professor M. Bayramoglu for

valuable remarks concerning the results of the article.
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Examples of the Discrete Additive Derivative of the Second-
order Discrete Multiplicative Derivative

N. Aliyev, T. Mamiyeva∗

Abstract. As is known, in a discrete analysis there are investigated either discrete processes or
continuous processes with discrete analog. In a discrete process various properties of sequences are
studied. They can be arithmetic, geometric progressions and the Fibonacci sequence. Determina-
tion of the general term of an arithmetic progression leads us to the Cauchy problem for first-order
equation with discrete additive derivative; determining the general term of a geometric progres-
sion brings us again to the Cauchy problem for a first-order equation with discrete multiplicative
derivatives. Finally, the definition of the general term leads us to the Fibonacci sequence for the
Cauchy problem for second-order equations with discrete additive derivatives.The main objective
of the discrete analysis is the discretization of mathematical models derived from the continuous
analysis and study of the resulting discrete model. Multiplicative derivative and integrated, inte-
gral, compact and simple properties are given in three or four pages in [8]. Thus, the multiplicity
properties were expected here rather than additivity. It is shown that ”derivation of derivatives,
derivatives” and ”production of integers are integral”. The distinctive (marking) of the integral
belongs to us.

Key Words and Phrases: discrete additive analysis, discrete multiplicative analysis, additivo-
multiplicative and multiplicative-additive equations.
2010 Mathematics Subject Classifications: 35J25, 35B45,42B20, 47B38

1. Introduction

The derivative taught in ”Algebra and the beginning of analysis” in secondary school
and ”Mathematical Analysis” course in Higher School is mainly additive derivative [1, 2].
Although the multiplicative derivative has been created for around nearly a century [3],
problems for the multiplicative derivative equations have been considered recently [4, 5].
Here we will talk about the discrete cases of these additive and multiplicative derivatives
[6, 7, 8]. We began to look at the problems for ordinary discrete additivo-multiplicative
and multiplicativo - additive derivative equations, [9, 10, 11]. It should be noted that the
markings for discrete derivatives and integrals also belong to us [12].

Here we look at Cauchy and boundary value problems for a two-dimensional third-
order equation (the second-order discrete additive relative to one variable, which holds a
discrete multiplicative derivative relative to the other variable).

∗Corresponding author.
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2. Solution of the problem

Such third-order equations as (
y(′′)n

)[′]
= fn, n ≥ 0, (1)

are considered. Here also fn n ≥ 0 is the given sequence and yn n ≥ 0 is the search
sequence. Using the definitions of derivatives, we’ll get

yn+3 = fn ·
y2n+2

yn+1
+ yn

y3n+2

y3n+1

, n ≥ 0, (2)

Here, emphasizing ”n”, it becomes possible to determine all yns beginning from y3 with
the help of y0, y1 and y2 (dependence from the fn is also available). But it is impossible
to give the analytical note for the general solving of (2).

3. The solution is solved by integration

That is why, returning to the (1) and using the discrete additive derivative:

y
[′]
n+1 − y[′]n = fn, n ≥ 0, (3)

Here, dropping out ”n”:

y
[′′]
1 − y

[′′]
0 = f0,

y
[′′]
2 − y

[′′]
1 = f1,

...

y[′′]n − y
[′′]
n−1 = fn−1,

Adding these expressions, we’ll get :

y[′′]n − y
[′′]
0 =

n−1∑
k=0

fk,

or

y[′′]n = y
[′′]
0 +

n−1∑
k=0

fk, n ≥ 1, (4)

Here, using the designation

gn = gn

(
y
[′′]
0 , fk

)
= y

[′′]
0 +

n−1∑
k=0

fk, n ≥ 1, (5)

the equation will change to
y[′]n = gn, n ≥ 1, (6)
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So, the given three-order equation (1)is brought to the two-order equation (6). Using the
definition of the discrete multiplicative derivative in the last equation, we’ll get:

y
(′)
n+1

y
(I)
n

= gn, n ≥ 1, (7)

changing ”n”:

y
[′]
2

y
[′]
1

= g1,

y
[′]
3

y
[′]
2

= g2,

...

y
[′]
n−1

y
[′]
n−2

= gn−2,

y
[′]
n

y
[′]
n−1

= gn−1,

Multiplying these expressions, we get

y
[′]
n

y
[′]
1

=

n−1∏
s=1

gs,

or

y[′]n = y
[′]
1

n−1∏
s=1

gs, n ≥ 2, (8)

Here, just like in (3), using the designation

hn = hn

(
y
[′]
1 gs

)
= y

[′]
1

n−1∏
s=1

gs, n ≥ 2, (9)

the equation (7) will change to

y[′]n = hn, n ≥ 2, (10)

Applying the discrete additive derivative on this equation once more, we’ll get

yn+1

yn
= hn, n ≥ 2,

changing ”n”:
y3
y2

= h2,
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y4
y3

= h3,

...

yn−1
yn−2

= hn−2,

yn
yn−1

= hn−1,

Multiplying them, we get

yn
y2

=

n−1∏
m=2

hm,

or

yn = y2 ·
n−1∏
m=2

hm, n ≥ 3, (11)

So, we achieve:

Theorem 1. If fn n ≥ 0 is the given valid elemental sequence, the equation (1) will have
its solving and it is like (10), so hns are like in (9) and gns are like in (4), y′′0 , yI1 and
y2 are optional constants.

4. Cauchy problem

If the initial conditions

yk = αk, k = 0, 2, (12)

are added to the given third-order equation (1), then, because of

y
[′′]
0 =

y0y2
y21

=
α0α2

α2
1

, y
[′]
1 =

y2
y1

=
α2

α1
, (13)

(1), (10) solving of the Koshi example is defined from (10) as

yn = α2 ·
n−1∏
m=2

hm, n ≥ 3, (14)

So, hn-s and gs-s are defined from (4) and (8), taking into consideration (12).

Theorem 2. Under the terms of Theorem 1, if αk, k = 0, 2 , the Koshi example has the
only solving and this is given with the help of (13), so hns are defined with the help of (8)
and gs-s – with the help of (8) in the (4).
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5. Boundary problem

Now, taking the 0, N − 3 numbers of n in (1), let’s see the border conditions of the
equation:

y′′0 = α, y′1 = β, yN = γ, (15)

Taking into consideration (14) in (4) and (8):

gn = α+
n−1∑
k=0

fk, n ≥ 1, (16)

hn = β ·
n−1∏
s=1

gs, n ≥ 2, (17)

Designations of (15) and (16) define gns and hn-s as equal, that is, there’s no discretion.

Finally, taking into consideration the general solving of (10) in the third of (14) border
conditions, we get

γ = yN = y2

N−1∏
m=2

hm,

and

y2 =
γ∏N−1

m=2 hm
, (18)

The general solving of the border example is possible from (??) general solving with the
help of (16)

yn =
γ∏N−1

m=2 hm
·
n−1∏
m=2

hm =
γ∏N−1

m=n hm
, (19)

So, we get:

Theorem 3. Under the terms of Theorem 1, if the given α, β and γ are the true given
numbers, there’s the only solving of the border example (1) and (14), and this solving is
like (18). So, hns are given with the help of (16) and gns – with the help of (15).

6. Results

Here, the third order presents the Cauchy and boundary problems for the equation
with discrete nonlinear differences, and the analytical expressions for the solution of these
problems are obtained.
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Abstract. In the present paper, we study the asymptotic behavior of the distribution function of
the Ahlfors-Beurling transform of a Lebesgue integrable function as λ→ +∞ and as λ→ 0+.
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ior.
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1. Introduction

The Ahlfors-Beurling transform of a function f ∈ Lp (C), 1 ≤ p <∞ is defined as the
following singular integral:

(Bf) (z) = − 1

π
lim
ε→0

∫
{w∈C : |z−w|>ε}

f (w)

(z − w)2
dm (w) .

The Ahlfors–Beurling transform is one of the important operators in complex analysis.
It is the “Hilbert transform” on complex plane. It has been shown in [1,3,6,9,11,15,17]
that this transform plays an essential role in applications to the theory of quasiconformal
mappings and to the Beltrami equation with discontinuous coefficients.

From the theory of singular integrals (see [13]) it is known that the Ahlfors–Beurling
transform is a bounded operator in the space Lp (C), 1 < p < ∞, that is, if f ∈ Lp (C),
then B (f) ∈ Lp (C) and

‖Bf‖Lp
≤ Cp ‖f‖Lp

. (1)

In the case f ∈ L1 (C) only the weak inequality holds,

m {z ∈ C : |(Bf) (z)| > λ} ≤ C1

λ
‖f‖L1

, (2)

where m stands for the Lebesgue measure, Cp, C1 are constants independent of f and
m {z ∈ C : |(Bf) (z)| > λ} - the distribution function of the Ahlfors-Beurling transform
of the function f .

http://www.cjamee.org 3 c© 2013 CJAMEE All rights reserved.
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In [2,4,5,7,8,10,12,14,16] the boundedness of the operator B in other function spaces
(in the spaces of Sobolev, Besov, Campanato, Morrey, etc.) was studied.

In the present paper, we study the asymptotic behavior of the distribution function
of the Ahlfors-Beurling transform of a Lebesgue integrable function as λ → +∞ and as
λ→ 0+.

2. Asymptotic behavior of the distribution function of the
Ahlfors-Beurling transform as λ→ +∞

In this section we studying the asymptotic behavior of the distribution function of the
Ahlfors-Beurling transform as λ→ +∞.

Theorem 1. Let f ∈ L1 (C). Then the equation

lim
λ→+∞

λm {z ∈ C : |(Bf) (z)| > λ} = 0 (3)

holds.

Proof. Since f ∈ L1 (C), then for every ε > 0 there exists n ∈ N and R > 0 such that

‖f − [f ]nR‖L1
≤ ε

4C1
, (4)

where [f ]nR (z) = [f ]n χ (B (0;R)) (z), [f (z)]n = f (z) for |f (z)| ≤ n, [f (z)]n = 0 for
|f (z)| > n, χ (B (0;R)) (z)- characteristic function of the circleB (0;R) = {z ∈ C : |z| < R}.
It follows from (1) and (4) that for every λ > 0 the inequality

m

{
z ∈ C : |B (f − [f ]nR) (z)| > λ

2

}
≤ 2C1

λ
‖f − [f ]nR‖L1

≤ ε

2λ
(5)

holds. Since the function [f ]nR (z) is bounded, then we get that [f ]nR ∈ Lp (C) for each
p ≥ 1. It follows that B [f ]nR ∈ Lp (C) for each p > 1. Denote

F1 (z) = B [f ]nR (z) · χ (B (0; 2R)) , F2 (z) = B [f ]nR (z) · χ (C\B (0; 2R)) .

Then

B [f ]nR (z) = F1 (z) + F2 (z) ,

The function F1 (z) is concentrated on the closed circle B (0; 2R), and the function F2 (z)
is concentrated on the set C\B (0; 2R). For every p > 1 from the inclusion B [f ]nR ∈ Lp (C)
it follows that F1 (z) ∈ Lp (C). Since the function F1 (z) is concentrated on the bounded
set, then we have that F1 (z) ∈ L1 (C). Then for sufficiently large values of λ > 0

λ

2
m {z ∈ C : |F1 (z)| > λ/2} ≤

∫
{z∈C: |F1(z)|>λ/2}

|F1 (z)| dm (z) <
ε

4
. (6)
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On the other hand, for any z ∈ C\B (0; 2r) we have

|B ([f ]nR) (z)| = 1

π

∫
B(0;R)

|[f ]nR (w)|
|z − w|2

dm (w) ≤

≤ 1

πR2

∫
B(0;R)

|[f ]nR (w)| dm (w) =
1

πR2
‖[f ]nR‖L1

≤ 1

πR2
‖f‖L1

.

This shows that the function F2 (z) is bounded. Then it follows from (6) that for sufficiently
large values of λ > 0

m {z ∈ C : |B [f ]nR (z)| > λ/2} ≤ m {z ∈ C : |F1 (z)| > λ/2} < ε

2λ
. (7)

It follows from (5) and (7) that for sufficiently large values of λ > 0

m {z ∈ C : |(Bf) (z)| > λ/2} ≤

≤ m {z ∈ C : |B [f ]nR (z)| > λ/2}+m

{
z ∈ C : |B (f − [f ]nR) (z)| > λ

2

}
<

ε

2λ
+

ε

2λ
=
ε

λ
.

This shows that the equation (3) holds. Theorem 1 is proved. J

3. Asymptotic behavior of the distribution function of the
Ahlfors-Beurling transform as λ→ 0+

In this section we studying the asymptotic behavior of the distribution function of the
Ahlfors-Beurling transform as λ→ 0+.

Theorem 2. Let f ∈ L1 (C). Then the equation

lim
λ→0+

λm {z ∈ C : |(Bf) (z)| > λ} =

∣∣∣∣∫
C
f (z) dm (z)

∣∣∣∣ (8)

holds.

At first we prove the auxiliary lemma.

Lemma 1. If f ∈ L1 (C) and
∫
C f (z) dm (z) = 0, then the equation

m {z ∈ C : |(Bf) (z)| > λ} = o (1/λ) , λ→ 0+ (9)

holds.

Proof of Lemma 1. At first assume that the function f is concentrated on some
circle B (0; R) ⊂ C. In this case, from the equality

(Bf) (z) = − 1

π
lim
ε→0

∫
{w∈B(0;R) : |z−w|>ε}

f (w)

(z − w)2
dm (w) =
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= − 1

π
lim
ε→0

∫
{w∈B(0;R) : |z−w|>ε}

f (w)

(z − w)2
dm (w) +

1

π

∫
B(0;R)

f (w)

(z − z0)2
dm (w) =

=
1

π
lim
ε→0

∫
{w∈B(0;R) : |z−w|>ε}

(z0 − w)×

×
[

1

(z − w)2 (z − z0)
+

1

(z − w) (z − z0)2

]
f (w) dm (w) , z 6= z0,

where z0 ∈ C, we get that

|(Bf) (z)| ≤ 16

π |z|3

∫
B(0;R)

|z0 − w| |f (w)| dm (w) =
k0

|z|3
,

for values of |z| > R0, where

k0 =
16

π

∫
B(0;R)

|z0 − w| |f (w)| dm (w) , R0 = 2 max {R, |z0|} .

Then it follows that

m {z ∈ C : |(Bf) (z)| > λ} ≤ m {z ∈ C : |z| ≤ R0}+m

{
z ∈ C :

k0

|z|3
> λ

}
=

= m {z ∈ C : |z| ≤ R0}+m

{
z ∈ C : |z| < 3

√
k0
λ

}
= πR2

0 + π

(
k0
λ

)2/3

,

whence it follows asymptotic equality (9).
Now let’s consider the general case. From the condition

∫
C f (z) dm (z) = 0 it follows

that for any ε > 0 there exist the functions f1 and f2 satisfying the condition: f = f1 +f2,
the function f1 is concentrated on some circle B (0; R) ⊂ C and

∫
C f1 (z) dm (z) = 0, the

function f2 satisfies the inequality ‖f2‖L1
< ε

4C1
, where C1 is a constant in estimation (1).

Since the function f1 is concentrated on the circle B (0; R) ⊂ C and
∫
C f1 (z) dm (z) = 0,

then for the function f1 equality (9) is satisfied, and therefore there exists λ (ε) > 0 such
that for 0 < λ < λ (ε) the inequality

λm

{
z ∈ C : |(Bf1) (z)| > λ

2

}
<
ε

2
(10)

holds. On the other hand, from the inequality (1) it follows that

λm

{
z ∈ C : |(Bf2) (z)| > λ

2

}
≤ 2C1 ‖f2‖L2

<
ε

2
(11)

for any λ > 0. From inequalities (10), (11) and the inclusion

{z ∈ C : |(Bf) (z)| > λ} ⊂
{
z ∈ C : |(Bf1) (z)| > λ

2

}⋃{
z ∈ C : |(Bf2) (z)| > λ

2

}
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we get

λm {z ∈ C : |(Bf) (z)| > λ} < ε

for 0 < λ < λ (ε). This shows that equality (9) was satisfied for all functions f ∈ L1 (C),
satisfying the condition

∫
C f (z) dm (z) = 0. This completes the Proof of the Lemma 1 J

Proof of Theorem 2. In the case
∫
C f (z) dm (z) = 0 the assertion of the Theorem

follows from Lemma 1. Let’s consider the case
∫
C f (z) dm (z) = η 6= 0. Denote by

f1 (z) = η
πχ (B (0; 1)) (z), where χ (B (0; 1)) is a characteristic function on the unit circle

B (0; 1) and f2 (z) = f (z)− f1 (z). Then
∫
C f2 (z) dm (z) = 0, and from Lemma 1

m {z ∈ C : |(Bf2) (z)| > λ} = o

(
1

λ

)
, λ→ 0 + . (12)

Since for any |z| > 2

|(Bf1) (z)| = |η|
π2

∣∣∣∣∣
∫
B(0; 1)

dm (w)

(z − w)2

∣∣∣∣∣ ≤ |η|π · 1

(|z| − 1)2
,

|(Bf1) (z)| = |η|
π2

∣∣∣∣∣
∫
B(0; 1)

dm (w)

(z − w)2

∣∣∣∣∣ =
|η|
π2

∣∣∣∣∣
∫
B(0; 1)

dm (w)

(|z| − w)2

∣∣∣∣∣ ≥
≥ |η|
π2
Re

(∫
B(0; 1)

dm (w)

(|z| − w)2

)
≥ |η|

π
· (|z| − 1)2

(|z|+ 1)4
,

then for any 0 < λ < |η|
49π

m {z ∈ C : |(Bf1) (z)| > λ} ≤ m {z ∈ C : |z| ≤ 2}+m

{
z ∈ C :

|η|
π
· 1

(|z| − 1)2
> λ

}
=

= 4π +m

{
z ∈ C : |z| < 1 +

√
|η|
πλ

}
= 4π + π

(
1 +

√
|η|
πλ

)2

, (13)

m {z ∈ C : |(Bf1) (z)| > λ} ≥ m

{
|z| ≥ 2 :

|η|
π
· (|z| − 1)2

(|z|+ 1)4
> λ

}
=

= m

{
|z| ≥ 2 :

(|z|+ 1)2

|z| − 1
<

√
|η|
πλ

}
= m

{
|z| ≥ 2 : |z|+ 3 +

4

|z| − 1
<

√
|η|
πλ

}
≥

≥ m

{
|z| ≥ 2 : |z|+ 7 <

√
|η|
πλ

}
≥ π

(√
|η|
πλ
− 7

)2

− 4π. (14)

It follows from (13) and (14) that

lim
λ→0+

λm {z ∈ C : |(Bf1) (z)| > λ} = |η| . (15)
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For any 0 < ε < 1, by the inclusions

{z ∈ C : |(Bf1) (z)| > (1 + ε)λ} \ {z ∈ C :
|(Bf2) (z)| > ελ} ⊂ {z ∈ C : |(Bf) (z)| > λ} ⊂

⊂ {z ∈ C : |(Bf2) (z)| > ελ}
⋃
{z ∈ C : |(Bf1) (z)| > (1− ε)λ}

and equalities (12), (15) we have

|η|
1 + ε

≤ lim inf
λ→0+

λ ·m {z ∈ C : |(Bf) (z)| > λ} ≤

≤ lim sup
λ→0+

λ ·m {z ∈ C : |(Bf) (z)| > λ} ≤ |η|
1− ε

.

This implies the equation (8) and completes the proof of the Theorem 2. J
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1. Introduction and main result

We consider the system of difference equations{
a1,ny2,n+1 + a2,ny2,n = λy1,n,
a1,n−1y1,n−1 + a2,ny1,n = λy2,n, n = 0,±1,±2, ...,

(1)

where aj,n, , j = 1, 2, are real coefficients and satisfy the conditions

(−1)j−1 aj,n > 0, n = 0,±1,±2, ..., aj,n → 0, n→ +∞, j = 1, 2, (2)∑
n<0

|n|
∣∣∣(−1)j−1 aj,n − 1

∣∣∣ <∞, j = 1, 2. (3)

Note that the system of difference equations (1) is a discrete analogue of the one-dimensional
Dirac system. In this regard, the operator will be called the discrete Dirac operator. Var-
ious questions of the spectral theory of the Dirac operator were studied in [1, 2, 3]. We
note that the direct and inverse problems of spectral analysis for the system (1) in various
statements and in different classes were considered in [4, 5, 6, 7, 8, 9].

Let `2 ((−∞,∞) , C) denote the Hilbert space of all complex vector sequences y =(
y1,n
y2,n

)∞
n=−∞

with the norm ‖y‖ =
∑∞

n=−∞

{
|y1,n|2 + |y2,n|2

}
. We also define the op-

erator L generated in `2 ((−∞,∞) , C) by (1). By virtue of (2), (3), the operator L is
bounded and self-adjoint.

It is known that in studying various problems of the spectral theory of linear operators,
of particular interest are formulas for the expansion in eigenfunctions. In the present
paper, an explicit form of the operator L resolvent is found. Similar questions for the
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one-dimensional Dirac system, the Schrödinger equation, and its difference analogue were
investigated in the works [2, 5, 6, 7, 8, 9].

We denote the operator defined in `2 ([0,∞) , C) by system of equations (1) for n ≥ 0
and the boundary condition y1,0 = 0 by L0. It follows from the condition (2) that L0 is a
completely continuous self-adjoint operator. Since the eigenvalues of the operator L0 are
simple and L0 is completely continuous, its spectrum consists of simple eigenvaluesλn =
±µn, n = 1, 2, ..., where λn → 0 as n → ∞, and the point λ = 0. The latter is either
a simple eigenvalue of the operator L0 or the only point of its continuous spectrum.
It is known (see, for example, [10], Ch. 7, § 4) that the eigenvectors of a completely
continuous self-adjoint operator form an orthogonal basis in the corresponding space.
Consequently, the spectral function of the operatorL0, which we denote byρ (λ), is a step
function concentrated at the points λn, n = 1, 2, .... For the sake of simplicity, in what
follows we assume that the spectrum of the operator L0 lies in the interval (− 2, 2).
Denote by Pj,n (λ), Qj,n (λ) the solutions of the system of equations (1), defined by the
initial conditions P1,0 (λ) = Q2,1 (λ) = 0, P2,1 (λ) = 1, Q1,1 (λ) = a−12,1.

Consider the spectral function

ρ (λ) =
∑
λn<λ

α−1n ,

where

αn =
∞∑
k=1

{
P 2
1,k (λn) + P 2

2,k (λn)
}
,
∞∑
n=1

α−1n = 1.

Following [9], we introduce the Weyl function m (λ) = 〈Rλδ, δ〉 of the operator L0, where

Rλ is the resolvent of the operator L0 and δ =

(
0, 0, 0, ...
1, 0, 0, ..

)
∈ `2 ([0,∞) , C).

The Weyl function is related to the spectral function (see [11, 12]) by the equality

m (λ) =

∫ ∞
−∞

dρ (t)

t− λ
,

which implies that

m (λ) =
∞∑
n=1

1

αn (λn − λ)
. (4)

We also introduce the Weyl solution

f+j,n (λ) = Qj,n (λ) +m (λ)Pj,n (λ) (5)

of the system of equations (1). By (4), the Weyl solution is analytic on the whole complex
λ-plane except for the simple polesλk, k = 1, 2, .... (The point λ = 0 is a nonisolated
singularity of the Weyl solution). In addition, it is known (see, for instance, [11, 12]) that
for n > 0 the equality f+j,n (λ) = (Rλδ)n is valid. Consequently, for every N > −∞ the
Weyl solution belongs to `2 ([N,∞) , C) with respect to the variable n.
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We denote by Γ the complex λ−plane with a cut along the segment [−2, 2]. In the
plane we consider the function

z = z (λ) = −λ
2 − 2

2
+
λ

2

√
λ2 − 4,

choosing a regular branch of the radical such that
√
λ2 − 4 > 0 with λ > 2. It is known

that the system of equation (1) has solution
{
f−j,n (λ)

}
, j = 1, 2, representable in the form

[9]

f−j,n (λ) = α−j (n)

(
z−1 − 1

λ

)2−j
z−n

1 +
∑
m≤1

K−j (n,m) z−m

 , n = 0,±1,±2, ...,


(6)

and the quantities α±1 (n) , α±2 (n) , K±1 (n,m) , K±2 (n,m) satisfy the relations

α−j (n) = 1 + o (1) , n→ −∞, j = 1, 2,

K−j (n,m) = O
(
σ−
(
n+

[
m
2

]
+ 1
))
, n+m→ −∞

}
(7)

where σ− (n) =
∑

m≤n { |a1,m − 1|+ |a2,m + 1|} , by [x] denote the integer part x . Ac-

cording to (6), (7) for each functions
{
f−j,n (λ)

}
, j = 1, 2, are regular in the plane Γ and

continuous up to its boundary ∂Γ.

Let uj,n and vj,n be two solutions of the system of equations (1). We call them the

Wronskian quantity {uj,n, vj,n} = a1,n−1 (u1,n−1v2,n − u2,nv1,n−1) . Put w (λ) =
{
f+j,n (λ) ,

f−j,n (λ)
}

. Let us state the main result of this paper.

Theorem 1. The functions

Rnm (λ) =

(
R11
nm R12

nm

R21
nm R22

nm

)
, Rijnm = −w−1 (λ)

{
f+i,n (λ) f−j,m (λ) ,m ≤ n,
f+j,m (λ) f−i,n (λ) ,m > n,

(8)

are elements of the operator L resolvent matrix and satisfy the equations

a1,nR
22
n+1,m + a2,nR

22
nm − λR12

nm = 0,

a1,nR
21
n+1,m + a2,nR

21
nm − λR11

nm = δnm,

a1,n−1R
11
n−1,m + a2,nR

11
nm − λR21

nm = 0,

a1,n−1R
12
n−1,m + a2,nR

12
nm − λR22

nm = δnm,

(9)

where δnm is the Kronecker symbol.

Proof. Let h = {h1,n, h2,n} ∈ `2 ((−∞,∞) ;C) be an arbitrary finite sequence. In
order to construct the resolvent of the operator L, we need to solve the equation

Ly = λy + h.
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We rewrite the last equation in the form{
a1,ny2,n+1 + a2,ny2,n = λy1,n + h1,n,
a1,n−1y1,n−1 + a2,ny1,n = λy2,n + h2,n.

(10)

We are looking for a solution to the system of equations in the form

yj,n = Cnf
+
j,n (λ) +Dnf

−
j,n (λ) j = 1, 2, (11)

where Cn and Dn are the quantities to be determined. Substituting representation (11)
into the system of equations (10) after simple transformations, we obtain{

a1,n−1 (Cn−1 − Cn) f+1,n−1 (λ) + a1,n−1 (Dn−1 −Dn) f−1,n−1 (λ) = h2,n,

a1,n−1 (Cn−1 − Cn) f+2,n (λ) + a1,n−1 (Dn−1 −Dn) f−2,n (λ) = −h1,n−1.

Solving the last system of equations with respect to Cn−1 − Cn and Dn−1 −Dn, we find
that

Cn−1 − Cn = w−1 (λ)
[
f−1,n−1 (λ)h1,n−1 + f−2,n (λ)h2,n

]
, (12)

Dn−1 −Dn = w−1 (λ)
[
f+1,n−1 (λ)h1,n−1 + f+2,n (λ)h2,n

]
. (13)

Note that to fulfil the conditions y ∈ `2 ((−∞,∞) ;C) you need to take C−∞ = 0, D∞ = 0.
Adding then equalities (12) for n = n, n − 1, n − 2, ..., and equalities (13) for n = n +
1, , n+ 2, n+ 3, ..., we have

Cn = −w−1 (λ)
∑n−1

k=−∞

[
f−1,k (λ)h1,k + f−2,k+1 (λ)h2,k+1

]
,

Dn = −w−1 (λ)
∑∞

k=n

[
f+1,k (λ)h1,k + f+2,k+1 (λ)h2,k+1

]
.

Substituting the last equalities into representation (11), we obtain

yj,n = −w−1 (λ)
[∑n−1

k=−∞ f
+
j,n (λ) f−1,k (λ)h1,k +

∑∞
k=n f

−
j,n (λ) f+1,k (λ)h1,k

]
−

−w−1 (λ)
[∑n−1

k=−∞ f
+
j,n (λ) f−2,k (λ)h2,k +

∑∞
k=n f

−
j,n (λ) f+2,k (λ)h2,k

]
.

On the other hand, by the definition of the resolvent, we have

yj,n =

∞∑
k=−∞

[
Rj1nkh1,k +Rj2nkh2,k

]
. (14)

Comparison of the last equalities leads us to formulas (8). Using (8), it is directly verified
that equations (9) are valid, and it follows from (9) that the vector y = {y1,n, y2,n}∞−∞,
defined by formula (14) is a solution to the system of equations (10). Thus, the theorem
is proved. J
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One Remark on the Eigenvalues of the Schrodinger Op-
erator with Growing Potential

N.G. Mamedova, A.Kh. Khanmamedov

Abstract. The Schrodinger operator L = − d2

dx2 +|x| on the whole axis is considered. The spectrum
of the operator is investigated. An asymptotic formula for eigenvalues is obtained.
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1. Introduction and main result

The spectral properties of the Airy operator LDy = −y′′+xy, y (0) = 0 or LNy = −y′′+
xy, y′ (0) = 0 were studied in the works of quite a few authors (see [1, 2, 3, 4, 5, 6, 7, 8, 9]
also the literature there). The interest is also the corresponding Schrodinger operator on
the whole axis.

In the space L2 (−∞,∞) we consider the operatorL, generated by the differential
expression

l (y) = −y′′ + |x| y

with the domain

D (L) =
{
y ∈ L2 (−∞,∞) : y ∈W 2

2,loc, l (y) ∈ L2 (−∞,∞)
}
.

Note that the operator L is densely defined, because its domain contains infinitely differen-
tiable functions compactly supported on (−∞,∞), the set of these functions is well known
to be dense in L2 (−∞,∞), since its domain of definition contains infinitely differentiable
functions with compact support on the interval, the set of which is dense in. Moreover, L
is a self-adjoint operator. Obviously, the spectrum of the operator is discrete and consists
of eigenvalues λn, n = 1, 2, ..., where λn →∞ for n→∞.

We will be interested the asymptotic behavior of eigenvalues λn.
First, consider the equation

−y′′ + xy = λy, −∞ < x <∞, λ ∈ C. (1)

http://www.cjamee.org 15 c© 2013 CJAMEE All rights reserved.
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It is well known [10] that this equation has two linearly independent solutions in the form
Ai (x− λ) , Bi (x− λ), where Ai (z) , Bi (z) are the Airy functions of the first and second
kind, respectively.

We note some properties of these functions. As is known (see [8, 10]), both functions
are entire functions of order 3/2 and type 2/3. The function Ai (z) admits the following
asymptotic representations as |z| → ∞

Ai (z) ∼ π−
1
2 z−

1
4 e−ζ

[
1 +O

(
ζ−1
)]
, |arg z| < π,

Ai′ (z) ∼ −π−
1
2 z

1
4 e−ζ

[
1 +O

(
ζ−1
)]
, |arg z| < π,

Ai (−z) ∼ π−
1
2 z−

1
4 sin

(
ζ +

π

4

) [
1 +O

(
ζ−1
)]
, |arg z| < 2π

3
,

Ai′ (−z) ∼ −π−
1
2 z

1
4 cos

(
ζ +

π

4

) [
1 +O

(
ζ−1
)]
, |arg z| < 2π

3
,

where ζ = 2
3z

3
2 . In the sector |z| < π

3 the function Bi (z) has an asymptotic representation

Bi (z) ∼ π−
1
2 z−

1
4 eζ
[
1 +O

(
ζ−1
)]
.

Thus, the functions Bi (z) grow exponentially as |z| → ∞ along any ray in this sector.
For the Wronskian of functions Ai (z) , Bi (z) the equality

{Ai (z) , Bi (z)} = Ai (z)Bi′ (z)−Ai′ (z)Bi (z) = π−1 (2)

is valid.
We now consider the equation

−y′′ + |x| y = λy, −∞ < x <∞, λ ∈ C. (3)

According to the general theory (see [11]), equation (3) has two linearly independent so-
lutions ψ± (x, λ), which for each λ, Imλ > 0 satisfy the conditions ψ± (x, λ) ∈ L2 (0,±∞).
Since equation (3) does not change when x replaced by −x, the function ψ± (−x, λ) is also
its solution. Therefore, we can assume that ψ− (x, λ) = ψ+ (−x, λ).

On the other hand, since Ai (x− λ) ∈ L2 (0,∞), the functions ψ+ (x, λ) , Ai (x− λ)
coincide up to a factor. Based on these considerations, for x ≥ 0 we set ψ+ (x, λ) =
Ai (x− λ). Further, when x ≤ 0 looking at the solution ψ+ (x, λ) in the form

ψ+ (x, λ) = αAi (−x− λ) + βBi (−x− λ) ,

since the functions Ai (−x− λ) , Bi (−x− λ) form the fundamental system of solutions of
equation (1) for x ≤ 0. Taking into account that the solution ψ+ (x, λ) and its derivative
ψ′+ (x, λ) are continuous at a point x = 0, to determine the coefficients α, β we obtain the
following system of equations{

Ai (−λ)α+Bi (−λ)β = Ai (−λ)
Ai′ (−λ)α+Bi′ (−λ)β = −Ai′ (−λ)
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Solving the last system with respect to the coefficients α, β and taking into account equality
(2), we obtain

α = −π (Ai (−λ)Bi (−λ))
′
,

β = −2πAi (−λ)Ai′ (−λ) .

So, we have proved the following theorem.

Theorem 1. Equation (3) has special solutions ψ± (x, λ), which can be represented in the
form

ψ+ (x, λ) =

{
Ai (x− λ) , x ≥ 0,

−π (Ai (−λ)Bi (−λ))
′
Ai (−x− λ)− 2πAi (−λ)Ai′ (−λ)Bi (−x− λ) , x < 0

ψ− (x, λ) =

{
−π (Ai (−λ)Bi (−λ))

′
Ai (x− λ)− 2πAi (−λ)Ai′ (−λ)Bi (x− λ) , x ≥ 0,

Ai (−x− λ) , x < 0

We return now to the study of the spectrum of the operator L. From the fact that
ψ± (x, λ) ∈ L2 (0,±∞), if λ = λn is an eigenvalue, then the solutions ψ+ (x, λn) and
ψ− (x, λn) are linearly dependent. In fact, since

ψ+ (x, λn) =

{
Ai (x− λn) , x ≥ 0,

(−1)n−1Ai (−x− λn) , x < 0,

ψ− (x, λn) =

{
(−1)n−1Ai (x− λn) , x ≥ 0,

Ai (−x− λn) , x < 0,

then following equality holds

ψ+ (x, λn) = (−1)n−1 ψ− (x, λn) .

From these arguments it follows that the eigenvalues of the operator coincide with the
zeros of the function

∆ (λ) = {ψ+ (x, λ) , ψ− (x, λ)} .

Taking advantage of the fact that the Wronskian of the two solutions does not depend on
x, we obtain

∆ (λ) = {ψ+ (x, λ) , ψ− (x, λ)}|x=0 = −2Ai (−λ)Ai′ (−λ) . (4)

From the last formula and the known properties of the zeros of functions Ai (λ) , Ai′ (λ)
(see [10]) it follows that the eigenvalues λn, n = 1, 2, ... of the operator L are located only
on the positive semi-axis and holds the following asymptotic equality

λn =

(
3π (2n− 1)

8

) 2
3 (

1 +O
(
n−2

))
, n→∞.

Let us prove that the eigenvalues of the operator L are simple. We introduce normal-
ization numbers αn, n = 1, 2, ..., setting
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αn =

√∫ ∞
−∞
|ψ± (x, λn)|2 dx. (5)

Let us agree with dots to denote differentiation with respect to λ, and strokes with respect
to x:

u′ =
∂

∂x
u, u̇ =

∂

∂λ
u.

Since ψ± (x, λ) decreases exponentially for x → ±∞, from the standard (see, e.g., [12])
identity

f2 =
{
ḟ , f

}′

and (5) it follows that

(αn)2 =
∫∞
−∞ ψ

2
+ (x, λn) dx =

∫∞
0 ψ2

+ (x, λn) dx+
∫ 0
−∞ ψ

2
− (x, λn) dx =

=
{
ψ̇+ (x, λn) , ψ+ (x, λn)

}∣∣∣∞
0

+
{
ψ̇− (x, λn) , ψ− (x, λn)

}∣∣∣0
−∞

=

= −
{
ψ̇+ (x, λn) , ψ+ (x, λn)

}∣∣∣
x=0

+
{
ψ̇− (x, λn) , ψ− (x, λn)

}∣∣∣
x=0

=

= − (−1)n−1
{
ψ̇+ (x, λn) , ψ− (x, λn)

}∣∣∣
x=0
−

(−1)n−1
{
ψ+ (x, λn) , ψ̇− (x, λn)

}∣∣∣
x=0

= − (−1)n−1 ∆̇ (λn) .

Therefore, ∆̇ (λn) 6= 0, i.e. the eigenvalues of the operator L are simple.
Thus, the following theorem holds.

Theorem 2. The spectrum of the operator L consists of a sequence of simple real eigen-
values λn, n ≥ 1, located on the positive semi-axis and

λn =

(
3π (2n− 1)

8

) 2
3 (

1 +O
(
n−2

))
, n→∞.

Remark 1. In the space L2 (0,∞) we consider the operators LDy = −y′′+ |x| y, y (0) = 0
and LNy = −y′′ + |x| y, y′ (0) = 0. Formula (4) shows that the spectrum of the operator
consists of the union of the spectra of the operators LD and LN .
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On an Inverse Boundary-value Problem for the Equation
of Motion of a Homogeneous Beam

E.I. Azizbayov

Abstract. In this work, a classical solution of an inverse boundary-value problem for the equation
of motion of a homogeneous beam with periodic boundary conditions is studied. Firstly, the
original problem is reduced to an equivalent (in a defined sense) problem, for which the existence
and uniqueness theorem of the solution is proved. Further, using the unique solvability of the
equivalent problem, the classical solvability of the original problem is showed.
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homogeneous beam.
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1. Introduction

Recently, there are many cases in which the needs in a practice lead to the problems of
determining the coefficients of a differential equation (ordinary or in partial derivatives)
from some known functional of its solution. Such problems are called inverse problems
of mathematical physics. The applied importance of inverse problems is so great (they
arise in various fields of human activity, such as seismology, mineral exploration, biology,
medicine, desalination of seawater, movement of liquid in a porous medium, etc.) which
puts them a series of the most actual problems of modern mathematics. The presence in
the inverse problems of additional unknown functions requires that in the complement to
the boundary conditions that are natural for a particular class of differential equations,
impose some additional conditions - overdetermination conditions. The basics of the theory
and practice of investigating inverse problems of mathematical physics were established
and developed in the fundamental works of the outstanding scientists A.N.Tikhonov [1],
M.M.Lavrent’ev [2], V.K.Ivanov [3], and their followers.

Inverse problems associated with equations of various types, have been studied by
many papers and monographs, in particular, [4]-[13]. But the problem statement and the
proof techniques used in this paper are different from those presented in these works. The
technique used in this paper is based on the passing from the original inverse problem to
the new equivalent one, the study of the solvability of the equivalent problem, and then
in the reverse transition to the original problem.
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Moreover, the vibrations and wave movements of an elastic beam on an elastic base
were investigated by Yu.A. Mitropolsky [14], J.M.Thompson [15], B.S.Bardin [16], V.Z.
Vlasov [17], D.V.Kostin [18], T.P.Goy [19], Ya.T.Mehraliyev [20], and et al. The simplest
nonlinear model of the motion of a homogeneous beam is described by the equation

∂2w

∂t2
+
∂4w

∂x4
+ k

∂2w

∂x2
+ αw + w3 = 0,

where ω is beam deflection (after the displacements of the points of the midline of the
elastic beam located along the x-axis). Note that a similar equation also arises in the
theory of crystals, in which ω is parameter of order [21].

2. Statement of the problem

This paper is concerned with the following inverse problem of finding a pair {u(x, t), p(t)}
in the domain DT = {(x, t) : 0 ≤ x ≤ 1, 0 ≤ t ≤ T} for the following system

utt(x, t)+uxxxx(x, t)+βuxx(x, t)+αu(x, t)+u3(x, t) = p(t)g(x, t)+f(x, t), (x, t) ∈ DT , (1)

u(x, 0) + δu(x, T ) = ϕ(x), ut(x, 0) + δut(x, T ) = ψ(x), 0 ≤ x ≤ 1, (2)

u(0, t) = u(1, t), ux(0, t) = ux(1, t),

uxx(0, t) = uxx(1, t), uxxx(0, t) = uxxx(1, t), 0 ≤ t ≤ T, (3)

u(x0, t) = h(t), 0 ≤ t ≤ T, (4)

where x0 ∈ (0, 1) is fixed number, α > 0, β > 0, and δ are given numbers, and β <
4α, g(x, t), f(x, t), ϕ(x), ψ(x), h(t) are known functions.

We introduce the set of functions

C̃2,4(DT ) = {u(x, t) : u(x, t) ∈ C2(DT ), uxxxx(x, t) ∈ C(DT )}.

Definition 1. The pair {u(x, t), p(t)} defined on DT is said to be a classical solution of
the problem (1)-(4), if the functions u(x, t) ∈ C̃2,4(DT ) and p(t) ∈ C[0, T ] satisfies Eq.
(1), condition (2) on [0, 1], and the statements (3)-(4) on the interval [0, T ].

It’s easy to prove that

Lemma 1. Suppose that f(x, t), g(x, t) ∈ C(DT ), g(0, t) 6= 0, 0 ≤ t ≤ T, ϕ(x), ψ(x) ∈
C[0, 1], h(t) ∈ C2[0, T ], δ 6= ±1, and the condition

ϕ(x0) = h(0) + δh(T ), ψ(x0) = h′(0) + δh′(T )

holds.Then the problem of finding a classical solution of (1)-(4) is equivalent to the problem
of determining the functions u(x, t) ∈ C̃2,4(DT ) and p(t) ∈ C[0, T ] from the (1)-(3), and
satisfying the condition

h′′(t) + uxxxx(x0, t) + βuxx(x0, t) + αh(t) + u3(x0, t)

= p(t)g(x0, t) + f(x0, t), 0 ≤ t ≤ T. (5)
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3. Classical solvability of inverse boundary-value problem

It is known that [22] the system

1, cosλ1x, sinλ1x, ..., cosλkx, sinλkx, ... (6)

are a bases in L2(0, 1), for λk = 2kπ (k = 0, 1, ...).

Since the system (6) forms a basis in L2(0, 1), then it is obvious that the first component
of the solution {u(x, t), p(t)} has the form:

u(x, t) =
∞∑
k=0

u1k(t) cosλkx+
∞∑
k=1

u2k(t) sinλkx, λk = 2kπ, k = 0, 1, ..., (7)

where

u10(t) =

1∫
0

u(x, t)dx, u1k(t) = 2

1∫
0

u(x, t) cosλkxdx, k = 0, 1, ...,

u2k(t) = 2

1∫
0

u(x, t) sinλkxdx, k = 0, 1, ....

Then applying the formal scheme of the Fourier method, from (1) and (2) we have

u′′10(t) + αu10(t) = F10(t;u, p), 0 ≤ t ≤ T, (8)

u′′ik(t) + (λ4k − βλ2k + α)uik(t) = Fik(t;u, p), 0 ≤ t ≤ T ; i = 1, 2; k = 1, 2, ..., (9)

u10(0) + δu10(T ) = ϕ10, u
′
10(0) + δu′10(T ) = ψ10, (10)

uik(0) + δuik(T ) = ϕik, u
′
ik(0) + δu′ik(T ) = ψik, i = 1, 2; k = 1, 2, ..., (11)

where

F1k(t;u, p) = p(t)g1k(t) + f1k(t)−G1k(t, u), k = 0, 1, 2...,

gk(t) = mk

1∫
0

g(x, t) cosλkxdx,

F1k(t;u, p) = f1k(t) + p(t)u1k(t), k = 0, 1, 2...,

f10(t) =

1∫
0

f(x, t)dx, f1k(t) = 2

1∫
0

f(x, t) cosλkxdx, k = 1, 2, ...,

g10(t) =

1∫
0

f(x, t)dx, g1k(t) = 2

1∫
0

f(x, t) cosλkxdx, k = 1, 2, ...,
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G10(t, u) =

1∫
0

u3(x, t)dx, G1k(t, u) = 2

1∫
0

u3(x, t) cosλkxdx, k = 1, 2, ...,

ϕ10 =

1∫
0

ϕ(x)dx, ψ10 =

1∫
0

ψ(x)dx,

ϕ1k = 2

1∫
0

ϕ(x) cosλkxdx, ψ1k = 2

1∫
0

ψ(x) cosλkxdx, k = 1, 2, ...,

F2k(t;u, p) = p(t)g2k(t) + f2k(t)−G2k(t, u), k = 0, 1, 2, ...,

f2k(t) = 2

1∫
0

f(x, t) sinλkxdx, g2k(t) = 2

1∫
0

f(x, t) sinλkxdx, k = 1, 2, ...,

G2k(t, u) = 2

1∫
0

u3(x, t) sinλkxdx, k = 1, 2, ...,

ϕ2k = 2

1∫
0

ϕ(x) sinλkxdx, ψ2k = 2

1∫
0

ψ(x) sinλkxdx, k = 1, 2, ....

Solving problem (8) - (11), we find

u10(t) =
1√

αρ0(T )
{
√
α(cos

√
αt+ δ cos

√
α(T − t))ϕ0

+(sin
√
αt− δ sin

√
α(T − t))ψ0 − δ

T∫
0

F0(τ ;u, p)(sin
√
α(T + t− τ)

+δ sin
√
α(t− τ))dτ}+

1√
α

t∫
0

F0(τ ;u, p) sin
√
α(t− τ)dτ, (12)

uik(t) =
1

βkρk(T )
{βk(cosβkt+ δ cosβk(T − t))ϕik + (sinβkt

−δ sinβk(T − t))ψik − δ
T∫
0

Fik(τ ;u, p)(sinβk(T + t− τ) + δ sinβk(t− τ))dτ


+

1

βk

t∫
0

Fik(τ ;u, p) sinβk(t− τ)dτ, i = 1, 2; k = 1, 2, . . . , (13)
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where

ρ0(T ) = 1 + 2δ cos
√
αT + δ2, βk =

√
λ4k − βλ2k + α,

ρk(T ) = 1 + 2δ cosβkT + δ2, k = 1, 2, . . . .

Differentiating twice (13) gives

u′ik(t) =
1

ρk(T )
(βk(− sinβkt+ δ sinβk(T − t))ϕik + (cosβkt

+δ cosβk(T − t))ψik − δ
T∫
0

Fik(τ ;u, p)(cosβk(T + t− τ) + δ cosβk(t− τ))dτ


+

t∫
0

Fik(τ ;u, p) cosβk(t− τ)dτ, i = 1, 2; k = 1, 2, . . . , (14)

u′′ik(t) = Fik(t;u, p)− βk
ρk(T )

{βk(cosβkt+ δ sinβk(T − t))ϕik

+(sinβkt− δ sinβk(T − t))ψik

−δ
T∫
0

Fik(τ ;u)(sinβk(T + t− τ) + δ sinβk(t− τ))dτ


−βk

t∫
0

Fik(τ ;u) sinβk(t− τ)dτ, i = 1, 2; k = 1, 2, . . . . (15)

In order to determine the first component of the solution of the problem (1)-(3), (5)
we substitute of u1k(t) (k = 0, 1, 2, ...) and u2k(t) (k = 1, 2, ...) into (7), we obtain

u(x, t) =
1√

αρ0(T )
{
√
α(cos

√
αt+ δ cos

√
α(T − t))ϕ10

+(sin
√
αt− δ sin

√
α(T − t))ψ10

−δ
T∫
0

F10(τ ;u, p)(sin
√
α(T + t− τ) + δ sin

√
α(t− τ))dτ


+

1√
α

t∫
0

F10(τ ;u, p) sin
√
α(t− τ)dτ

+
∞∑
k=1

{
1

βkρk(T )
[βk(cosβkt+ δ cosβk(T − t))ϕ1k + (sinβkt
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+δ sinβk(T − t))ψ1k − δ
T∫
0

F1k(τ ;u, p)(sinβk(T + t− τ) + δ sinβk(t− τ))dτ



+
1

βk

t∫
0

F1k(τ ;u, p) sinβk(t− τ)dτ

 cosλkx

+
∞∑
k=1

{
1

βkρk(T )
[βk(cosβkt+ δ cosβk(T − t))ϕ2k + (sinβkt

+δ sinβk(T − t))ψ2k − δ
T∫
0

F2k(τ ;u, p)(sinβk(T + t− τ) + δ sinβk(t− τ))dτ



+
1

βk

t∫
0

F2k(τ ;u, p) sinβk(t− τ)dτ

 sinλkx. (16)

Now, from (5), taking into account (6), we have

p(t) = [g(0, t)]−1{h′′(t) + αh(t)− f(x0, t) + u3(x0, t)

+

∞∑
k=1

(λ4k − βλ2k)u1k(t) cosλkx0 +

∞∑
k=1

(λ4k − βλ2k)u2k(t) sinλkx0. (17)

In this way to obtain the equation for the second component of the solution to the
problem (1) - (3), (5) we substitute expression (13) into (17) and get

p(t) = [g(0, t)]−1

{
h′′(t) + αh(t)− f(x0, t) + u3(x0, t) +

∞∑
k=1

(λ4k − βλ2k)

×
[

1

βkρk(T )
[βk(cosβkt+ δ cosβk(T − t))ϕ1k + (sinβkt− δ sinβk(T − t))ψ1k

−δ
T∫
0

F1k(τ ;u, p)(sinβk(T + t− τ) + δ sinβk(t− τ))dτ



+
1

βk

t∫
0

F1k(τ ;u, p) sinβk(t− τ)dτ

 cosλkx0 +
∞∑
k=1

(λ4k − βλ2k)
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×
[

1

βkρk(T )
[βk(cosβkt+ δ cosβk(T − t))ϕ2k + (sinβkt− δ sinβk(T − t))ψ2k

−δ
T∫
0

F2k(τ ;u, p)(sinβk(T + t− τ) + δ sinβk(t− τ))dτ



+
1

βk

t∫
0

F2k(τ ;u, p) sinβk(t− τ)dτ

 sinλkx0. (18)

Thus, finding the solution of problem (1) - (3), (5) is reduced to the finding solution
of system (16), (18) with respect to unknown functions u(x, t) and p(t).

The following lemma plays an important role in studying the uniqueness of the solution
to problem (1) - (3), (5):

Lemma 2. If {u(x, t), p(t)} is a solution of (1)-(3), (5), then the functions

u10(t) =

1∫
0

u(x, t)dx, u1k(t) = 2

1∫
0

u(x, t) cosλkxdx, k = 1, 2, ...,

u2k(t) = 2

1∫
0

u(x, t) sinλkxdx, k = 1, 2, ...,

satisfy the system (12) and (13) on the interval [0, T ].

Remark 1. It follows from Lemma 2 that in order to prove the uniqueness of a solution
to the problem (1) - (3), (5) it is sufficient to prove the uniqueness of a solution to system
(13), (15).

Now, to study problem (1) - (3), (5), we consider the following spaces.

Denote by B5
2,T an aggregate of all the functions of the form

u(x, t) =
∞∑
k=0

u1k(t) cosλkx+
∞∑
k=1

u2k(t) sinλkx, λk = 2πk,

considered inDT , where each of the functions u1k(t) (k = 0, 1, 2, ...) and u2k(t) (k = 1, 2, ...)
is continuous on [0, T ], and

JT (u) ≡ ‖u10(t)‖C[0,T ]+

( ∞∑
k=1

(λ5k ‖u1k(t)‖C[0,T ])
2

) 1
2

+

( ∞∑
k=1

(λ5k ‖u2k(t)‖C[0,T ])
2

) 1
2

< +∞.
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The norm in this set is defined as follows

‖u(x, t)‖B5
2,T

= J(u).

Now, we denote by E5
T the space of vector-functions z(x, t) = {u(x, t), p(t)}, which

u(x, t) ∈ B5
2,T , p(t) ∈ C[0, T ].

The norm in the set E5
T will be

‖z(x, t)‖E5
T

= ‖u(x, t)‖B5
2,T

+ ‖p(t)‖C[0,T ] .

It is known that B5
2,T and E5

T are the Banach spaces [23].
We now consider the operator

Φ(u, p) = {Φ1(u, p),Φ2(u, p)},

in the space E5
T , where

Φ1(u, p) = ũ(x, t) ≡
∞∑
k=0

ũ1k(t) cosλkx+

∞∑
k=1

ũ2k(t) sinλkx, Φ2(u, p) = p̃(t),

where the functions ũ10(t), ũik(t) (i = 1, 2; k = 1, 2, ...), and p̃(t) are equal to the right-
hand sides of (12), (13), and (15), respectively.

Then we obtain

‖ũ10(t)‖C[0,T ] =
ρ(T )√
α

{√
α(1 + |δ|) |ϕ10|

+(1 + |δ|) |ψ10|+ (1 + |δ| (1 + |δ|)
√
T

 T∫
0

|F10(τ, u, p)|2


1
2

, (19)

( ∞∑
k=1

(λ5k ‖ũik(t)‖C[0,T ])
2

) 1
2

≤
√

3ρ(T )(1 + |δ|)

( ∞∑
k=1

(λ5k |ϕik|)2
) 1

2

+
√

3ρ(T )(1 + |δ|)ε

( ∞∑
k=1

(λ3k|ψik|)2
) 1

2

+
√

3T (1 + |δ|ρ(T )(1 + |δ|)

×ε

 T∫
0

∞∑
k=1

(λ3k|Fik(τ ;u, p)|)2dτ


1
2

, i = 1, 2, (20)

‖p̃(t)‖C[0,T ] ≤
∥∥[g(0, t)]−1

∥∥
C[0,T ]

{
∥∥h′′(t) + αh(t) + u3(x0, t) + f(x0, t)

∥∥
C[0,T ]

+

( ∞∑
k=1

λ−2k

) 1
2

(1 + β)

ρ(T )(1 + |δ|)
2∑

i=1

( ∞∑
k=1

(λ5k |ϕik|)2
) 1

2
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+ρ(T )(1 + |δ|)ε
2∑

i=1

( ∞∑
k=1

(λ3k |ψik|)2
) 1

2

+
√
T (1 + |δ| ρ(T )(1 + |δ|)ε

2∑
i=1

 T∫
0

∞∑
k=1

(λ3k |Fik(τ ;u, p)|)2dτ


1
2


 , (21)

where

ρ(T ) ≡ sup
k
ρ−1k (T ) ≤ 1

(1 + δ2 − 2 |δ|)
, sup

k

 λ2k√
λ4k − βλ2k + α

 =
1

ε
.

Suppose that the data of problem (1) - (3), (5) satisfy the conditions

(A1) ϕ(x) ∈ C4[0, 1], ϕ(5)(x) ∈ L2(0, 1), ϕ(0) = ϕ(1), ϕ′(0) = ϕ′(1),
ϕ′′(0) = ϕ′′(1), ϕ′′′(0) = ϕ′′′(1), ϕ(4)(0) = ϕ(4)(1);

(A2) ϕ(x) ∈ C4[0, 1], ψ′′′(x) ∈ L2(0, 1), ψ(0) = ψ(1), ψ′(0) = ψ′(1), ψ′′(0) = ψ′′(1);

(A3) f(x, t), fx(x, t), fxx(x, t) ∈ C(DT ), fxxx(x, t) ∈ L2(DT ), and f(0, t) = f(1, t),
fx(0, t) = fx(1, t), fxx(0, t) = fxx(1, t), 0 ≤ t ≤ T ;

(A4) g(x, t), gx(x, t), gxx(x, t) ∈ C(DT ), gxxx(x, t) ∈ L2(DT ), and g(0, t) = g(1, t),
gx(0, t) = gx(1, t), gxx(0, t) = gxx(1, t) = 0, g(0, t) 6= 0, 0 ≤ t ≤ T ;

(A5) α > 0, β > 0, δ 6= ±1, β < 4α, h(t) ∈ C2[0, T ], 0 ≤ t ≤ T.

Then from relations (16) - (18), correspondingly we have

‖ũ0(t)‖C[0,T ] =
ρ(T )√
α
{
√
α(1 + |δ|) ‖ϕ‖L2(0,1)

+ (1 + |δ|) ‖ψ‖L2(0,1)

+(1 + |δ| (1 + |δ|)
√
T
∥∥p(t)g(x, t) + f(x, t) + u3

∥∥
L2(DT )

}, (22)( ∞∑
k=1

(λ5k ‖ũik(t)‖C[0,T ])
2

) 1
2

≤
√

3ρ(T )(1 + |δ|)
∥∥∥ϕ(5)(x)

∥∥∥
L2(0,1)

+
√

3ρ(T )(1 + |δ|)ε
∥∥ψ′′′(x)

∥∥
L2(0,1)

+
√

3T (1 + |δ|ρ(T )(1 + |δ|)ε

×
∥∥p(t)gxxx(x, t) + fxxx(x, t) + 6u3x + 18u · ux · uxx + 3u2 · uxxx

∥∥
L2(DT )

, (23)

‖p̃(t)‖C[0,T ] ≤
∥∥[g(x0, t)]

−1∥∥
C[0,T ]

{
∥∥h′′(t) + αh(t) + u3(x0, t) + f(x0, t)

∥∥
C[0,T ]

+2(1 + β)

( ∞∑
k=1

λ−2k

) 1
2

[ρ(T )(1 + |δ|)
∥∥∥ϕ(5)(x)

∥∥∥
L2(0,1)
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+ρ(T )(1 + |δ|)ε
∥∥ψ′′′(x)

∥∥
L2(0,1)

+
√
T (1 + |δ|ρ(T )(1 + |δ|)ε

×
∥∥p(t)gxxx(x, t) + fxxx(x, t) + 6u3x + 18u · ux · uxx + 3u2 · uxxx

∥∥
L2(DT )

]}. (24)

We denote by

A1(T ) =
ρ(T )√
α
{
√
α(1 + |δ|) ‖ϕ‖L2(0,1)

+ (1 + |δ|) ‖ψ‖L2(0,1)

+(1 + |δ| (1 + |δ|)
√
T ‖f(x, t)‖L2(DT )}

+2
√

3ρ(T )(1 + |δ|)ε
∥∥ψ′′′(x)

∥∥
L2(0,1)

+ 2
√

3ρ(T )(1 + |δ|)
∥∥∥ϕ(5)(x)

∥∥∥
L2(0,1)

+6
√
T (1 + |δ|ρ(T )(1 + |δ|)ε ‖fxxx(x, t)‖L2(DT ) ,

B1(T ) = 6
√
T (1 + |δ|ρ(T )(1 + |δ|)ε(‖gxxx(x, t)‖L2(DT ) + 1)

+
ρ(T )(1 + |δ| (1 + |δ|))

√
T√

α
(‖g(x, t)‖L2(DT ) + 1),

A2(T ) =
∥∥[g(x0, t)]

−1∥∥
C[0,T ]

{∥∥h′′(t) + αh(t) + f(x0, t)
∥∥
C[0,T ]

+2

( ∞∑
k=1

λ−2k

) 1
2

(1 + β)[ρ(T )(1 + |δ|)
∥∥∥ϕ(5)(x)

∥∥∥
L2(0,1)

+ρ(T )(1 + |δ|)ε
∥∥ψ′′′(x)

∥∥
L2(0,1)

+
√
T (1 + |δ| ρ(T )(1 + |δ|)ε ‖fxxx(x, t)‖L2(DT )],

B2(T ) =
∥∥[g(x0, t)]

−1∥∥
C[0,T ]

2

( ∞∑
k=1

λ−2k

) 1
2

(1 + β)

×
√
T (1 + |δ|ρ(T )(1 + |δ|)ε(‖gxxx(x, t)‖L2(DT ) + 1)],

and rewrite (22) - (24) as

‖ũ(x, t)‖B5
2,T
≤ A1(T ) +B1(T )(‖p(t)‖C[0,T ]

+
∥∥u3∥∥

L2(DT )
+
∥∥6u3x + 18u · ux · uxx + 3u2 · uxxx

∥∥
L2(DT )

), (25)

‖p̃(t)‖C[0,T ] ≤ A2(T ) +B2(T )(
∥∥u3(0, t)∥∥

C[0,T ]
+ ‖p(t)‖C[0,T ]

+
∥∥6u3x + 18u · ux · uxx + 3u2 · uxxx

∥∥
L2(DT )

). (26)
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From the inequalities (25), (26), we conclude

‖ũ(x, t)‖B5
2,T

+ ‖p̃(t)‖C[0,T ] ≤ A(T ) +B(T )(
∥∥u3(x0, t)∥∥C[0,T ]

+ ‖p(t)‖C[0,T ]

+
∥∥u3∥∥

L2(DT )
+
∥∥6u3x + 18u · ux · uxx + 3u2 · uxxx

∥∥
L2(DT )

), (27)

where
A(T ) = A1(T ) +A2(T ), B(T ) = B1(T ) +B2(T ).

Thus, the following assertion is valid

Theorem 1. If conditions (A1)− (A5) and

64B(T )(A(T ) + 2)3 < 1. (28)

holds, then problem (1)-(3), (5) has a unique solution in the ball K = KR(||z||E5
T
≤ R =

A(T ) + 2) of the space E5
T .

Proof. In the space E5
T , we consider the equation

z = Φz, (29)

where z = {u, p}, the components Φi(u, p), i = 1, 2, of operator Φ(u, p), defined by the
right sides of equations (16) and (18), respectively.

Now, consider the operator Φ(u, p) in the ball K = KR of the space E5
T . Similarly to

(27), we obtain that for any z = {u, p}, z1 = {u1, p1}, z2 = {u2, p2} ∈ KR the following
inequalities hold:

‖Φz‖E5
T
≤ A(T ) + 64B(T )R3, (30)

‖Φz1 − Φz2‖E5
T
≤ 64B(T )R2

(
‖p1(t)− p2(t)‖C[0,T ] + ‖u1(x, t)− u2(x, t)‖B5

2,T

)
. (31)

Then by (28), from (30) and (31) it follows that the operator Φ acts in the ball K = KR,
and satisfy the conditions of the contraction mapping principle. Therefore the operator Φ
has a unique fixed point {u, p}, in the ball K = KR, which is a solution of equation (29),
i.e. in the ball K = KR is the unique solution of the systems (16), (18).

Then the function u(x, t), as an element of space B5
2,T , is continuous and has continuous

derivatives ux(x, t), uxx(x, t), uxxx(x, t), and uxxxx(x, t) in DT .
From (9) it is easy to see that( ∞∑

k=1

(λk
∥∥u′′ik(t)

∥∥
C[0,T ]

)2

) 1
2

≤ 2(1 + β + α)(ρ(T )(1 + |δ|)
∥∥∥ϕ(5)(x)

∥∥∥
L2(0,1)

+ρ(T )(1 + |δ|)ε
∥∥ψ′′′(x)

∥∥
L2(0,1)

+ T (1 + |δ|ρ(T )(1 + |δ|)ε

×
∥∥p(t)gxxx(x, t) + fxxx(x, t) + 6u3x + 18u · ux · uxx + 3u2 · uxxx

∥∥
L2(DT )

)
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+2
∥∥∥∥∥p(t)gx(x, t) + fx(x, t) + 3u2 · ux

∥∥
C[0,T ]

∥∥∥
L2(0,1)

, i = 1, 2.

Hence, we conclude that the function utt(x, t) is continuous in the domain DT .

Further, it is easy to verify that equation (1), and conditions (2), (3), and (5) are
satisfied in the usual sense. Consequently, {u(x, t), p(t)} is a solution of (1)-(3), (5), and
by Lemma 2 it is unique in the ball K = KR. The proof is complete.

From Lemma 1 and Theorem 1, implies the unique solvability of the original problem
(1) - (4).

In summary, we conclude the following result.

Theorem 2. Suppose that all assumptions of Theorem 1, and

ϕ(x0) = h(0) + δh(T ), ψ(x0) = h′(0) + δh′(T ).

hold. Then problem (1)-(4) has a unique classical solution in the ball K = KR(||z||E5
T
≤

R = A(T ) + 2).
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A Variational View on Dupuit’s formula
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Abstract. In this paper, Dupuit’s formula on discharge from the well is studied in dependence of
bottom hole zone and layer geometries. The term ”conductivity” has been used to propose a new
result in this regard. The obtained result useful for deriving of new Dupuit’s formulas suitable to
a concrete bottom-hole zone and layer constructions. It happens thanking a variational nature of
conductivity of layer. Also same approach is considered for porous medium obeying Forthamel’s
low.

Key Words and Phrases: filtration, porous media, viscous flow, velocity of fluid, liquid, non-
Newtonian fluids.
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1. Introduction

The Dupuit formula relating to a debit and a depression in the oil wells is well-
known (see e.g. [1, p. 61] or [4, p.40]) . Let ∆p = Pk − Pc be a debit,- it is difference of
pressures on the bottom hole zone and in the end of layer. Then the discharge Q from the
well over cylindrical well-bore of radius rc, height h is found as

Q =
2πkh∆p

µ ln Rk

rc

, (1)

where Rk is the limit radius of layer, k is its permeability, µ is viscosity of fluid (oil ).

There are a lot of versions of formula (1) relating to a single hole and multi-hole
cases, where different form bottom-hole zones is considered (see e.g. [2]). From those it
follows that the coefficient of proportionality of discharge Q on depression ∆p significantly
depends on geometry of layer both at infinity γ and in the inter-layer surfaces Γ. In the
paper, to characterize the impact of those geometries, we have employed the mathematical
term ”conductivity”. Using this term we derive a Dupuit formula, which characterizes the
coefficient of proportionality in the dependence of discharge via the depression, provided
arbitrary bottom-hole zone and layer to be considered. Though this formula contains the
abstract mathematical term conductivity, in general, it may be exactly calculated finding
a solution of variational problem (6) below. Solution of variational problem allows to find
the conductivity-P(G) in order to be inserted in to (7). For example, in case of formula
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Figure 1: A circular cylinder of radius rc height h.

(1) bottom-hole zone is a circular cylinder of height H radius rc and layer limits in the
infinity is a sphere of radius Rk (see, Figure 1)

It is a well known fact in potential theory of mathematics (see e.g. [5]) that the
Wiener’s capacity of a body coincides with capacity of its boundary surface. This property
can also be attributed to the conductivity too. Also it is known that the capacity of an
2-dimensional surface is positive. From the Dupuit’s type formula founded in the paper
it is seen that the discharge increases as the contact surface ∂W of layer Ω with bottom
hole zone W increase. This proves that the considered approach is true in the sense that,
the discharge Q remains constant if the volume of bottom-hole zone W decreases but the
capacity of its surface remains constant. In other words, it follows from formula (7) below
that by taking the volume of contact zone W as for as small, but the contact surface ∂W
sufficiently ”big” we will increase the productivity of well. This result proves the increase
of productivity of rocky and stony layers in the hydraulic fracture method exploitations.
Though the interior volume in the hydraulic fractures (that stands a bottom-hole zone of
well W ) is almost zero over interior of the fracture, the total conductivity of the contact
surface ∂W may be sufficiently larger (see, Figure 2)

This explains a reason of increase of productivity of rock and stone wells in exploitation
by hydraulic fracture technologies (see e.g. [6, 7]).

In this paper, we have considered also a case of porous medium layer. In this case too
a proper conductivity is introduced in order to characterize the productivity of wells. In
dependence of the geometry of bottom hole zone and layer a Dupuit formula for a porous
medium layer obeying Forchamel’s low of filtration has been produced.
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Figure 2: The hydraulic fractured well pipe.

2. A conductivity characterization of Dupuit’s formula for Darcy

flittering medium

Assume that the considered layer is restricted from upper and bottom by inter-
layer surfaces Γ. The fluid filtrating from the medium (layer) through Ω\ and obeying the
Darcy low arrives to the bottom-hole zone W ( see, Figure 3).

Figure 3: The multy-pipe bottom-hole well.

The filtration equation corresponding to this process in the steady stage is

div

(

k

µ
∇P

)

= 0, (x, y, z) ∈ Ω \W, (2)

where ∇ =
(

∂
∂x
, ∂
∂y
, ∂
∂z

)

, µ is viscosity of liquid, k -its permeability; for simplicity, having

considered homogeneous and incompressible fluid, we can assume these quantities as con-



A Variational View on Dupuit’s Formula 37

stant. Let the bottom-hole pressure be Pc on W , the pressure at the end of medium on γ
be Pk.

Denoting the discharge of well as Q we have Q =
∫∫

∂W

ρvnds, where ds is an element of

small area of surface ∂W,Q -amount of fluid outing from well at unit time (the productivity
of well), ρ is fluid density, vn = v ·n is the liquid velocity passing through the bottom-hole
zone, n-unit normal to ∂W ordered out the layer. By the Darcy low [3], v = − k

µ
grad p.

For ρ, k, µ to be constants we have

Q = −
ρk

µ

∫∫

∂W

∂p

∂n
ds, (3)

while the boundary conditions are

p|∂W = Pc, p|γ = Pk,
∂p

∂n

⌋

Γ

= 0;

Γ-the interlayer surface, γ is a limit surface of layer on infinity.

Introducing the auxiliary function P = Pk−p
Pk−Pc

, we have

∂2P

∂x2
+
∂2P

∂y2
+
∂2P

∂z2
= 0. (4)

and the conditions

P|∂W = 1, P|∞ = 0,
∂P

∂n

⌋

Γ

= 0.

Now, multiply equation (4) by P and integrate over the domain G = Ω\W. Then since P
equals one on ∂W, it follows from Green’s formula that

∫∫

∂W

∂P

∂n
ds =

∫∫∫

Ω\W

|∇P|2dxdydz

Using (3) and the notation for P the left hand side equals µQ
ρk(Pk−Pc)

. Therefore,

µQ

ρk(Pk − Pc)
=

∫∫∫

Ω\W

|∇P|2 dxdydz (5)

It is proved in the potential theory in mathematics [5] that, the right hand side is
conductivity P(G) of domain G = Ω \W. Where also was proved that solutions of (4) are
minimizers of the functional

P(G) = inf

∫∫∫

G

|∇ψ|2 dxdydz , (6)
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over the class of functions ψ that are greater than one in W, and vanishes at the end of
medium (not the interlayer surface!). Observe, the inter-layer surfaces Γ are free from the
conditions for a minimizer ψ. From (5) we get P (Ω\W ) = µQ

ρk(Pk−Pc)
or

Q =
(Pk − Pc) ρk

µ
· P(G) (7)

The obtained formula (7) is one of the main results of the paper. In applications it can
be found (or estimated) as a solution of variation problem (6) by approximate or accurate
calculations for the minimizing functions ψ.

Example 1. Let the wellbore be a cylinder of radius rc, height H. It is not difficult
to show that P (Ω\W ) ≃ H

ln
Rk

rc

. Taking into account the last from (7) it follows

Q ≃
(Pk − Pc) ρkH

µ lnRk

rc

· (8)

This formula is known as Dupuit’s formula [4]. To prove it let us calculate the conductivity
P (Ω\W ) in formula (7). For that, we search for a minimum of variation problem (6) in
the class of functions F = fz (x, y) cosπz

l
, where fz (x, y) is a function of variables x, y

greater than one on lateral surface of cylinder and is zero on the infinity. Inserting the
function fz in (6), we get (8).

Exampe 2. Let well-head be a sphere of radius rc with center at zero and the medium
is a ball of radius Rk also with center in the origin. This means Ω = Q(0, Rk),W = Q(0, rc)
and G = Q(0, Rk) \ Q(rc). To calculate P(G) for this case in order to get the analog of
formulas (1) or (8). Take the function

ψ(r) =

(

1−
rc

Rk

)−1 (
rc

r
−

rc

Rk

)

, rc < r < Rk, r =
√

x2 + y2 + z2

and calculate integral (6) in the right hand side

P(G) =

∫∫∫

Q(0,Rk)\Q(0,rc)

|∇ψ|2dxdydz =

∫∫

r=rc

∂ψ

∂r
ds =

4πrcRk

Rk − rc

Inserting this into (7) we get the following Dupuit’s type formula

Q =
(Pk − Pc) ρk

µ
·
4πrcRk

Rk − rc
. (9)
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