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Inverse Boundary Value Problem for Two-Dimensional
Pseudo Parabolic Equation of Third Order with Addi-
tional Integral Condition

A.I. Ismailov

Abstract. Inverse boundary value problem for two-dimensional pseudo parabolic equation of third
order with additional integral condition is considered. We first reduce our problem to some equiva-
lent (in some sense) one. Using the Fourier method, the equivalent problem, in turn, is reduced to
the system of integral equations. Then, using contraction mapping method, we prove the existence
and uniqueness for the solution of the system of integral equations, which is also a unique solution
of the equivalent problem. Finally, using equivalence, we prove the existence and uniqueness for
the classical solution of the original problem.
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1. Introduction

By the inverse problem for partial differential equations, we mean a problem that re-
quires to find, along with a solution itself, the right-hand side and (or) some coefficient(s)
of the equation. Inverse problems arise in many fields of human activities, such as seis-
mology, mineral exploration, biology, medicine, quality control of industrial products, etc.
which makes them one of the most important problems in today’s mathematics. If an
inverse problem requires to find not only the solution itself, but also the right-hand side
of the equation, then such an inverse problem is linear. And if it requires to find both
the solution and at least one of the coefficients, then such an inverse problem is nonlinear.
Many mathematicians have studied various inverse problems for some types of partial dif-
ferential equations, such as A.N.Tikhonov [1], M.M.Lavrentiev [2,3], V.K.Ivanov [4] and
their students. More details about these problems can be found in the monograph by
A.M.Denisov [5].

Inverse problems for one-dimensional pseudo parabolic equations of third order have
been considered in [6–8].

In this work, using Fourier method and contraction mapping principle, we prove the
existence and uniqueness of the solution of the nonlocal inverse boundary value problem
for a third order two-dimensional pseudo parabolic equation.
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2. Problem statement and its reduction to the equivalent problem

Let DT = Qxy × {0 ≤ t ≤ T}, where Qxy = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}.
Also, let α(t) > 0, β(t) > 0, f(x, y, t),ϕ(x, y),h(t) be the given functions defined for
x ∈ [0, 1], y ∈ [0, 1], t ∈ [0, T ]. Consider the following inverse boundary value problem:
find a pair {u(x, t) , p(t)} of functions u(x, t), p(t) which satisfy the equation

ut(x, y, t)− α(t)(utxx(x, y, t) + utyy(x, y, t))− β(t)(uxx(x, y, t) + uyy(x, y, t)) =

= p(t)u(x, y, t) + f(x, y, t) , (1)

nonlocal initial condition

u(x, y, 0) + δu(x, y, T ) = ϕ(x, y) (0 ≤ x ≤ 1, 0 ≤ x ≤ 1) , (2)

boundary conditions

ux(0, y, t) = u(1, y, t) = 0 (0 ≤ y ≤ 1, 0 ≤ t ≤ T ) , (3)

u(x, 0, t) = uy(x, 1, t) = 0 (0 ≤ y ≤ 1, 0 ≤ t ≤ T ) , (4)

and the additional condition∫ 1

0

∫ 1

0
u(x, y, t)dxdy = h(t) (0 ≤ t ≤ T ), (5)

where δ ≥ 0 is a given number.
Denote

C̃2,2,1(DT ) = {u(x, y, t) : u(x, y, t) ∈ C2,2,1(DT ), utxx(x, y, t), utyy(x, y, t) ∈ C(DT )} .

Definition 1. By the classical solution of the inverse boundary value problem (1)-(5), we
mean a pair {u(x, y, t), p(t) } of functions u(x, t), p(t) such that u(x, y, t) ∈ C̃2,2,1(DT ),
p(t) ∈ C[0, T ] and the relations (1)-(5) are satisfied in the usual sense.

The following theorem is true.

Theorem 1. Let 0 < α(t), 0 < β(t) ∈ C[0, T ], ϕ(x, y) ∈ C(Qxy), f(x, y, t) ∈ C(DT ),
h(t) ∈ C1[0, T ] h(t) 6= 0 (0 ≤ t ≤ T ), δ ≥ 0, and the coherence condition∫ 1

0

∫ 1

0
ϕ(x, y)dxdy = h(0) + δh(T )

be satisfied. Then the problem of finding the classical solution of the problem (1)-(5) is
equivalent to the one of determining the functions u(x, y, t) ∈ C̃2,2,1(DT ),p(t) ∈ C[0, T ]
from the relations (1)-(4),

h′(t)− α(t)

(∫ 1

0
utx(1, y, t)dy −

∫ 1

0
uty(x, 0, t)dx

)
−
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−β(t)

(∫ 1

0
ux(1, y, t)dy −

∫ 1

0
uy(x, 0, t)dx

)
=

= p(t)h(t) +

∫ 1

0

∫ 1

0
f(x, y, t)dxdy (0 ≤ t ≤ T ). (6)

Proof. Let {u(x, y, t), p(t))} be a classical solution of the problem (1)- (5). On inte-
grating the equation (1) with respect to x and y from 0 to 1, we have:

d

dt

∫ 1

0

∫ 1

0
u(x, y, t)dxdy−

−α(t)

(∫ 1

0
utx(1, y, t)− utx(0, y, t)dy +

∫ 1

0
uty(x, 1, t)− uty(x, 0, t)dx

)
−

−β(t)

(∫ 1

0
ux(1, y, t)− ux(0, y, t)dy +

∫ 1

0
uy(x, 1, t)− uy(x, 0, t)dx

)
=

= p(t)

∫ 1

0

∫ 1

0
u(x, y, t)dxdy +

∫ 1

0

∫ 1

0
f(x, y, t)dxdy ( 0 ≤ t ≤ T ).

From the last relation, by (3),(4)we obtain

d

dt

∫ 1

0

∫ 1

0
u(x, y, t)dxdy − α(t)

(∫ 1

0
utx(1, y, t)dy −

∫ 1

0
uty(x, 0, t)dx

)
−

−β(t)

(∫ 1

0
utx(1, y, t)dy −

∫ 1

0
uty(x, 0, t)dx

)
=

= p(t)

∫ 1

0

∫ 1

0
u(x, y, t)dxdy +

∫ 1

0

∫ 1

0
f(x, y, t)dxdy ( 0 ≤ t ≤ T ). (7)

Now, taking h(t) ∈ C1[0, T ] and differentiating (5), we have∫ 1

0

∫ 1

0
ut(x, y, t)dxdy = h′(t) (0 ≤ t ≤ T ) (8)

By (5) and (8), it follows from (7) that the relation (6) is valid.

Now let’s assume that {u(x, t), p(t)} is a soluton of the problem (1)-(4), (5). Then
from (6) and (7) we obtain

d

dt

(∫ 1

0

∫ 1

0
u(x, y, t)dxdy − h(t)

)
= p(t)

(∫ 1

0

∫ 1

0
u(x, y, t)dxdy − h(t)

)
( 0 ≤ t ≤ T ) .

(9)
By (2) and the coherence condition

∫ 1
0

∫ 1
0 ϕ(x, y)dxdy = h(0) + δh(T ), we have∫ 1

0

∫ 1

0
u(x, y, 0)dxdy − h(0) + δ

(∫ 1

0

∫ 1

0
u(x, y, T )dxdy − h(T )

)
=
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=

∫ 1

0

∫ 1

0
u(x, y, 0) + δu(x, y, T )dxdy − (h(0) + δh(T )) =

=

∫ 1

0

∫ 1

0
ϕ(x, y)dxdy − (h(0) + δh(T )) = 0. (10)

The differential equation (9) has the following general solution:∫ 1

0

∫ 1

0
u(x, y, t)dxdy − h(t) = Ce

∫ t
0 p(τ)dτ , (11)

where C is an arbitrary constant. Let’s require that the solutions (9) satisfy the condi-
tions (10). Then it is easy to obtain

C
(

1 + δe
∫ t
0 p(τ)dτ

)
= 0 .

By δ ≥ 0, from the last relation we obtain C = 0 . Substituting C = 0 in (11), we
conclude that ∫ 1

0

∫ 1

0
u(x, y, t)dxdy − h(t) = 0,

i.e. the condition (5) holds. The theorem is proved.

3. The proof of the existence and uniqueness of the classical solution of
the inverse boundary value problem

We will search for the first component u(x, y, t) of the solution {u(x, y, t), p(t) } of the
problem (1)-(4), (6) in the following form:

u(x, y, t) =
∞∑
n=1

∞∑
k=1

uk,n(t) cosλkx sin γny , (12)

where

λk =
π

2
(2k − 1) (k = 1, 2, ...), γn =

π

2
(2n− 1) (n = 1, 2, ...) ,

uk,n(t) = 4

∫ 1

0

∫ 1

0
u(x, y, t) cosλkx sin γnydxdy (k = 1, 2, ...; n = 1, 2, ...).

Using the method of separation of variables to define the sought coefficients uk,n(t) (k =
1, 2, ...;n = 1, 2, ...) of the function u(x, t), from (1), (2) we obtain(

1 + µ2k,nα(t)
)
u′k,n(t) + µ2k,nβ(t)uk,n(t) =

= Fk,n(t;u, p) (k = 1, 2, ..., n = 1, 2, ...; 0 ≤ t ≤ T ) , (13)

uk,n(0) + δuk,n(T ) = ϕk,n(k = 1, 2, ...;n = 1, 2, ...) , (14)
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where

µ2k,n = λ2k + γ2n (k = 1, 2, ...;n = 1, 2, ...),

Fk,n(t;u, p) = fk,n(t) + p(t)uk,n(t) (k = 1, 2, ...;n = 1, 2, ...) ,

fk,n(t) = 4

∫ 1

0

∫ 1

0
f(x, y, t) cosλkx sin γnydxdy (k = 1, 2, ...; n = 1, 2, ...),

ϕk,n = 4

∫ 1

0

∫ 1

0
ϕ(x, y) cosλkx sin γnydxdy (k = 1, 2, ...; n = 1, 2, ...).

Solving the problem (13), (14), we find

uk,n(t) =
ϕk,ne

−
∫ t
0

µ2k,nβ(s)ds

1+µ2
k,n

α(s)

1 + δe
−

∫ T
0

µ2
k,n

β(s)ds

1+µ2
k,n

α(s)

+

∫ t

0

Fk,n(τ ;u, p)

1 + µ2k,nα(τ)
e
−

∫ t
τ

µ2k,nβ(s)ds

1+µ2
k,n

α(s)
dτ−

− δe
−

∫ T
0

µ2k,nβ(s)ds

1+µ2
k,n

α(s)

1 + δe
−

∫ T
0

µ2
k,n

β(s)ds

1+µ2
k,n

α(s)

∫ T

0

Fk,n(τ ;u, p)

1 + µ2k,nα(τ)
e
−

∫ t
τ

µ2k,nβ(s)ds

1+µ2
k,n

α(s)
dτ (k = 1, 2, ...;n = 1, 2, ...). (15)

Substituting the expressions uk,n(t) (k = 1, 2, . . . ;n = 1, 2, ...) in (12), we have

u(x, y, t) =
∞∑
n=1

∞∑
k=1


ϕk,ne

−
∫ t
0

µ2k,nβ(s)ds

1+µ2
k,n

α(s)

1 + δe
−

∫ T
0

µ2
k,n

β(s)ds

1+µ2
k,n

α(s)

+

∫ t

0

Fk,n(τ ;u, p)

1 + µ2k,nα(τ)
e
−

∫ t
τ

µ2k,nβ(s)ds

1+µ2
k,n

α(s)
dτ−

− δe
−

∫ T
0

µ2k,nβ(s)ds

1+µ2
k,n

α(s)

1 + δe
−

∫ T
0

µ2
k,n

β(s)ds

1+µ2
k,n

α(s)

∫ T

0

Fk,n(τ ;u, p)

1 + µ2k,nα(τ)
e
−

∫ t
τ

µ2k,nβ(s)ds

1+µ2
k,n

α(s)
dτ

 cosλkx sin γny. (16)

Now, from (6), by (12), we obtain

h′(t) +
∞∑
k=1

∞∑
n=1

(−1)k+1

(
γn
λk
− λk
γn

) (
α(t)u′k,n(t) + β(t)uk,n(t)

)
=

= p(t)h(t) +

∫ 1

0

∫ 1

0
f(x, y, t)dxdy (0 ≤ t ≤ T ) . (17)

Further, from (13) we have

µ2k,n
(
α(t)u′k,n(t) + β(t)uk,n(t)

)
= Fk,n(t;u, p) − u′k,n(t) =

µ2k,nβ(t)

1 + µ2k,nα(t)
uk,n(t)+
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+
µ2k,nα(t)

1 + µ2k,nα(t)
Fk,n(t;u, p)(k = 1, 2, ..., n = 1, 2, ...; 0 ≤ t ≤ T ) ,

or

α(t)u′k,n(t) + β(t)uk,n(t) =
β(t)

1 + µ2k,nα(t)
uk,n(t)+

+
α(t)

1 + µ2k,nα(t)
Fk,n(t;u, p)(k = 1, 2, ..., n = 1, 2, ...; 0 ≤ t ≤ T ). (18)

From (17), taking into account (18), we obtain

p(t) = [h(t)]−1
{
h′ (t)−

∫ 1

0

∫ 1

0
f(x, y, t)dxdy +

∞∑
k=1

∞∑
n=1

(−1)k+1

(
γn
λk
− λk
γn

)
×

×

(
β(t)

1 + µ2k,nα(t)
uk,n(t) +

α(t)

1 + µ2k,nα(t)
Fk,n(t;u, p)

)}
(19)

To obtain the equation for the second component p(t) of the solution {u(x, t), p(t)} of
the problem (1)-(4), (5), we substitute the expression (15) in (19) to get

p(t) = [h(t)]−1
{
h′ (t)−

∫ 1

0

∫ 1

0
f(x, y, t)dxdy +

∞∑
k=1

∞∑
n=1

(−1)k+1

(
γn
λk
− λk
γn

)
×

×

 β(t)

1 + µ2k,nα(t)

 ϕk,ne
−

∫ t
0

µ2k,nβ(s)ds

1+µ2
k,n

α(s)

1 + δe
−

∫ T
0

µ2
k,n

β(s)ds

1+µ2
k,n

α(s)

+

∫ t

0

Fk,n(τ ;u, p)

1 + µ2k,nα(τ)
e
−

∫ t
τ

µ2k,nβ(s)ds

1+µ2
k,n

α(s)
dτ−

− δe
−

∫ T
0

µ2k,nβ(s)ds

1+µ2
k,n

α(s)

1 + δe
−

∫ T
0

µ2
k,n

β(s)ds

1+µ2
k,n

α(s)

∫ T

0

Fk,n(τ ;u, p)

1 + µ2k,nα(τ)
e
−

∫ t
τ

µ2k,nβ(s)ds

1+µ2
k,n

α(s)
dτ

 +

+
α(t)

1 + µ2k,nα(t)
Fk,n(t;u, p)

)}
. (20)

Thus, the solution of the problem (1)-(4), (6) is reduced to the solution of the system
(16), (20) with respect to the unknown functions u(x, y, t) and p(t).

To treat the uniqueness of the solution of (1)-(4), (6), we will significantly use the
following lemma.

Lemma 1. If {u(x, y, t), p(t)} is any solution of the problem (1)-(4), (6), then the func-
tions

uk,n(t) = 4

∫ 1

0

∫ 1

0
u(x, y, t) cosλkx sin γnydxdy (k = 1, 2, ...; n = 1, 2, ...)

satisfy the system (15) on [0, T ].
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Proof. Let {u(x, y, t), p(t)} be any solution of the problem (1)-(4), (6). Then, multi-
plying both sides of the equation (1) by the function 4 cosλkx sin γny (k = 1, 2, ...; n =
1, 2, ...), integrating the obtained equality with respect to x and y from 0 to 1 and using
the relations

4

∫ 1

0

∫ 1

0
ut(x, y, t) cosλkx sin γnydxdy =

=
d

dt

(
4

∫ 1

0

∫ 1

0
u(x, y, t) cosλkx sin γnydxdy

)
= u′k,n(t)(k = 1, 2, ...; n = 1, 2, ...),

4

∫ 1

0

∫ 1

0
uxx(x, y, t) cosλkx sin γnydxdy =

= −λ2k
(

4

∫ 1

0

∫ 1

0
u(x, y, t) cosλkx sin γnydxdy

)
= −λ2kuk,n(t) (k = 1, 2, ...; n = 1, 2, ...),

4

∫ 1

0

∫ 1

0
uyy(x, y, t) cosλkx sin γnydxdy =

−γ2n
(

4

∫ 1

0

∫ 1

0
u(x, y, t) cosλkx sin γnydxdy

)
= −γ2kuk,n(t) (k = 1, 2, ...; n = 1, 2, ...),

4

∫ 1

0

∫ 1

0
utxx(x, y, t) cosλkx sin γnydxdy = −λ2ku′k,n(t) (k = 1, 2, ...; n = 1, 2, ...),

4

∫ 1

0

∫ 1

0
utyy(x, y, t) cosλkx sin γnydxdy = −γ2nu′k,n(t) (k = 1, 2, ...; n = 1, 2, ...),

we get the validity of the equation (13).
Similarly, from (2) it follows that the condition (14) holds.
Thus, uk,n(t) (k = 1, 2, ...; n = 1, 2, ...) are the solutions of the problem (13), (14).

Hence it directly follows that the functions uk,n(t) (k = 1, 2, ...; n = 1, 2, ...) satisfy the
system (15) on [0, T ]. The lemma is proved.

It is clear that if uk,n(t) = 4
∫ 1
0

∫ 1
0 u(x, y, t) cosλkx sin γnydxdy (k = 1, 2, ...; n =

1, 2, ...) are the solutions of the system (15), then the pair {u(x, y, t), p(t)} of the functions
u(x, y, t) =

∑∞
n=1

∑∞
k=1 uk,n(t) cosλkx sin γny and p(t) is a solution of the system (16),

(20).
Lemma 1 has the following corollary.

Corollary 1. Let the system (16), (20) have a unique solution. Then the problem (1)-(4),
(6) cannot have more than one solution, i.e. if the problem (1)-(4),(6) has a solution, then
it is unique.

1. Denote by B3
2,T [9] the totality of all functions u(x, y, t) of the form

u(x, y, t) =

∞∑
n=1

∞∑
k=1

uk,n(t) cosλkx sin γny
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in DT , where each of the functions uk,n(t) (k = 1, 2, ...; n = 1, .2, ..) is continuously
differentiable on [0, T ] and{ ∞∑

n=1

∞∑
k=1

(
µ3k,n ‖uk,n(t)‖C[0,T ]

)2 } 1
2

< +∞.

Define the norm on this set as follows:

‖u(x, y, t)‖B3
2,T

=

{ ∞∑
n=1

∞∑
k=1

(
µ3k,n ‖uk,n(t)‖C[0,T ]

)2 } 1
2

.

2. Denote by E3
T the space consisting of topological product

B3
2,T × C[0, T ] .

The norm of the element z = {u, p} is defined by the formula

‖z‖E3
T

= ‖u(x, y, t)‖B3
2,T

+ ‖p(t)‖C[0,T ] .

It is known that B3
2,T and E3,

T are Banach spaces.

Now let’s consider in the space E3
T the operator

Φ(u, p) = {Φ1(u, p),Φ2(u, p)},

where

Φ1(u, p) = ũ(x, y, t) ≡
∞∑
n=1

∞∑
k=1

ũk,n(t) cosλkx sin γny ,

Φ2(u, p) = p̃(t), ,

and ũk,n(t) (k = 1, 2, ...; n = 1, 2, ...) and p̃(t) are equal to the right-hand sides of (15) and
(20), respectively.

It is not difficult to see that

1 + µ2k,nα(t) > µ2k,nα(t),
µ2k,nβ(t)

1 + µ2k,nα(t)
<
β(t)

α(t)
,

µ2k,nα(t)

1 + µ2k,nα(t)
< 1,

1 + δe
−

∫ T
0

µ2k,nβ(s)ds

1+µ2
k,n

α(s) ≥ 1 , µ3k,n ≤ (λ2k + γ2k)(λk + γn) = λ3k + λ2k γn + γ2kλk + γ3k .

From these relations we obtain{ ∞∑
n=1

∞∑
k=1

(
µ3k,n ‖ũk,n(t)‖C[0,T ]

)2 } 1
2

≤ 3

( ∞∑
n=1

∞∑
k=1

(
λ3k |ϕk,n|

)2) 1
2

+
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+3

( ∞∑
n=1

∞∑
k=1

(
λ2k γn |ϕk,n|

)2) 1
2

+ 3

( ∞∑
n=1

∞∑
k=1

(
λkγ

2
n |ϕk,n|

)2) 1
2

+

+3

( ∞∑
n=1

∞∑
k=1

(
γ3n |ϕk,n|

)2) 1
2

+ 3(1 + δ)

∥∥∥∥ 1

α(t)

∥∥∥∥
C[0,T ]

×

×

√T
(∫ T

0

∞∑
n=1

∞∑
k=1

(λk |fk,n(τ)|)2 dτ

) 1
2

+

(∫ T

0

∞∑
n=1

∞∑
k=1

(γn |fk,n(τ)|)2 dτ

) 1
2

+

+T ‖p(t)‖C[0,T ]

( ∞∑
k=1

∞∑
k=1

(
µ3k,n ‖uk,n(t)‖C[0,T ]

)2) 1
2

 , (21)

‖p̃(t)‖C[0,T ] ≤
∥∥∥[h(t)]−1

∥∥∥
C[0,T ]

{∥∥∥∥h′ (t)− ∫ 1

0

∫ 1

0
f(x, y, t)dxdy

∥∥∥∥
C[0,T ]

+

+

( ∞∑
k=1

∞∑
k=1

µ−2k

) 1
2

∥∥∥∥β(t)

α(t)

∥∥∥∥
C[0,T ]

( ∞∑
n=1

∞∑
k=1

(λk |ϕk,n|)2
) 1

2

+

( ∞∑
n=1

∞∑
k=1

(γn |ϕk,n|)2
) 1

2

+

+

∥∥∥∥ 1

α(t)

∥∥∥∥
C[0,T ]

√T (∫ T

0

∞∑
n=1

∞∑
k=1

|fk,n(τ)|2 dτ

) 1
2

+

+T ‖p(t)‖C[0,T ]

( ∞∑
n=1

∞∑
k=1

(µ3k ‖uk(t)‖C[0,T ])
2

) 1
2

+

( ∞∑
n=1

∞∑
k=1

(λk |fk,n(t)|)2 dτ

) 1
2

+

+

( ∞∑
n=1

∞∑
k=1

(γn |fk,n(t)|)2 dτ

) 1
2

+ ‖p(t)‖C[0,T ]

( ∞∑
n=1

∞∑
k=1

(µ3k ‖uk(t)‖C[0,T ])
2

) 1
2

 . (22)

Assume that the data of the problem (1)-(4), (6) satisfy the following conditions:

1.ϕ(x, y), ϕx(x, y), ϕxx(x, y), ϕy(x, y), ϕxy(x, y), ϕyy(x, y) ∈ C(Q̄xy),

ϕxxy(x, y), ϕxyy(x, y), ϕxxx(x, y), ϕyyy(x, y) ∈ L2(Qxy),

ϕx(0, y) = ϕ(1, y) = ϕxx(1, y) = 0 (0 ≤ y ≤ 1),

ϕ(x, 0) = ϕy(x, 1) = ϕyy(x, 0) = 0 (0 ≤ x ≤ 1).

2.f(x, y, t) ∈ C(DT ), fx(x, y, t), fy(x, y, t) ∈ L2(DT ),

f (1, y, t) = f (x, 0, t) = 0 (0 ≤ x, y ≤ 1, 0 ≤ t ≤ T ) .
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3.δ ≥ 0, 0 < α(t) ∈ C[0, T ], 0 < β(t) ∈ C[0, T ], h(t) ∈ C1[0, T ] ,

h(t) 6= 0 (0 ≤ t ≤ T ).

Then from (21)- (22) we obtain

‖u(x, y, t)‖B3
2,T

=

{ ∞∑
k=1

(
λ3k ‖uk,0(t)‖C[0,T ]

)2} 1
2

+

{ ∞∑
n=1

∞∑
k=1

(
µ3k ‖uk,n(t)‖C[0,T ]

)2 } 1
2

≤

≤ A1(T ) +B1(T ) ‖p(t)‖C[0,T ] ‖u(x, y, t)‖B3
2,T
, (23)

‖p̃(t)‖C[0,T ] ≤ A2(T ) +B2(T ) ‖p(t)‖C[0,T ] ‖u(x, y, t)‖B3
2,T
, (24)

where

A1(T ) = 5 ‖ϕxxx(x, y)‖L2(Qxy)
+ 3 ‖ϕxyy(x, y)‖L2(Qxy)

+ 3 ‖ϕxxy(x, y)‖L2(Qxy)
+

+3 ‖ϕxxx(x, y)‖L2(Qxy)
+(1+δ)

∥∥∥∥ 1

α(t)

∥∥∥∥
C[0,T ]

√
T
(

5 ‖fx(x, y, t)‖L2(DT )
+ 3 ‖fy(x, y, t)‖L2(DT )

)
,

B1 (T ) = 5(1 + δ)

∥∥∥∥ 1

α(t)

∥∥∥∥
C[0,T ]

T,

A2(T ) =
∥∥∥[h(t)]−1

∥∥∥
C[0,T ]

{∥∥∥∥h′ (t)− ∫ 1

0

∫ 1

0
f(x, y, t)dxdy

∥∥∥∥
C[0,T ]

+

+

( ∞∑
k=1

∞∑
k=1

µ−2k

) 1
2
[∥∥∥∥β(t)

α(t)

∥∥∥∥
C[0,T ]

(
‖ϕx(x, y)‖L2(Qxy)

+ ‖ϕy(x, y)‖L2(Qxy)

+

∥∥∥∥ 1

α(t)

∥∥∥∥
C[0,T ]

√
T ‖f(x, y, t)‖L2(DT )

)
+
∥∥∥‖fx(x, y, t)‖C[0,T ]

∥∥∥
L2(Qxy)

+

+
∥∥∥‖fy(x, y, t)‖C[0,T ]

∥∥∥
L2(0,1)

]}
,

B2 (T ) =
∥∥∥[h(t)]−1

∥∥∥
C[0,T ]

( ∞∑
k=1

∞∑
k=1

µ−2k

) 1
2

×

×

[∥∥∥∥ 1

α(t)

∥∥∥∥
C[0,T ]

∥∥∥∥β(t)

α(t)

∥∥∥∥
C[0,T ]

T + 1

]
.

From the inequalities (23)-(24) it follows

‖ũ(x, y, t)‖B3
2,T

+ ‖p̃(t)‖C[0,T ] ≤
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≤ A(T ) +B(T ) ‖p(t)‖C[0,T ] ‖u(x, t)‖B3
2,T

, (25)

where

A(T ) =
2∑
i=1

Ai(T ), B(T ) =
2∑
i=1

Bi(T ), .

So we can prove the following theorem.

Theorem 2. Let the conditions 1-4 be satisfied and

(A(T ) + 2)2B(T ) < 1. (26)

Then the problem (1)-(4), (6) has a unique solution in the ball K = KR(‖z‖E3
T
≤ R =

A(T ) + 2) of the space E3
T .

Proof. Consider in the space E3
T the equation

z = $z, (27)

where z = {u, p}, and the components Φi(u, p)(i = 1, 2) of the operator $(u, p) are defined
by the right-hand sides of the equations (16), (20), respectively. Consider the operator
$(u, p) in the ball K = KR(‖z‖E3

T
≤ R = A(T ) + 2) of E3

T .

Similar to (25), we obtain the following estimates for every z, z1, z2 ∈ KR:

‖Φz‖E3
T
≤ A(T ) +B(T ) ‖p(t)‖C[0,T ] ‖u(x, y, t)‖B3

2,T
, (28)

‖Φz1 − Φz2‖E2
T
≤ B(T )R

(
‖p1(t)− p2(t)‖C[0,T ] + ‖u1(x, y, t)− u2(x, y, t)‖B3

2,T

)
. (29)

Then from the estimates (28) and (29), by (26), it follows that the operator $ acts in
the ball K = KR and is a contraction operator. Therefore, the operator $ has a unique
fixed point {u, p} in the ball K = KR, which is a unique solution of the equation (27),
i.e. a unique solution of the system (16), (20) in the ball K = KR.

As an element of the spaceB3
2,T , the function u(x, y, t) is continuous and has continuous

derivatives ux(x, y, t), uxx(x, y, t), uy(x, y, t), uxy(x, y, t), uyy(x, y, t) in DT .
Now it is not difficult to see from (13) that

{ ∞∑
n=1

∞∑
k=1

(
µk,n

∥∥u′k,n(t)
∥∥
C[0,T ]

)2 } 1
2

≤
√

2

∥∥∥∥ 1

α(t)

∥∥∥∥
C[0,T ]

[
‖u(x, y, t)‖B3

2,T
+

+
∥∥∥‖f(x, y, t) + p(t)u(x, y, t)‖C[0,T ]

∥∥∥
L2(Qxy)

]
.

Hence, it is clear that ut(x, y, t), utxx(x, y, t), utyy(x, y, t) are continuous in DT .
It is not difficult to verify that the equation (1) and the conditions (2)-(4), (6) are

satisfied in the usual sense. Thus, the solution of the problem (1)–(4), (6) is a pair of
functions {u(x, t), p(t)}. By the corollary of Lemma 1, this solution is unique in the ball
K = KR. The theorem is proved.

Using Theorems 1 and 2, we obtain the unique solvability of the problem (1)–(5).
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Theorem 3. Let all the conditions of Theorem 2 be satisfied and the coherence conditions∫ 1

0

∫ 1

0
ϕ(x, y)dxdy = h(0) + δh(T )

hold. Then the problem (1)-(5) has a unique classical solution in the ball K = KR(‖z‖E3
T
≤

R = A(T ) + 2) of the space E3
T .
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On the Solvability of One Inverse Boundary Value
Problem for the Linearized Benny–Luc Equation with
Non-self-adjoint Boundary Conditions

B.K. Velieva

Abstract. An inverse problem is investigated for the linearized Benny-Luc equation with non-
self-adjoint boundary conditions. First, the original problem is reduced to an equivalent problem
(in a certain sense), for which the existence and uniqueness theorem is proved. Further, on the
basis of these facts, the existence and uniqueness of the classical solution to the original problem
are proved.

Key Words and Phrases: inverse boundary value problem, Benny–Luc equation, existence,
uniqueness of classical solution.

2010 Mathematics Subject Classifications: 35R30

1. Introduction

Many problems in mathematical physics and continuum mechanics are boundary value
problems that reduce to the integration of a differential equation or a system of partial
differential equations for given boundary and initial conditions. Many problems in gas
dynamics, the theory of elasticity, the theory of plates and shells are reduced to the
consideration of high-order partial differential equations [1]. Differential equations of the
fourth order are of great interest from the point of view of applications (see, for example, [2,
3]). Partial differential equations of Benny – Luc type have applications in mathematical
physics (see [3]).

Problems in which, together with the solution of a particular differential equation,
it is also required to determine the coefficient (coefficients) of the equation itself, or the
right side of the equation, in mathematics and in mathematical modeling are called inverse
problems. The theory of inverse problems for differential equations is a dynamically devel-
oping branch of modern science. Recently, inverse problems have arisen in various fields of
human activity, such as seismology, mineral exploration, biology, medicine, quality control
of industrial products, etc., which puts them in a number of urgent problems of modern
mathematics. Various inverse problems for certain types of partial differential equations
have been studied in many works. Let us first of all note here the works of A.N. Tikhonov

http://www.cjamee.org 55 © 2013 CJAMEE All rights reserved.
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[4], M.M. Lavrent’ev [5, 6], V.K. Ivanov [7] and their students. More details can be found
in the monograph by A.M. Denisov [8].

The theory of inverse boundary value problems for fourth-order equations is still un-
derstudied. The works [9–12] are devoted to inverse boundary value problems for the
Benny – Luc equation.

The aim of this work is to prove the existence and uniqueness of solutions to the in-
verse boundary value problem for the Benny-Luc equation with non-self-adjoint boundary
conditions.

2. Statement of the problem and its reduction to an equivalent problem

Let DT = {(x, t) : 0 ≤ x ≤ 1, 0 ≤ t ≤ T}. Consider the following inverse boundary
value problem in a rectangle DT : find a pair {u(x, t) , a(t)} of functions u(x, t), a(t)
satisfying the equation [3]

utt(x, t)− uxx(x, t) + αuxxxx(x, t)− βuxxtt(x, t) = a(t)u(x, t) + f(x, t) (x, t) ∈ DT , (1)

with initial conditions

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x) (0 ≤ x ≤ 1), (2)

with non-self-adjoint boundary conditions

u(1, t) = 0, ux(0, t) = ux(1, t) , uxx(1, t) = 0, uxxx(0, t) = uxxx(1, t) (0 ≤ t ≤ T ) (3)

and with the additional condition

u(0, t) = h(t) (0 ≤ t ≤ T ), (4)

where α > 0, β > 0 - are fixed numbers, f(x, t), ϕ(x), ψ(x), h(t) - are given functions.
Denote

C̃4,2(DT ) =
{
u(x, t) : u(x, t) ∈ C2(DT ) , uttx(x, t),

uttxx(x, t), uxxx(x, t), uxxxx(x, t) ∈ C(DT )} .

Definition 1. By the classical solution of the inverse boundary value problem (1) - (4)
we mean a pair {u(x, t) , a(t)} of functions u(x, t) ∈ C̃4,2(DT ), a(t) ∈ C[0, T ], satisfying
equation (1) and conditions (2) - (4) in the usual sense.

Similarly to [13], the following theorem is proved.

Theorem 1. Let ϕ(x), ψ(x) ∈ C[0, 1], h(t) ∈ C2[0, T ] , h(t) 6= 0 (0 ≤ t ≤ T ), f(x, t) ∈
C(DT ) and the conditions of consistency are hold

ϕ(0) = h(0) , ψ(0) = h′0). (5)

Then the problem of finding a classical solution to problem (1) - (4) is equivalent to the
problem of determining the functions u(x, t) ∈ C̃4,2(DT ) and a(t) ∈ C[0, T ] from relations
(1) - (3) and the condition

h′′(t)− uxx(0, t) + αuxxxx(0, t)− βuxxtt(0, t) = a(t)h(t) + f(0, t) ( 0 ≤ t ≤ T ) . (6)
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3. Solvability of the inverse boundary value problem

It is known that [14], function sequences

X0(x) = 2(1− x), X2k−1(x) = 4(1− x) cosλkx, X2k(x) = 4 sinλkx (k = 1, 2, ...), (7)

Y0(x) = 1, Y2k−1(x) = cosλkx, Y2k(x) = x sinλkx (k = 1, 2, ...) (8)

form a biorthogonal system, and system (7) forms a Riesz basis for L2(0, 1), where
λk = 2kπ (k = 1, 2, ...). Then an arbitrary function ϑ(x) ∈ L2(0, 1) is expanded into
a biorthogonal series:

ϑ(x) = ϑ0X0(x) +

∞∑
k=1

ϑ2k−1 X2k−1(x) +

∞∑
k=1

ϑ2k X2k(x) ,

where

ϑ0 =

∫ 1

0
ϑ0 Y0 (x)dx , ϑ2k−1 =

∫ 1

0
ϑ2k−1 Y2k−1 (x)dx , ϑ2k−1 =

∫ 1

0
ϑ2k−1 Y2k−1 (x)dx .

It is known that [15],

ϑ(x) ∈ C2i−1[0, 1], ϑ(2i)(x) ∈ L2(0, 1) ,

ϑ(2s)(1) = 0, ϑ(2s+1)(0) = ϑ(2s)(1) (s = 0, i− 1 ),

then
∞∑
k=1

(
λ2ik ϑ2k−1

)2 ≤ 1

2

∥∥∥ϑ(2i)(x)
∥∥∥2
L2(0,1)

,

∞∑
k=1

(
λ2ik ϑ2k

)2 ≤ 1

2

∥∥∥ϑ(2i)(x)x+ 2iϑ(2i−1)(x)
∥∥∥2
L2(0,1)

. (9)

Under assumptions

ϑ(x) ∈ C2i[0, 1], ϑ(2i+1)(x) ∈ L2(0, 1) ,

ϑ(2s)(1) = 0, ϑ(2s−1)(0) = ϑ(2s−1)(1) (i ≥ 1, s = 0, i ),

the validity of estimates [15]:

∞∑
k=1

(
λ2i+1
k ϑ2k−1

)2 ≤ 1

2

∥∥∥ϑ(2i+1)(x)
∥∥∥2
L2(0,1)

,

∞∑
k=1

(
λ2i+1
k ϑ2k

)2 ≤ 1

2

∥∥∥ϑ(2i+1)(x)x+ (2i+ 1)ϑ(2i)(x)
∥∥∥2
L2(0,1)

. (10)

is established. In order to study problem (1) - (3), (6), consider the following space.
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Denote by B5
2,T [15] the collection of all functions u (x, t) of the form

u (x, t) =
∞∑
k=0

uk (t)Xk (x) ,

considered on DT , for which all functions uk (t) ∈ C[0, T ] and

JT (u) ≡ ‖u0(t)‖C[0,T ] +

+

( ∞∑
k=1

(
λ5k ‖u2k−1(t)‖C[0,T ]

)2) 1
2

+

( ∞∑
k=1

(
λ5k ‖u2k(t)‖C[0,T ]

)2) 1
2

,

where the function Xk (x) (k = 0, 1, 2, ...) are defined by (7).
The norm in this set is defined as follows: ‖u(x, t)‖B5

2,T
= J”(u).

Let E5
T denote the space of vector functions {u(x, t), a(t)} such that u (x, t) ∈ B5

2,T ,
a (t) ∈ C[0, T ]. Equip this space with a norm

‖z‖E5
T

= ‖u(x, t)‖B5
2,T

+ ‖a(t)‖C[0,T ] .

It is clear that B5
2,T and E5

T are Banach spaces.
Since system (7) forms a Riesz basis in L2 (0, 1) and system (7) and (8) forms biorthog-

onal to the system of functions in L2 (0, 1), then the first component u (x, t) of the solution
{u(x, t), a(t)} of problem (1) - (3), (6) will be sought in the form

u (x, t) = u0 (t)X0 (x) +

∞∑
k=1

u2k−1 (t)X2k−1 (x) +

∞∑
k=1

u2k (t)X2k (x) , (11)

where

u0(t) =

∫ 1

0
u(x, t)Y0(x)dx,

u2k−1(t) =

∫ 1

0
u(x, t)Y2k−1(x)dx, u2k(t) =

∫ 1

0
u(x, t)Y2k(x)dx (k = 1, 2, ...) , (12)

is the solution of the following problem:

u′′0 (t) = F0 (t;u, a) (0 ≤ t ≤ T ), (13)

u′′2k−1(t) + β2ku2k−1(t) =
1

1 + βλ2k
F2k−1 (t;u, a) (0 ≤ t ≤ T, k = 1, 2, ...), (14)

u′′2k (t) + β2ku2k (t) =
1

1 + βλ2k
F2k (t;u, a) +

+
2λk(1 + 2αλ2k)

1 + βλ2k
u2k−1 (t) +

2βλk
1 + βλ2k

u′′2k−1 (t) (0 ≤ t ≤ T, k = 1, 2, ...), (15)
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uk(0) = ϕk, u′k(0) = ψk (k = 0, 1, 2, ...) , (16)

moreover

β2k =
λ2k(1 + αλ2k)

1 + βλ2k
, Fk(t;u, a) = a(t)uk(t) + fk(t), fk(t) =

∫ 1

0
f(x, t)Yk(x)dx,

ϕk =

∫ 1

0
ϕ(x)Yk(x)dx, ψk =

∫ 1

0
ψ(x)Yk(x)dx (k = 0, 1, ...).

Solving problem (13) - (16) we find:

u0(t) = ϕ0 + ψ0t+

∫ t

0
(t− τ)F0(τ ;u, a)dτ, (17)

u2k−1(t) = ϕ2k−1 cosβkt+
1

βk
ψ2k−1 sinβkt+

1

βk(1 + βλ2k)

∫ t

0
F2k−1(τ ;u, a) sinβk(t− τ)dτ,

(18)

u2k(t) = ϕ2k cosβkt +
1

βk
ψ2k sinβkt +

1

βk(1 + βλ2k)

∫ t

0
F2k(τ ;u, a) sinβk(t − τ)dτ +

+
λk(1 + 2αλ2k + αβλ4k)

(1 + βλ2k)
3

[
tϕ2k−1 sinβkt+

(
1

βk
sinβkt− t cosβkt

)
1

βk
ψ2k−1 +

+
1

βk(1 + βλ2k)

∫ t

0

(∫ τ

0
F2k−1 (ξ;u, a) sinβk (t− ξ) dξ

)
sinβk (t− τ) dτ

]
+

+
2βλk

βk(1 + βλ2k)
2

∫ t

0
F2k−1(τ ;u, a) sinλk(t− τ)dτ. (19)

After substituting the expression uk(t) (k = 0, 1, ...) in (11), to determine the compo-
nent u(x, t) of the solution to problem (1) - (3), (6), we obtain:

u(x, t) =

(
ϕ0 + ψ0t+

∫ t

0
(t− τ)F0(τ ;u, a)dτ

)
X0(x)+

+

{
ϕ2k−1 cosβkt +

1

βk
ψ2k−1 sinβkt+

1

βk(1 + βλ2k)

∫ t

0
F2k−1(τ ;u, a) sinβk(t − τ)dτ

}
X2k−1(x)+

+

∞∑
k=1

{
ϕ2k cosβkt +

1

βk
ψ2k sinβkt +

1

βk(1 + βλ2k)

∫ t

0
F2k(τ ;u, a) sinβk(t − τ)dτ +

+
λk(1 + 2αλ2k + αβλ4k)

(1 + βλ2k)
3

[
tϕ2k−1 sinβkt+

(
1

βk
sinβkt− t cosβkt

)
1

βk
ψ2k−1 +
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+
1

βk(1 + βλ2k)

∫ t

0

(∫ τ

0
F2k−1 (ξ;u, a) sinβk (t− ξ) dξ

)
sinβk (t− τ) dτ

]
+

+
2βλk

βk(1 + βλ2k)
2

∫ t

0
F2k−1(τ ;u, a) sinλk(t− τ)dτ

}
X2k(x). (20)

Now, from (6), taking into account (11), we have:

a(t) = [h(t)]−1
{
h′′(t)− f(0, t) + 4

∞∑
k=1

((λ2k + αλ4k)u2k−1(t) + βλ2ku
′′
2k−1(t))

}
. (21)

Further, from (14), taking into account (18), we obtain:

(λ2k + αλ4k)u2k−1(t) + βλ2ku
′′
2k−1(t) =

= F2k−1(t;u, a)− u′′2k−1(t) =
βλ2k

1 + βλ2k
F2k−1(t;u, a)− β2ku2k−1(t) =

=
βλ2k

1 + βλ2k
F2k−1(t;u, a)− β2k

(
ϕ2k−1 cosβkt +

1

βk
ψ2k−1 sinβkt+

+
1

βk(1 + βλ2k)

∫ t

0
F2k−1(τ ;u, a) sinβk(t − τ)dτ

)
. (22)

In order to obtain an equation for the second component a(t) of the solution {u(x, t), a(t)}
to problem (1) - (3), (6), we substitute expression (22) into (21):

a(t) = [h(t)]−1
{
h′′(t)− f(0, t) + 4

∞∑
k=1

[
βλ2k

1 + βλ2k
F2k−1(t;u, a)−

−β2k
(
ϕ2k−1 cosβkt +

1

βk
ψ2k−1 sinβkt+

1

βk(1 + βλ2k)

∫ t

0
F2k−1(τ ;u, a) sinβk(t − τ)dτ

)]}
.

(23)
Thus, the solution of problem (1) - (3), (6) is reduced to the solution of system (20),

(23) with respect to unknown functions u(x, t) and a(t).
To study the question of uniqueness of the solution of problem (1) - (3), (6), the

following lemma plays an important role.

Lemma 1. If {u(x, t), a(t)} is any solution to problem (1) - (3), (6), then the functions
uk(t) (k = 0, 1, 2, . . .) defined by relation (12) satisfy the counting system (17), (18) and
(19) on [0, T ].

Obviously, if uk(t) =
∫ 1
0 u(x, t)Yk(x)dx (k = 0, 1, ...) is a solution to system (17), (18)

and (19), then a pair {u(x, t), a(t)} of functions u(x, t) =
∑∞

k=0 uk(t)Xk(x) and a(t) is a
solution to system (20), (23).

Lemma 1 has the following
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Corollary 1. Let system (20), (23) have a unique solution. Then problem (1) - (3), (6)
cannot have more than one solution, i.e. if problem (1) - (3), (6) has a solution, then it
is unique.

Now consider the following operator in space E5
T

Φ(u, a) = {Φ1(u, a),Φ2(u, a)} ,

where

Φ1(u, a) = ũ(x, t) =
∞∑
k=0

ũk(t)Xk(x),Φ2(u, a) = ã(t),

and ũ0(t), ũ2k−1(t), ũ2k(t) and ã(t) equal corresponding to the right side (17), (18) , (19)
and (23).

It is easy to see that

1 + βλ2k > βλ2k,
1

1 + βλ2k
<

1

βλ2k
,

√
α

1 + β
λk ≤ βk ≤

√
1 + α

β
λk,

√
β

1 + α

1

λk
≤ 1

βk
≤
√

1 + β

α

1

λk
,

Taking these relations into account, we find:

‖ũ0 (t)‖C[0,T ] ≤ |ϕ0|+ T |ψ0|+ T
√
T

(∫ T

0
|f0 (τ)|2 dτ

) 1
2

+ T 2 ‖a(t)‖C[0,T ] ‖u0(t)‖C[0,T ] ,

(24)( ∞∑
k=1

(λ5k ‖ũ2k−1(t)‖C[0,T ])
2

) 1
2

≤

≤ 2

( ∞∑
k=1

(λ5k |ϕ2k−1|)2
) 1

2

+ 2

√
1 + β

α

( ∞∑
k=1

(λ4k |ψ2k−1 |)2
)

+
2

β

√
1 + β

α√T (∫ T

0

∞∑
k=1

(λ2k | f2k−1 (τ) |)2dτ

) 1
2

+ T ‖a(t)‖C[0,T ]

( ∞∑
k=1

(λ5k ‖u2k−1(t)‖C[0,T ])
2

) 1
2

 ,
(25)( ∞∑

k=1

(λ5k ‖ũ2k(t)‖C[0,T ])
2

) 1
2

≤

≤ 3

( ∞∑
k=1

(λ5k |ϕ2k|)2
) 1

2

+ 3

√
1 + β

α

( ∞∑
k=1

(λ4k |ψ2k |)2
) 1

2

+
3

β

√
1 + β

α
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√T (∫ T

0

∞∑
k=1

(λ2k | f2k (τ) |)2dτ

) 1
2

+ T ‖a(t)‖C[0,T ]

( ∞∑
k=1

(λ5k ‖u2k(t)‖C[0,T ])
2

) 1
2

+

+
3(1 + 2α+ αβ)

β3

T ( ∞∑
k=1

(λ5k |ϕ2k−1|)2
) 1

2

+

(√
1 + β

α
+ T

)√
1 + β

α

( ∞∑
k=1

(λ4k |ψ2k−1|)2
) 1

2

+

+
1

β

√
1 + β

α

T√T (∫ T

0

∞∑
k=1

(λ2k | f2k−1 (τ) |)2dτ

) 1
2

+

+T 2 ‖a(t)‖C[0,T ]

( ∞∑
k=1

(λ5k ‖u2k−1(t)‖C[0,T ])
2

) 1
2

+

+
6

β

√
1 + β

α

√T (∫ T

0

∞∑
k=1

(λ2k | f2k−1 (τ) |)2dτ

) 1
2

+

+ T ‖a(t)‖C[0,T ]

( ∞∑
k=1

(λ5k ‖u2k−1(t)‖C[0,T ])
2

) 1
2

 , (26)

‖ã(t)‖C[0,T ] ≤
∥∥∥[h(t)]−1

∥∥∥
C[0,T ]

{∥∥h′′(t)− f(0, t)
∥∥
C[0,T ]

+

+4

( ∞∑
k=1

λ−2k

) 1
2

1 + α

β

( ∞∑
k=1

(λ5k |ϕ2k−1|)2
) 1

2

+

√
1 + β

α

( ∞∑
k=1

(λ4k |ψ2k−1 |)2
)

+

+
1

β

√
1 + β

α

√T (∫ T

0

∞∑
k=1

(λ2k | f2k−1 (τ) |)2dτ

) 1
2

+

+ T ‖a(t)‖C[0,T ]

( ∞∑
k=1

(λ5k ‖u2k−1(t)‖C[0,T ])
2

) 1
2

+

+

( ∞∑
k=1

(λ2k ‖f2k (t)‖C[0,T ] |

) 1
2

+ ‖a(t)‖C[0,T ]

( ∞∑
k=1

(λ5k ‖u2k−1(t)‖C[0,T ])
2

) 1
2


 . (27)

Suppose that the data of problem (1) - (3), (6) satisfy the following conditions:
1.α > 0, β > 0, h(t) ∈ C2[0, T ] , h(t) 6= 0 (0 ≤ t ≤ T ).
2.ϕ(x) ∈ C4[0, 1], ϕ(5)(x) ∈ L2(0, 1), ϕ(1) = 0, ϕ′(0) = ϕ′(1),
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ϕ′′(1) = 0, ϕ′′′(0) = ϕ′′′(1), ϕ(4)(1) = 0.
3.ψ(x) ∈ C3[0, 1], ψ(4)(x) ∈ L2(0, 1), ψ(1) = 0, ψ′(0) = ψ′(1), ψ′′(1) = 0, ψ′′′(0) =
ψ′′′(1).
4.f(x, t), fx(x, t) ∈ C(DT ), fxx(x, t) ∈ L2(DT ), f(1, t) = 0, fx(0, t) = fx(1, t) (0 ≤ t ≤
T ).

Then from (24)- (27) we find:

‖ũ(x, t)‖B5
2,T

= A1(T ) +B1(T ) ‖a(t)‖C[0,T ] ‖u(x, t)‖B5
2,T
, (28)

‖ã(t)‖C[0,T ] = A2(T ) +B2(T ) ‖a(t)‖C[0,T ] ‖u(x, t)‖B5
2,T
, (29)

where

A1(T ) = ‖ϕ(x)‖L2(0,1)
+ T ‖ψ(x)‖L2(0,1)

+ T
√
T ‖f(x, t)‖L2(DT ) +

√
2
∥∥∥ϕ(5)(x)

∥∥∥
L2(0,1)

+

+

√
2(1 + β)

α

∥∥∥ψ(4)(x)
∥∥∥
L2(0,1)

+

√
2(1 + β)

α
‖fxx(x, t)‖L2(DT )+

3√
2

∥∥∥ϕ(5)(x) + 4ϕ(3)(x)
∥∥∥
L2(0,1)

+

+
3√
2

√
1 + β

α

∥∥∥ψ(4)(x) + 3ψ(3)(x)
∥∥∥
L2(0,1)

+
3

β

√
T (1 + β)

2α
‖fxx(x, t) + 2fx(x, t)‖L2(DT ) +

+
3(1 + 2α+ αβ)

β3

(
T√
2

∥∥∥ϕ(5)(x)
∥∥∥
L2(0,1)

+

(√
1 + β

α
+ T

)√
1 + β

2α

∥∥∥ψ(4)(x)
∥∥∥
L2(0,1)

+

+
T

β

√
T (1 + β)

2α
‖fxx(x, t)‖L2(DT )

)
+

6

β

√
T (1 + β)

α
‖fxx(x, t)‖L2(DT ) ,

B1(T ) = T 2 +
11T

β

√
1 + β

α

(
1 +

3(1 + 2α+ αβ)

β3
T

)
,

A2(T ) =
∥∥∥[h(t)]−1

∥∥∥
C[0,T ]

{∥∥h′′(t)− f(0, t)
∥∥
C[0,T ]

+

+2
√

2

( ∞∑
k=1

λ−2k

) 1
2
{

1 + α

β

[∥∥∥ϕ(5)(x)
∥∥∥
L2(0,1)

+

√
1 + β

α

∥∥∥ψ(4)(x)
∥∥∥
L2(0,1)

+

+
1

β

√
T (1 + β)

α
‖fxx(x, t)‖L2(DT )

]
+
∥∥∥‖fxx(x, t)‖C[0,T ]

∥∥∥
L2(0,1)

}
,

B2(T ) = 2
∥∥∥[h(t)]−1

∥∥∥
C[0,T ]

( ∞∑
k=1

λ−2k

) 1
2 1 + α

β2

√
1 + β

α
T + 1

 .

From inequalities (27), (28) we conclude:
‖ũ(x, t)‖B5

2,T
+ ‖ã(t)‖C[0,T ] ≤ A(T ) +B(T ) ‖a(t)‖C[0,T ] ‖u(x, t)‖B5

2,T
, (30)
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where

A(T ) = A1(T ) +A2(T ), B(T ) = B1(T ) +B2(T ).

So, the following theorem is proved.

Theorem 2. Let conditions 1-4 be satisfied and

B(T )(A(T ) + 2)2 < 1. (31)

Then problem (1)-(3), (6) has a unique solution in the ball K = KR(|| z ||E5
T
≤ R =

A(T ) + 2) from E5
T .

Proof. In the space E5
T , consider the equation

z = $z, (32)

where z = {u, a}, the components $i(u, a) (i = 1, 2) of the operator $(u, a) are defined by
the right-hand sides of equations (20), (23), respectively.

Consider an operator $(u, a) in a ball K = KR of E5
T . Similarly, from (30) we obtain

that for any z, z1, z2 ∈ KR the following estimates are valid:

‖$z‖E5
T
≤ A(T ) +B(T ) ‖a(t)‖C[0,T ] ‖u(x, t)‖B5

2,T
≤ A(T ) +B(T )(A(T ) + 2)2, (33)

‖$z1 − $z2‖E5
T
≤ B(T )R

(
‖a1(t)− a2(t)‖C[0,T ] + ‖u1(x, t)− u2(x, t)‖B5

2,T

)
. (34)

Then, taking into account (31), it follows from estimates (33), (34) that the operator $
acts in the ball K = KR and is contracting. Therefore, in the ball K = KR, the operator
$ has a unique fixed point {u, a}, which is a solution to equation (32), that is, is the only
solution in the ball K = KR to system (20), (23).

A function u(x, t) as an element of spaceB5
2,T , has continuous derivatives u(x, t), ux(x, t),

uxx(x, t) , uxxx(x, t), uxxxx(x, t) in DT .

Similarly to [10], one can show that ut(x, t), utt(x, t) , utt(x, t) , uttx(x, t), uttxx(x, t) are
continuous in DT .

It is easy to check that equation (2) and conditions (2), (3) and (6) are satisfied in the
usual sense. Hence, {u(x, t), a(t)} is a solution to problem (1) - (3), (6), and by virtue of
the corollary to Lemma 1, it is unique. J

Using Theorem 1, we prove the following

Theorem 3. Let all conditions of Theorem 2 be satisfied and the conditions of consistency

ϕ(0) = h(0) , ψ(0) = h′0).

Then problem (1) - (4) has a unique classical solution in the ball K = KR(|| z ||E5
T
≤

R = A(T ) + 2) from E5
T .
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Empirical Analysis of Balance of Payments Dynamics

E.G. Orudzhev, N.S. Ayyubova

Abstract. The article deals with the construction of econometric model, which characterizes the
dynamics of the balance of payments, formed on the basis of economic and mathematical tools,
and serves to predict the preventive signals of the balance of payments crisis. Over time, the
unsteady character created by the denomination of the Azerbaijani manat was corrected, and a
multidimensional model of linear regression was created for the dynamics of balance of payments
development.

Key Words and Phrases: balance of payments, current account, export, import, investment,
manat rate, regression, adequacy, t statistics, F -criterion

2010 Mathematics Subject Classifications: C1, C12, C5

1. Introduction

At the beginning of the transformation process in a number of transition countries,
such as Azerbaijan, liberalization of the currency market and foreign economic relations
increased the level of openness of the economy and its integration into the world economy.
At present, the cooperation of the Azerbaijani economy with the world commodity and
financial markets has reached a broad and multidimensional level. Therefore, the study
of issues related to the regulation of foreign economic relations is particularly relevant.

The balance of payments is central to the macroeconomic regulation of the foreign
economic relations sector. The structure of the balance of payments is in principle de-
termined by economic indicators, such as foreign trade, receipts from direct and portfolio
foreign investments, in general, the prospects for economic growth. Therefore, along with
the problems of ensuring economic growth, high inflation and unemployment, the issues
of maintaining stability and stability of the balance of payments are among the priorities
of our state’s economic policy.

Recent processes such as global economic instability, volatility of oil prices in world
markets and surges influenced by various external and endogenous factors, devaluation
of national currencies lead to a balance of payments crisis. Monitoring of changes in the
structure and dynamics of the balance of payments in order to develop a set of preventive
and anti-crisis measures is one of the most difficult issues of monetary policy in state
regulation of the economy.

http://www.cjamee.org 3 c© 2013 CJAMEE All rights reserved.
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The study of the causes and consequences of balance of payments crises, their early
detection and, in general, the search for ways out of the crisis, the development of effective
balance of payments methods are the most pressing economic policy issues in any market
economy. These issues are particularly important in countries such as Azerbaijan, whose
economies are heavily dependent on energy, foreign trade and other external factors [6, 8,
9]. (see: figure 1).

Both at the macro level and the micro level, modern economic theory inevitably turns
to mathematical and statistical models and methods, and this approach has now become
an important element of economic theory. Applying mathematics to economics first of
all reveals more important dependencies of economic variables and objects and creates
opportunities for formal description, because studying complex objects requires a high
level of abstraction [1]. Precise input information and deduction methods allow obtaining
results and making forecasts adequate to the object under study. Mathematical and
statistical methods inductively allow obtaining the newest knowledge about the object
under study about parameters and forms of dependent variables on the basis of possible
observations.

Relevance of the problem, theoretical and practical significance of methodological and
analytical approaches [2, 3, 4, 5], as well as balance of payments modeling, econometric
analysis of its interrelation with the main forming factors, analysis of changes in the
structure of the balance of payments, taking into account the interest and demand, we
have defined the creation of an econometric model that provides the balance of payments
as an object of research, forecasting of crisis prevention signals as a goal and includes
economic and mathematical tools for crisis prevention.

Figure 1. Dynamics of key indicators of Azerbaijan’s balance of payments in 2012-2018
(years) (million US dollars)

The Balance of Payments is a statistical report that systematically reflects the final
results of the state’s foreign economic operations with other countries. Information on
the balance of payments and the position of the state with regard to international invest-
ments inevitably play an important role in the formation of domestic and foreign economic
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policy. This information also includes balance of payments analysis, identification of rea-
sons for contraindications, assessment of regulatory measures, assessment of the role and
interdependence of foreign trade and foreign direct investment, external debt, economic
growth, income distribution, and the current and financial balance of payments, is very
important and invaluable for analyzing the relationship between foreign operations and
exchange rates reflected in the accounts.

Any modern economic research is based on a combination of theory and practice,
joint application of statistical indicators with an economic model. Thus, while theoretical
models are used to describe and explain observed processes, statistical indicators are used
for empirical construction and justification of models. For both public policy and any
economic entity, the ability to predict the situation means reducing losses and damages,
increasing profits and, in general, getting as close to the desired result as possible.

Our research is devoted to building an econometric model based on the adequacy of
the balance of payments, which provides the projected values of the balance of payments
based on the main factors that determine its dynamics.

The regression methodology includes the analysis of stationary and, most importantly,
non-stationary series in order to predict the dynamics. LSM, GLS, VAR, taking into
account seasonality, the inclusion of models based on multicollinearity, etc. methods are
very popular in this area [4, 5]. The novelty and urgency of our research is connected with
application of the analysis of these methods to non-stationary time series.

In our initial research on modeling the dynamics of the balance of payments [7] regres-
sion analysis was carried out for the purpose of econometric analysis of dependence of the
current account of the balance of payments on general and foreign investments, export and
import, exchange rate of Azerbaijani manat. In the research, since the current account
of BP’s balance of payments depends on a variable, foreign investment FI, EX-exports,
IMP-import, the exchange rate of manat against the US dollar, the total investment in
GI for 1995-2017, respectively, the explanatory variables.

Table 1. Results of regression analysis (1995-2017)

Source: author’s work
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Based on the results of regression analysis with the parameters involved in the research,
the number of observations: 23; R2- Determination factor: 0,98; F statistic - Fisher
Criterion: 245,1; severity level: prob.- 0,00; DW-Durbin Watson’s statistic’s: 2,92. The
results are quite satisfactory. Explanatory variables included in the model according to
the determination coefficient explain the result variable by 98%. Criterion F received a
fairly reliable estimate with a high probability. However, the result obtained for the DW
criterion cannot be considered satisfactory. n = 23 and k = 5 (number of explanatory
factors included in the model) critical boundaries for DW criterion with indicators are
DL = 0, 90 and DU = 1, 92 Since the calculated DW criterion value for the model is higher
than 2, the 4-DW value = 1.08 is compared with the critical value. DL < 1, 08 < DU .
Alternatively, 4 −DU < DW < 4 −DL we get a similar result: 2, 08 < 2, 92 < 3, 1 DW
falls into an area of uncertainty and it is impossible to decide if autocorrelation exists.

Units of measurement of independent variables FI, EXP, IMP, GI included in the
model for regression analysis are expressed in US dollars. As it is known, in 2006 the
denomination of Azerbaijani manat was conducted in the ratio of 1:5000. One of the
explanatory factors is the exchange rate of KM manat in the national currency, which
created a serious problem for the stability of the considered time series. Thus, large
amplitude jumps occurred in time, which, in turn, formed a non-stationary sequence.
Unsteady time series lose their importance for econometric studies and are not suitable
for forecasting because the model is inadequate. For this purpose, the time series research
period was shortened, the number of observations was reduced to 12 and covered 2006-
2017 years. Continuing the regression analysis in a new chronological order, we obtained
results in Table 2 below.

Table 2. Results of regression analysis (2006-2017)

Source: author’s work
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Number of observations from the 2nd regression analysis:12; R2-0,97; F statistic -
51,5 severity level: prob.=0,000075; DW -2,92. Thus, the model we have created for the
dynamics of the current account of the balance of payments at this stage of the research
looks as follows:

BP=-0,043786Fİ+0,940172EXP+0,075568İMP-3669,255CM-0,505909Gİ

According to the latest results, there are no significant changes in model quality, i.e.
the model quality does not increase or decrease significantly, and DW statistics still fall
into the zone of uncertainty. This does not tell us if there is autocorrelation in time, so we
cannot be sure that the model is adequate. In such cases, steps such as extending the time
sequence and editing explanatory factors in the model can be used to improve the quality
of the model. In the next stages of our study, in addition to these steps, appropriate
econometric tests will be applied to verify the adequacy of the model in more detail.

Current account deficits generated by the trade balance can be financed by capital
inflows in the following forms: foreign loans from other countries, the International Mone-
tary Fund, the World Bank; assets sold to foreign investors; direct investments that bring
foreign currency into the country in order to create new production facilities; foreign
exchange reserves.

The application of these measures contributes to the reduction of the country’s foreign
assets. However, if the government increases its external debt, which significantly exceeds
the current account deficit, then the country faces a balance-of-payments external debt
crisis. Proper regulation of these financial processes is very important for the balance of
payments and the dynamic development of the country’s economy as a whole.

2. Results

1. The time series of macroeconomic indicators were systematized for econometric mod-
eling of the current account of the balance of payments;

2. The model of multidimensional linear regression was created for the current account
of the balance of payments, assuming that foreign investments, exports, imports,
exchange rate of manat against the US dollar, total investments - macroeconomic
indicators are independent variables;

3. Corrected model for the period 2006-2017. was proposed by eliminating factors that
caused serious problems with the stationarity of time series, and an analysis was
performed to verify the adequacy of the model.

The urgency of the problem, the need to build an econometric model that reflects the
dynamics of the current account in the form of trends and indicators of full adequacy for
the forecast evaluation of the balance of payments, as well as the results of our study make
it necessary to continue the study.
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We believe that the results of the research will make it possible to identify real bal-
ance of payments trends and balance of payments dynamics that may be useful for the
CIS and Eastern European countries based on the analysis of interdependence of the bal-
ance of payments with macroeconomic indicators may be important in shaping regulatory
measures.

The results of the research can also be used as teaching material in lectures on economic
theory, economic mathematics, econometrics, statistics.
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Investigation of Propagation of Nonlinear Waves in a
Structure Consisting of Cylindrical Net System

J.H. Agalarov, M.A. Rustamova, T.J. Hasanova

Abstract. Cylindrical net movement at the smooth cylinder have been obtained on the base of
the general net motion theory. On the next basis system of the vectors: in direct of cylinder axes;
in tangential (rotated) to a cross-section of the cylinder: perpendicular (rotated) to the cylinder
axes. The case of the relative symmetrical filaments position is taken. In this research work the
strain impact to the net is considered. The task comes to the hyperbolic system of equations at
corresponding conditions. As far as the larger significance of parameters corresponds larger speed
of wave spreading, that leads to jumping on the front. To solve the task at the front, there are
using the law of mass preservation and law of a motion quantity changing to find out the jump
spread speed as a function of incline of filament from cylinder axis and speed of the impact.

Key Words and Phrases: wave front, spread speed, law of a motion, cylindrical base, net
motion, tension, angular acceleration

1. Introduction

On the basis of Kh.A. Rakhmatulin’s equations on the motion of a filament, the equa-
tions of motion of the net were obtained [1, 2]. On the dynamics of the netthere are
solved a number of flat and spatial problems in a rectangular Cartesian coordinate system
[3, 4, 5, 6, 7]. Here we consider the problem of the motion of a net on a cylindrical base.
In addition to the theoretical interest, the problem is of practical importance, for example,
the dynamics of flexible drill pipes.

2. General equations of net motion

The equation of motion of the net taking into account the reaction of the supporting
body and the geometric relationships will have the form unlike [2].

∂

∂S1
(σ1τ1) +

∂

∂S2
(σ2τ2) = ρ

∂2r

∂t2
+ pn

(1 + e1) τ1 =
∂r

∂S1
; (1 + e2) τ2 =

∂r

∂S2
. (1)

http://www.cjamee.org 10 © 2013 CJAMEE All rights reserved.
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Here r – is the radius of the particle of the net particle, P is the reaction force of
the cylinder l1, l2 – are the relative elongations corresponding to the properties of the
filaments, S1, S2 – Lagrangian coordinates of the particles of filaments, σ1, σ2 – are con-
ditional stresses, defined as the sum of the tension of individual threads of one family
(intersecting a section of a filament of another family), referred to the original length of
the element in question.

Such a distribution of mass and effort is permissible with a sufficiently dense net, ρ –
is the mass of the net per unit area in the initial state, τ1,τ2 - are the unit vectors tangent
to the filaments, n - is the normal to the surface of the cylindrical base.

3. Coordinate system

A basis of a cylindrical system is taken: a unit vector i - parallel to the axis of the
cylinder, j – the unit vector of the tangent(rotating) to the cross section of the cylinder,
k – unit vector perpendicular(rotating) to the previous ones.

Then

τ1 = cosγii + sinγ1j; τ2 = cosγ2i+ sinγ2j, (2)

where γ1,2- the filament angles formed with the axis of the cylinder.

Derivatives

∂τ1
∂S1

= cosγi
∂i

∂S1
+ i

∂(cosγ1)

∂S1
+ sinγi

∂j

∂S1
+ j

∂(sinγ1)

∂S1

∂τ2
∂S2

= cosγ2
∂i

∂S2
+ i

∂(cosγ2)

∂S1
+ sinγ2

∂j

∂S2
+ j

∂(sinγ2)

∂S2

Or considering
∂i

∂S1
=

∂i

∂S2
= 0;

∂j

∂S1
=
sinγ1
r

k
∂j

∂S2
= −sinγ2

r
k

We get
∂τ1
∂S1

=
∂(cosγ1)

∂S1
i+

sinγ21
r

k +
∂(sinγ1)

∂S1
j

∂τ2
∂S2

=
∂(cosγ2)

∂S2
i− sinγ22

r
k +

∂(sinγ2)

∂S2
j (3)

Also taking into account r = xi+ rk, we have

∂r

∂t
=
∂x

∂t
i+ rωj

∂2r

∂t2
=
∂2x

∂t2
i+ rεj + rω2k (4)

ω – angular velocity, ε – angular acceleration
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4. Equations of motion of a cylindrical net

Substituting (3) and (4) into (1) we obtain

∂

∂S1
(σ1cosγ1 ) +

∂

∂S2
(σ2cosγ2 ) = ρ

∂2x

∂t2
(5)

∂

∂S1
(σ1sinγ1) +

∂

∂S2
(σ2sinγ2) = rε

σ1
r
sinγ21 −

σ2
r
sinγ22 = p+ ρrω2

Next, the symmetrical arrangement of the right and left fibers is considered. Then equa-
tions (5), taking σ1 = σ2 = σ, γ1 = −γ2 = γ, ω = 0, ε = 0,

will take the form

2
∂

∂S
(σ, cosγ) = ρ

∂2x

∂t2
(6)

2σsinγ = p

5. Geometric relations

We define the derivative of the radius vector r in S. Denoting r = xi+ rk,

∂r

∂S
=
∂x

∂S
i+ r

∂k

∂S
=
∂x

∂S
i+

∂y

∂S
j

y –circular coordinate, where according to (1) and (3)

∂x

∂S
= (1 + e) cosγ (7)

∂y

∂S
= (1 + e) sinγ (8)

Since the net does not rotate, then y = const, and

∂ [(1 + e) sinγ]

∂t
= 0

or

(1 + e) sinγ = sinγ0 (9)
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6. Stretching blow on the cylindrical net

Let the infinite unloaded net (Fig. 1) be driven from one end with a constant velocity
v.

Since waves with greater deformation propagate faster than waves with less deforma-
tion, the wave front will undergo a jump (8). Assuming that the motion is self-similar, we
have.

ξ =
S

bt
; x = btf (ξ) ;

∂ξ

∂t
= − S

bt2
;
∂x

∂t
= bf (ξ)− btf ′

(ξ)
S

bt2
= bf (ξ)− S

t
f

′
(ξ)

∂2x

∂t2
=
b

t
ξ2f

′′
(ξ) (10)

Substituting (10) into (5), we obtain

2(σcosγ)
′

= ρξ2f
′′

(11)

(1 + e) cosγ = f
′

(12)

Substituting (9) into (2) with σ = Ee, we get sinγ0ctgγ = f
′
;

[
cosγ

(
sinγ0
sinγ

− 1

)]′
E = ρξ2f

′′
. (13)

In (13), eliminating f , obtaining[
cosγ

(
sinγ0
sinγ

− 1

)]′
E = ρξ2sinγ0ctg

′
γ

or

sinγ0ctg
′
γ − cos′γ =

ξ2

a2
sinγ0ctg

′
γ

or

−sinγ0csc2γ • γ
′
+ sinγ • γ′

= − ξ
2

a2
sinγ0csc

2γ • γ′
. (14)

The last equation has two solutions:

1. γ
′

= 0– constant parameter area

2. ξ2 = a2
(

1− sin3γ
sinγ0

)
– region of a self-similar (homogeneous) solution

Let us consider the first case
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7. Stretching blow on the cylindrical net (Solution)

Let a semi-infinite unloaded cylindrical net be driven from the end with a constant
velocity v. Since waves with greater deformation propagate with greater velocity, the wave
front will undergo a jump.

Consider the motion of the net in the vicinity of the wave front [Fig. 1]:

Fig. 1. Motion of the net in the vicinity of the wave front

In time dt, the front propagates to the distance Ddt. For a deformed net, there will be
(v +D) dt.Denoting the values of density ρ0 for an undeformed net, the law of conservation
of mass will have the form [Fig. 2] and ρ for a deformed net

ρ (D + v) = ρ0D. (15)

The change in momentum ρ0Dvdt will be equal to the momentum of the force

ρ0Dv + 2σcosγ = 0. (16)

We connect the net densities with the deformation of the net element [Fig. 2].

Fig. 2. Connection the deformation of the net with a density
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If the mass of the net element dM , the deformation e, the slope angles of the branches
in the initial and deformed state γ0 and γ, then

ρ0 =
dM

cosγ0dS
? ρ =

dM

(1 + e) cosγdS

or

ρ0 =
(1 + e) cosγ

cosγ0
ρ (17)

Substituting (17) into (15), we obtain

v = −
[

(1 + e) cosγ

cosγ0
− 1

]
D (18)

Substituting (18) into (16), we obtain

D2 =
σcosγ0

ρ0 [(1 + e) cosγ − cosγ0]
(19)

Formulas (9), (18) and (19) allow to determine the shock wave velocity D, strain
(tension) and turning angle of the net branches at a given impact speed.

It should be noted that with increasing impact velocityvγ → 0, we have

D2 =
σw1γ0

ρ0 (1 + e− cosγ0)
(20)

Setting σ = Ee, defining from (9)

1 + e =
sinγ0
sinγ

; σ = E

(
sinγ0
sinγ

− 1

)
and substituting in (19) we obtain

D2 =
E
(
sinγ0
sinγ − 1

)
cosγ0

ρ0 (sinγ0ctgγ − cosγ0)
(21)

or

D2 = a2
(sinγ0 − sinγ) cosγ0
sinγ0cosγ − cosγ0sinγ

or

D = a
√

(sinγ0 − sinγ) /sin (γ0 − γ)
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Fig. 3. γ0 = π
4 ; γ0 = π

6 ; γ0 = π
12

Three variants of shock wave velocity distribution are calculated depending on the
impact speed at the initial values of the angle of inclination of the branches of the net to
the axis:π4 ; π6 ; π

12 .
As can be seen from Graph 3, with increasing impact speed (decrease in γ), the shock

wave velocity increases (up to 15%)
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1. Introduction

In this paper we study differential and differential-difference properties of functions
from intersection Besov-Morrey spaces

Blµ

pµ,θµ,ϕ,β(Gϕ) (1)

was introduced in paper [13]. Note that the paper [13] was proved embedding theorems,
but in this paper we prove interpolation type theorem in Besov-Morrey space Bl

p,θ,ϕ,β (Gϕ).
Such type theorems were first proved in [2] and later in [1, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15].

Let G ⊂ Rn, ϕ(t) = (ϕ1(t), . . . , ϕn(t)), ϕj(t) > 0,ϕ′j(t) > 0; j = 1, 2, . . . , n (t > 0) is
continuously differentiable functions. Assume that lim

t→+0
ϕj(t) = 0 and lim

t→+∞
ϕj(t) = Kj ,

0 < Kj ≤ ∞,(j = 1, . . . , n). We denote the set of such vector-functions ϕ by A. We assume

that |ϕ([t]1)|−β =
n∏
j=1

(ϕj([t]1))−βj , βj ∈ [0, 1] (j = 1, 2, . . . , n) and [t]1 = min{1, t}.

For any x ∈ Rn we put
Gϕ(t) (x) = G ∩ Iϕ(t) (x) =

= G ∩
{
y : |yj − xj | <

1

2
ϕj(t), (j = 1, 2, ..., n)

}
,

Let l ∈ (0,∞)n, mi ∈ N , ki ∈ N0, 1 ≤ p < ∞, 1 ≤ θ ≤ ∞. The space Bl
p,θ,ϕ,β (Gϕ)

is defined [13] as a linear normed space of functions f , on G, with the finite norm (mi >
li − ki > 0 (i = 1, ..., n)) :

‖f‖Blp,θ,ϕ,β(Gϕ) = ‖f‖p,ϕ,β;G +

∗Corresponding author.

http://www.cjamee.org 18 © 2013 CJAMEE All rights reserved.
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+

n∑
i=0


t0∫

0


∥∥∥∆mi

i (ϕi(t), Gϕ(t))D
ki
i f
∥∥∥
p,ϕ,β

(ϕi(t))(li−ki)


θ

dϕi(t)

ϕi(t)


1
θ

, (2)

where t0 > 0 is a fixed number and

‖f‖p,ϕ,β;G = ‖f‖Lp,ϕ,β(G) = sup
x∈G,
t>0

(
|ϕ([t]1)|−β‖f‖p,Gϕ(t)(x)

)
. (3)

Let λµ ≥ 0 (µ = 1, . . . , N),
N∑
µ=1

λµ = 1, 1
p =

N∑
µ=1

λµ
pµ

, 1
θ =

N∑
µ=1

λµ
θµ

, 1
r =

N∑
µ=1

λµ
rµ

, l =
N∑
µ=1

λµl
µ

and let Ω(·, y), Mi (·, y, z) ∈ C∞0 (Rn), be such that

S (Mi) ⊂ Iϕ(T ) =

{
y : |yj | <

1

2
ϕj(T ), j = 1, 2, ..., n

}
, 0 < T ≤ 1.

We put

V =
⋃

0<t≤T

{
y :

(
y

ϕ(t)

)
∈ S (Mi)

}
.

noting V ⊂ Iϕ(t) and U ⊂ G, we assume that U + V ⊂ G.

Lemma 1. Let 1 ≤ pµ ≤ qµ ≤ rµ ≤ ∞, 0 < η, t ≤ T ≤ 1, ν = (ν1, . . . , νn), νj ≥ 0 be
integer (j = 1, 2, . . . , n) ;∆mi

i (ϕi(t)) f ∈ Lpµ,ϕ,β(G) and let

B(x) =
n∏
j=1

∫
Rn

∫
Rn

f(x+ y + z)Ω(ν)

(
y

ϕ(T )
,
ρ (ϕ(T ), x)

2ϕ(T )

)

×Ω

(
z

ϕ (T )
,
ρ (ϕ(T ), x)

2ϕ(T )

)
dydz, (4)

Bi
η (x) =

η∫
0

Li (x, t)

n∏
j=1

(ϕj(t))
−νj−2 ϕ

′
i(t)

ϕi(t)
dt (5)

Bi
ηT (x) =

T∫
η

Li (x, t)
n∏
j=1

(ϕj(t))
−νj−2 ϕ

′
i(t)

ϕi(t)
dt (6)

QiT =

T∫
0

n∏
j=1

(ϕj(t))
−νj−(1−βjp)

(
1
p
− 1
q

)
ϕ′i(t)

(ϕi(t))
1−li

dt <∞ (7)

Li (x, t) =

∫
Rn

+∞∫
−∞

Mi

(
y

ϕ(t)
,
ρ (ϕ(t), x)

ϕ(t)

)
ζi

(
u

ϕi(t)
,
ρi (ϕi(t), x)

2ϕi(t)
,
1

2
ρ′i (ϕi(t), x)

)
×
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×∆mi
i (ϕi (δ)u) f (x+ y + uei) dudy (8)

Then for any x̄ ∈ U the following inequalities are true

sup
x∈U
‖B‖qUψ(ξ)(x) ≤ C1

N∏
µ=1

{‖f‖pµ,ϕ,β;G}λµ×

×
n∏
j=1

(ϕj(t))
−νj−(1−βjp)

(
1
p
− 1
q

) n∏
j=1

(ψj [ξ]1)
βj

p
q , (9)

sup
x∈U

∥∥Bi
η

∥∥
qUψ(ξ)(x)

≤ C2

N∏
µ=1

{∥∥∥(ϕi(t))
−lµi ∆mi

i

(
ϕi(t), Gϕ(t)

)
f
∥∥∥
pµ,ϕ,β;G

}λµ

×Qiη
n∏
j=1

(ψj ([ξ]1))
βj

p
q , (10)

sup
x∈U

∥∥Bi
ηT

∥∥
qUψ(ξ)(x)

≤ C3

N∏
µ=1

{∥∥∥(ϕi(t))
−lµi ∆mi

i

(
ϕi(t), Gϕ(t)

)
f
∥∥∥
pµ,ϕ,β;G

}λµ

×QiηT
n∏
j=1

(ψj ([ξ]1))
βj

p
q , (11)

where Uψ(ξ) (x) =
{
x : |xj − xj | < 1

2ψj (ξ) , j = 1, 2, ..., n
}
ψ ∈ A, C1 and C2 -the con-

stants independent of ϕ, ξ, η and T .

Proof. Apply the generalized Minkowski inequality for x̄ ∈ U we obtain

∥∥Bi
η

∥∥
q,Uψ(ξ)(x)

≤
η∫

0

‖Li(·, t)‖q,Uψ(ξ)(x)

N∏
µ=1

(ϕj(t))
−2−νj ϕ

′
i(t)

ϕi(t)
dt (12)

estimate the norm ‖Li(·, t)‖p,Uψ(ξ)(x). Applying the Holder inequality with exponents

αµ =
qµ
λµq

, µ = 1, 2, . . . , N ;

 N∑
µ=1

1

αµ
= q,

N∑
µ=1

λµ
qµ

= 1


for |Li(x, t)| we obtain

‖Li(·, t)‖q,Uψ(ξ)(x̄) ≤ C1

N∏
µ=1

{
‖Li(·, t)‖qµ,Uψ(ξ)(x̄)

}λµ
. (13)

By virtue of the Holder inequality, for (qµ ≤ rµ) (µ = 1, 2, . . . , N) we have

‖Li (·, t)‖pµ,Uψ(ξ)(x̄) ≤
N∏
µ=1

(ψj(ξ))

(
1
pµ
− 1
rµ

)
‖Li (·, t)‖rµ,Uψ(ξ)(x̄) . (14)
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Now estimate the norm ‖Li(·, t)‖rµ,Uψ(ξ)(x).Let χ be a characteristic function of the set

S (Mi). Again applying the Holder inequality for representing the function in the function
in the form (8) in the case 1 ≤ pµ ≤ rµ ≤ ∞, sµ ≤ rµ, 1

sµ
= 1− 1

pµ
+ 1

rµ
(µ = 1, 2, . . . , N),

we get
‖Li (·, t)‖rµ,Uψ(ξ)(x̄)

≤ C sup
x∈Uψ(ξ)

∫
Rn

∣∣∣∣∣∣
∞∫
−∞

∆mi (ϕi(δ)u) f (x+ y + uei) du

∣∣∣∣∣∣
pµ

χ

(
y

ϕ(t)

)
dy


1
pµ
− 1
rµ

×

×sup
x∈V

 ∫
Uψ(ξ)

∣∣∣∣∣∣
∞∫
−∞

ζi

(
u

ϕi(t)
,
ρ (ϕi(t), x)

2ϕi(t)
,
1

2
ρ′ (ϕi(t), x)

)

×∆mi (ϕi(δ)u) f (x+ y + uei) du
∣∣∣pµ X ( y

ϕ(t)

)
dy

) 1
pµ
− 1
rµ

×sup
y∈V

 ∫
Uψ(ξ)(x̄)

∣∣∣∣∣∣
∞∫
−∞

ζi

(
u

ϕi(t)
,
ρ (t, x)

2ϕi(t)
,
1

2
ρ′ (ϕi(t), x)

)

×∆mi (ϕi(δ)u) f (x+ y + uei) du
∣∣∣pµ χ( y

ϕ(t)

)
dy

) 1
rµ

×

∫
Rn

∣∣∣∣M̃i

(
y

ϕ(t)

)∣∣∣∣sµ dy
 1

sµ

. (15)

It is assumed that |Mi(x, y)| ≤ C|M̃i(x)|, M̃i ∈ C∞0 (Rn). For any x ∈ U we have∫
Rn

∣∣∣∣∣∣
∞∫
−∞

ζi

(
u

ϕi(t)
,
ρ (ϕi(t), x)

2ϕi(t)
,
1

2
ρ′ (ϕi(t), x)

)

×∆mi (ϕi(δ)u) f (x+ y + uei) du
∣∣∣pµ X ( y

ϕ(t)

)
dy

≤
∫

(U+V )ϕ(t)(x̄)

∣∣∣∣∣∣
∞∫
−∞

ζi

(
u

ϕi(t)
,
ρ (ϕi(t), x)

2ϕi(t)
,
1

2
ρ′ (ϕi(t), x)

)

×∆mi (ϕi(δ)u) f
(
x+ y + ue

i
)
du
∣∣∣pµ dy ≤

≤
∫

Gϕ(t)(x̄)

∣∣∣∣∣∣
∞∫
−∞

ζi

(
u

ϕi(t)
,
ρ (ϕi(t), x)

2ϕi(t)
,
1

2
ρ′ (ϕi(t), x)

)
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×∆mi (ϕi(δ)u) f
(
y + ue

i
)
du
∣∣∣pµ dy ≤

≤ (ϕi(t))
lµi pµ‖(ϕi(t))−l

µ
i ∆mi

i (ϕi(t), Gϕ(t))f‖
pµ
pµ,Gϕ(t)(x) ≤

≤ (ϕi(t))
lµi pµ‖(ϕi(t))−l

µ
i ∆mi

i (ϕi(t), Gϕ(t))f‖
pµ
pµ,ϕ,β

n∏
j=1

(ϕj(t))
βjpµ . (16)

for y ∈ V
(
(U + V )ψ(ξ) ⊂ Gϕ(t)

)
∫

Uψξ(x̄)

∣∣∣∣∣∣
∞∫
−∞

ζi

(
u

ϕi(t)
,
ρ (ϕi(t), x)

2ϕi(t)
,
1

2
ρ′ (ϕi(t), x)

)

×∆mi (ϕi(δ)u) f (x+ y + uei) du
∣∣∣pµ X ( y

ϕ(t)

)
dy

≤
∫

(U+V )ϕ(t)(x̄+y)

∣∣∣∣∣∣
∞∫
−∞

ζi

(
u

ϕi(t)
,
ρ (ϕi(t), x)

2ϕi(t)
,
1

2
ρ′ (ϕi(t), x)

)

×∆mi (ϕi(δ)u) f
(
x+ ue

i
)
du
∣∣∣pµ dy ≤

≤ (ϕi(t))
lµi pµ‖(ϕi(t))−l

µ
i ∆mi

i (ϕi(t), (U + V )ψ(ξ))f‖
pµ
pµ,(U+V )ψ(ξ)

≤

≤ (ϕi(t))
lµi pµ‖(ϕi(t))−l

µ
i ∆mi

i (ϕi(t), Gϕ(t))f‖
pµ
pµ,ϕ,β

n∏
j=1

(ψj([ξ]1))βjpµ . (17)

∫
Rn

∣∣∣∣M̃i

(
y

ϕ(t)

)∣∣∣∣sµ dy =
∥∥∥M̃i

∥∥∥sµ
sµ

n∏
j=1

ϕj(t). (18)

From inequalities (15)-(18), we have

‖Li (·, t)‖rµ,Uψ(ξ)(x̄) ≤ C1

∥∥∥M̃i

∥∥∥
sµ
‖(ϕi(t))−l

µ
i ∆mi

i (ϕi(t), Gϕ(t))f‖pµ,ϕ,β×

×(ϕi(t))
lµi

n∏
j=1

(ϕj(t))
1
sµ

+βjpµ
(

1
pµ
− 1
rµ

) n∏
j=1

(ψj([ξ]1))
βjpµ

rµ (19)

and by inequality (14) we have

‖Li (·, t)‖rµ,Uψ(ξ)(x̄) ≤ C2

∥∥∥M̃i

∥∥∥
sµ
‖(ϕi(t))−l

µ
i ∆mi

i (ϕi(t), Gϕ(t))f‖pµ,ϕ,β×

×(ϕi(t))
lµi

n∏
j=1

(ϕj(t))
1
sµ

+βjpµ
(

1
pµ
− 1
rµ

) n∏
j=1

(ψj([ξ]1))
βjpµ

rµ

n∏
j=1

(ψj([ξ]1))
1
qµ
− 1
rµ (20)
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From inequalities (12),(13) for rµ = pµ and for any x̄ ∈ U reduce to the estimation

sup
x̄∈U
‖Bi

η‖q,Uψ(ξ)(x̄) ≤

≤ C3

N∏
µ=1

{
‖(ϕi(t))−l

µ
i ∆mi

i (ϕi(t), Gϕ(t))f‖pµ,ϕ,β
}λµ n∏

j=1

(ψj([ξ]1))
βjpµ

rµ

In a similar way can prove inequality (9) and (11).

Corollary 1. For 1 ≤ τ1 ≤ τ2 ≤ ∞ the following inequalities:

sup
x̄∈U
‖B‖q,ψ,β1;U ≤ C1

N∏
µ=1

{
‖f‖pµ,ϕ,β;G

}λµ (21)

sup
x̄∈U
‖Bi

η‖q,ψ,β1;U ≤

≤ C2
N∏
µ=1

{
‖(ϕi(t))−l

µ
i ∆mi

i (ϕi(t), Gϕ(t))f‖pµ,ϕ,β
}λµ n∏

j=1

(ψj([ξ]1))
βjpµ

rµ (22)

sup
x̄∈U
‖Bi

η,T ‖q,ψ,β1;U ≤

≤ C2
N∏
µ=1

{
‖(ϕi(t))−l

µ
i ∆mi

i (ϕi(t), Gϕ(t))f‖pµ,ϕ,β
}λµ n∏

j=1

(ψj([ξ]1))
βjpµ

rµ (23)

2. Main results

Prove two theorems on the properties of the functions from the space
N⋂
µ=1

Blµ

pµ,θµ,ϕ,β
(Gϕ).

Theorem 1. Let G ⊂ Rn satisfy the condition of flexible ϕ-horn [11], 1 ≤ pµ ≤ qµ ≤ ∞,
1 ≤ θµ ≤ ∞(µ = 1, 2, . . . , N); ν = (ν1, ν2, .., νn), νj ≥ 0 integer j = 1, 2, ..., n, QiT < ∞

(i = 1, 2, ..., n) and let f ∈
N⋂
µ=1

Blµ

pµ,θµ,ϕ,β
(Gϕ). Then the following embeddings hold

Dν :
N⋂
µ=1

Blµ

pµ,θµ,ϕ,β (Gϕ) ↪→ Lq,ψ,β1(G)

i.e. for f ∈
N⋂
µ=1

Blµ

pµ,θµ,ϕ,β
(Gϕ) there exists a generalized derivative Dνf in G and the

following inequalities are true

‖Dνf‖q,G ≤ C
1B(T )

N∏
µ=1

‖f‖ N⋂
µ=1

Bl
µ
pµ,θµ,ϕ,β

(Gϕ)


λµ

, (24)



24 Nilufer R. Rustamova

‖Dνf‖q,ψ,β1;G ≤ C
2
N∏
µ=1

‖f‖ N⋂
µ=1

Bl
µ
pµ,θµ,ϕ,β

(Gϕ)


λµ

, pµ ≤ qµ <∞, (25)

in particular, if

QiT,0 =

T∫
0

n∏
j=1

(ϕj(t))
−νj−(1−βjp) 1

p
ϕ′i(t)

(ϕi(t))
1−

n∑
µ=1

lµi λµ

dt <∞,
(
i = 1, n

)
, (26)

then Dνf (x) is continuous on G, and

sup
x∈G
|Dνf(x)| ≤ C1B

0
1(t)

N∏
µ=1

‖f‖ N⋂
µ=1

Bl
µ
pµ,θµ,ϕ,β

(Gϕ)


λµ

(27)

where 0 < T ≤ min {1, T0} is a fixed number, C1, C2 are the constants independent of f ,
C1 are independent also on T .

Proof. At first note that in the conditions of our theorem there exists a generalized
derivative Dνf . Indeed, from the condition QiT < ∞ {i = 1, 2, ..., n}, it follows that

for f ∈
N⋂
µ=1

Blµ

pµ,θµ,ϕ,β
(Gϕ) → Blµ

pµ,θµ,ϕ,β
(Gϕ) → Blµ

pµ,θµ
(Gϕ) there exists a generalized

derivative Dνf ∈ Lp(G) and for it integral representation with the kernels is valid [13].

Dνf(x) = f
(ν)
ϕ(T )(x) + (−1)|ν|

n∑
i=1

T∫
0

+∞∫
−∞

∫
Rn

K
(ν)
i

(
u

ϕ(t)
,
ρ (ϕ(t), x)

ϕ(t)

)
×

×ζi
(

u

ϕi(t)
,
ρ (ϕi(t), x)

2ϕi(t)
,
1

2
ρ′ (ϕi(t), x)

)
∆mi (ϕi(δ)u)×

×f (x+ y + uei)

n∏
j=1

(ϕj(t))
−νj−2 ϕ

′
i(t)

ϕi(t)
dtdudy, (28)

f
(ν)
ϕ(T )(x) =

n∏
j=1

(ϕj(t))
−νj−2

∫
Rn

∫
Rn

Ω(ν)

(
u

ϕ(T )
,
ρ (ϕ(T ), x)

2ϕ(T )

)
×

×Ω(ν)

(
z

ϕ(T )
,
ρ (ϕ(T ), x)

2ϕ(T )

)
f(x+ y + z)dydz. (29)

Based around the Minkowsky inequality, from identities (28) and (29) we get

‖Dνf‖q,G ≤
∥∥∥f (ν)

ϕ(T )

∥∥∥
q,G

+
n∑
i=1

∥∥Bi
T

∥∥
q,G

. (30)
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By means of inequality (9) for U = G, Mi = Ω we get∥∥∥f (ν)
ϕ(t)

∥∥∥
q,G
≤

N∏
µ=1

{
‖f‖pµ,θµ,ϕ,β;G

}λµ n∏
j=1

(ϕj(T ))
−νj−(1−βjp)

(
1
p
− 1
q

) n∏
j=1

(ψj([ξ]1))
βj

p
q , (31)

and by means inequality (10) for U = G, Mi = K
(ν)
i η = T we get

∥∥Bi
T

∥∥
q,G
≤ C2|QiT |

N∏
µ=1

{∥∥∥(ϕi(t))
−li ∆mi

i

(
ϕi(t), Gϕ(t)

)
f
∥∥∥
p,ϕ,β

}λµ
. (32)

Substituting (31), (32) for 1 ≤ θµ ≤ ∞, pµ ≤ θµ (µ = 1, 2, . . . , N) , we get inequality
(24). By means of inequalities (21) and (22) for η = T we get inequality (25) .

Now let conditions QiT,0 <∞ (i = 1, 2, . . . , n). Then from identities (28), (29) and by
the inequality (24) for q =∞, p ≤ θ we get∥∥∥Dνf(x)− f (ν)

ϕ(T )(x)
∥∥∥
∞,G
≤ C1

n∑
i=1

QiT,0

×
N∏
µ=1


 t0∫

0

[∥∥∆mi
i (ϕi(t), Gϕ(t))f

∥∥
pµ,ϕ,β

(ϕi(t))
lµi

]θµ
dϕi(t)

ϕi(t)


1
θµ


λµ

.

As T → 0, the left side of this inequality tends to zero, since f
(ν)
ϕ(T ) is continuous on G

and the convergence on L∞(G) coincides with the uniform convergence. Then the limit
function Dνf is continuous on G.

Theorem 1 is proved.

Let γ be an n-dimensional vector.

Theorem 2. Let all the conditions of Theorem 2.1 be satisfied. Then for QiT < ∞
(i = 1, 2, ..., n) the generalized derivative Dνf satisfies on G the generalized Hölder condi-
tion, i.e. the following inequality is valid:

‖∆ (γ,G)Dνf‖q,G ≤ C
N∏
µ=1

{
‖f‖Blµpµ,θµ,ϕ,β(Gϕ)

}λµ
· |H (|γ| , ϕ;T )| . (33)

In particular, if QiT,0 <∞, (i = 1, 2, . . . , n) , then

sup
x∈G
|∆ (γ,G)Dνf (x)| ≤ C

N∏
µ=1

{
‖f‖Blµpµ,θµ,ϕ,β(Gϕ)

}λµ
· |H0 (|γ| , ϕ, T )| , (34)

where C - is a constant independent of f , |γ|, ϕ, T and H.

H (|γ| , ϕ, T ) = max
i

{
|γ| , Qi|γ|, Q

i
|γ|,T

}
(
H0 (|γ| , ϕ, T ) = max

i

{
|γ| , Qi|γ|,0, Q

i
|γ|,T,0

})
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Proof. According to lemma 8.6 from [3] there exists a domain

Gω ⊂ G (ω = ϑr (x) , ϑ > 0, r (x) = ρ (x, ∂G) , x ∈ G)

and assume that |γ| < ω,then for any x ∈ Gω the segment connecting the points x, x+ γ
is contained in G. Consequently, for all the points of this segment, identities (28) and (29)
with the same kernels are valid. After same transformations, we get

|∆ (γ,G)Dνf (x)| ≤
n∏
j=1

(ϕj(t))
−1−νj =

= C1B (x, γ) + C2

n∑
i=1

(B1 (x, γ) +B2 (x, γ)) , (35)

where 0 < T ≤ {1, T0} we also assume that |γ| < t,consequently |γ| < min (ω, T ). If
x ∈ G \Gω, then

∆ (γ,G)Dνf (x) = 0.

From (35) we get
‖∆ (γ,G)Dνf‖q,G ≤ ‖B (·, γ)‖q,Gω

+
n∑
i=1

(
‖B1 (·, γ)‖q,Gω + ‖B2 (·, γ)‖q,Gω

)
, (36)

B (x, γ) ≤
n∏
j=1

(ϕj(t))
−νj−2

|γ|∫
0

dζ

∫
Rn

∫
Rn

|f (x+ ζeγ + y)|

×
∣∣∣∣DjΩ

(ν)

(
y

ϕ (T )
,
ρ (ϕ(t), x)

2ϕ(t)

)
Ω(ν)

(
z

ϕ (T )
,
ρ (ϕ(t), x)

2ϕ(t)

)∣∣∣∣ dydz.
Taking into account ξeγ +Gω ⊂ G, and from inequality (21) for U = G, we have

‖B (·, γ)‖q,Gω ≤ C1 |γ| ‖f‖p,ϕ,β;G. (37)

By means of inequality (22), for U = G, η = |γ|, Mi = K
(ν)
i we get

‖B1 (·, γ)‖q,Gω ≤ C2

∣∣∣Qi|γ|∣∣∣ ∥∥∥(ϕi(t))
−li ∆mi

i

(
ϕi(t), Gϕ(t)

)
f
∥∥∥
p,ϕ,β;G

(38)

and by means of inequality (23) for U = G, η = |γ|, Mi = K
(ν)
i we get

‖B2 (·, γ)‖q,Gω ≤ C3

∣∣∣Qi|γ|,T ∣∣∣ ∥∥∥(ϕi(t))
−li ∆mi

i

(
ϕi(t), Gϕ(t)

)
f
∥∥∥
p,ϕ,β;G

. (39)

From inequalities (36)-(39) for cases pµ ≤ θµ we get the required inequality (33).
Now suppose that, |γ| ≥ min (ω, T ). Then we have

‖∆ (γ,G)Dνf‖q,G ≤ 2 ‖Dνf‖q,G ≤ C (ωT ) ‖Dνf‖q,G |h (|γ| , ϕ;T )| .

Estimating for ‖Dνf‖q,G by means of inequality (24), in this case we get estimation.
This completes the proof of Theorem 2.
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Inverse Problem For A Third Order Hyperbolic Equation

Ulvu Alizadeh

Abstract. In this work a nonlinear inverse boundary value problem for a hyperbolic equation
of the third order is investigated. Using the Fourier method, the problem is reduced to solving
a system of integral equations, and using the contraction mapping method, the existence and
uniqueness of a solution to a system of integral equations are proved. The existence and uniqueness
of the classical solution to the initial problem are proved.

Key Words and Phrases: hyperbolic equation, inverse problem, integral condition of overde-
termination.

2010 Mathematics Subject Classifications: 35L25, 35R30

1. Introduction

There are many cases when the needs of practice lead to problems of determining the
coefficients or the right-hand side of a differential equation according some known data of
its solution. Such problems are called inverse problems of mathematical physics. Inverse
problems are an actively developing branch of modern mathematics. Inverse problems for
partial differential equations of various types were studied in many works [1–5]. In inverse
problems, along with the initial and boundary conditions characteristic of a particular
direct problem, additional information is given, the need for which is due to the presence
of unknown coefficients or the right-hand side of the equation. Additional information,
called an overdetermination condition, can be presented in various forms.

In the proposed article, an inverse boundary value problem with additional integral
conditions for a third-order hyperbolic equation is studied.

2. Statement of the problem and its reduction to an equivalent problem

Let DT = {(x, t) : 0 ≤ x ≤ 1, 0 ≤ t ≤ T}. Next, let f(x, t), g(x, t), ω(x),ϕi(x),
(i = 1, 2.3) , hi(t) (i = 1, 2) - be the given functions defined for x ∈ [0, 1], t ∈ [0, T ].
Consider the following inverse boundary value problem: It is required to find the triple
{u(x, t), a(t), b(t)} of the functions u(x, t), a(t), b(t) related by the equation [6]:

uttt(x, t) − utxx(x, t) + utt(x, t) − αuxx(x, t) = a(t)u(x, t) + b(t)g(x, t) + f(x, t) (1)

http://www.cjamee.org 29 © 2013 CJAMEE All rights reserved.
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when the initial conditions are fulfilled for the function u(x, t)

u(x, 0) = ϕ0(x), ut(x, 0) = ϕ1(x), utt(x, 0) = ϕ2(x) (0 ≤ x ≤ 1) (2)

boundary conditions
ux(0, t) = 0, u(1, t) = 0 (0 ≤ t ≤ T ), (3)

and with additional conditions∫ 1

0
ω(x)u(x, t)dx = h1(t) (0 ≤ t ≤ T ), (4)

u(0, t) = h2(t) (0 ≤ t ≤ T ), (5)

where 0 < α < 1 – is a given number.
Denote

C̃(2,3) (DT ) = {u(x, t) , ux(x, t), uxx(x, t), ut(x, t), utx(x, t), utxx(x, t),

utt(x, t), uttt(x, t) ∈ C (DT ) } .

Definition 1. By the classical solution of the inverse boundary value problem (1) - (5)
we mean a triple {u(x, t), a(t), b(t)} of functions u (x, t) ∈ C̃(2,3) (DT ) , a (t) ∈ C[0, T ] ,
b (t) ∈ C[0, T ], satisfying equation (1) and conditions (2) - (5) in the usual sense.

Similarly to [7], the following theorem is proved.

Theorem 1. Let f(x, t), g(x, t) ∈ C(DT ), ϕi(x) ∈ C[0, 1] (i = 1, 2, 3),hi (t) ∈ C3 [0, T ]
(i = 1, 2) and the conditions of agreement are fulfilled:

∫ 1

0
ω(x)ϕ0 (x) dx = h1 (0) ,

∫ 1

0
ω(x)ϕ1 (x) dx = h′1 (0) ,

∫ 1

0
ω(x)ϕ2 (x) dx = h′′1 (0) ,

ϕ0 (0) = h2 (0) , ϕ1 (0) = h′2 (0) , ϕ2 (0) = h′′2 (0) .

Then the problem of finding a classical solution to problem (1) - (5) is equivalent to
the problem of determining functions u (x, t) ∈ C̃(2,3) (DT ) , a (t) ∈ C[0, T ], b (t) ∈ C[0, T ]
from relations (1) - (3) and

a(t)h1(t) + b(t)

∫ 1

0
ω(x)g (x, t) dx =

= h′′′1 (t)−
∫ 1

0
ω(x)f (x, t) dx−

∫ 1

0
ω(x)utxx(x, t)dx + h′′1(t)− α

∫ 1

0
ω(x)uxx(x, t)dx , (6)

a(t)h2(t) (t) + b(t)g(0, t) = h′′′2 (t) − f(0, t)− utxx(0, t) + h′′2(t) − αuxx(0, t) , (7)

moreover

h (t) ≡ h1(t) g (0, t)− h2(t)
∫ 1

0
ω(x)g (x, t) dx (0 ≤ t ≤ T ).
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3. Solvability of the problem

The first component u(x, t) of the solution {u(x, t), a(t), b(t)} to problem (1) - (3), (6),
(7) will be sought in the form

u(x, t) =
∞∑
k=1

uk(t) cosλkx, λk =
π

2
(2k − 1), (8)

where

uk(t) = 2

∫ 1

0
u(x, t) cosλkxdx (k = 1, 2, ...).

Then, applying the formal Fourier scheme, from (1) and (2) we have:

u′′′k (t) + u′′k(t) + λ2ku
′
k(t) + αλ2kuk(t) = Fk(t;u, a, b) (k = 1, 2, ...; 0 ≤ t ≤ T ), (9)

uk(0) = ϕ0k, u
′
k(0) = ϕ1k, u

′′
k(0) = ϕ2k (k = 1, 2, ...), (10)

where

Fk(t;u, a, b) = fk(t) + a(t)uk(t) + b(t)gk(t), fk(t) = 2

∫ 1

0
f(x, t) cosλkxdx,

gk(t) = 2

∫ 1

0
g(x, t) cosλkxdx, ϕik = 2

∫ 1

0
ϕi(x) cosλkx dx(i = 0, 1, 2; k = 1, 2, ...).

Solving problem (9), (10), we find:

uk(t) =
1

bk

{[
(γ2k + β2k)eαkt + eγkt

[
αk(αk − 2γk) cosβkt+

+
1

βk
(γ3k + αkγ

2
k − αkβ2k − α2

kγk) sinβkt

]]
ϕ0k+

+

[
−2γke

αkt + eγkt
[
2γk cosβkt+

1

βk
(α2

k + β2k − γ2k) sinβkt

]]
ϕ1k+

+

[
eαkt + eγkt

[
− cosβkt+

1

βk
(γk − αk) sinβkt

]]
ϕ2k +

∫ t

0
Fk(τ ;u, a, b)×

×
[
eαk(t−τ) + eγk(t−τ)

[
γk − αk
βk

sinβk(t − τ) − cosβk(t − τ)

]]
dτ

}
(k = 1, 2, ...),

(11)
where

αk = α1k + β1k −
1

3
, βk =

√
3

2
(α1k − β1k), γk = −1

3
− 1

2
(α1k + β1k),

bk = α2
k + β2k + γ2k − 2αkγk,
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moreover

α1k =

−1

2

((
α− 1

3

)
λ2k +

2

27

)
+

[
1

4

((
α− 1

3

)
λ2k +

2

27

)2

+
1

27

(
λ2k −

1

3

)3
]1/2

1/3

,

(12)

β1k =

−1

2

((
α− 1

3

)
λ2k +

2

27

)
−

[
1

4

((
α− 1

3

)
λ2k +

2

27

)2

+
1

27

(
λ2k −

1

3

)3
]1/2

1/3

.

(13)

After substituting the expressionsuk(t) (k = 1, 2, ...) in (8), to determine the compo-
nents u(x, t) of the solution to problem (1) - (3), (6), (7), we obtain:

u(x, t) =
∞∑
k=1

{
1

bk

{[
(γ2k + β2k)eαkt + eγkt

[
αk(αk − 2γk) cosβkt+

+
1

βk
(γ3k + αkγ

2
k − αkβ2k − α2

kγk) sinβkt

]]
ϕ0k+

+

[
−2γke

αkt + eγkt
[
2γk cosβkt+

1

βk
(α2

k + β2k − γ2k) sinβkt

]]
ϕ1k+

+

[
eαkt + eγkt

[
− cosβkt+

1

βk
(γk − αk) sinβkt

]]
ϕ2k +

∫ t

0
Fk(τ ;u, a, b)×

×
[
eαk(t−τ) + eγk(t−τ)

[
γk − αk
βk

sinβk(t− τ)− cosβk(t− τ)

]]
dτ

}}
cosλkx. (14)

Differentiating (13) we find:

u′k(t) =
1

bk

{[
αk(γ

2
k + β2k)eαkt + eγkt

[
−αk(γ2k + β2k) cosβkt+

αk
βk

(γk − αkk)×

× (γ2k + β2k) sinβkt

]]
ϕ0k +

[
−2αkγke

αkt + eγkt
[
(α2

k + β2k + γ2k) cosβkt+

+
γk
βk

(α2
k − β2k − γ2k) sinβkt

]]
ϕ1k +

[
αke

αkt + eγkt
[
−αk cosβkt+

+
1

βk
(β2k + γ2k − αkγk) sinβkt

]]
ϕ2k +

∫ t

0
Fk(τ ;u, a, b)

[
αke

αk(t−τ) + eγk(t−τ)×

×
[(

γk
βk

(γk − αk) + βk

)
sinβk(t − τ) − αk cosβk(t − τ)

]]
dτ

}
(k = 1, 2, ...). (15)

Now from (6) and (7) taking into account (8), respectively, we have:

a(t)h1(t) + b(t)

∫ 1

0
ω(x)g (x, t) dx =
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= h′′′1 (t) + h′′1(t) −
∫ 1

0
ω(x)f (x, t) dx+

∞∑
k=1

λ2k(u
′
k(t) + αuk(t))

∫ 1

0
ω(x) cosλxxdx , (16)

a(t)h2(t) (t) + b(t)g(0, t) = h′′′2 (t) + h′′2(t) − f(0, t) +
∞∑
k=1

λ2k(u
′
k(t) + αuk(t)) . (17)

Suppose that

h (t) ≡ h1(t) g (0, t)− h2(t)
∫ 1

0
ω(x)g (x, t) dx 6= 0 (0 ≤ t ≤ T ).

Then from (16) and (17) we obtain:

a(t) = [h(t)]−1
{(

h′′′1 (t) + h′′1 (t) −
∫ 1

0
ω(x)f (x, t) dx

)
g(0, t)−

−
(
h′′′2 (t) + h′′2 (t) − f(0, t)

)∫ 1

0
ω(x)g (x, t) dx+

+
∞∑
k=1

λ2k(u
′
k(t) + αuk(t))

(
g(0, t)

∫ 1

0
ω(x) cosλkdx−

∫ 1

0
ω(x)g (x, t) dx

)}
, (18)

b(t) = [h(t)]−1
{(

h′′′2 (t) + h′′2 (t) − f (0, t)

)
h1 (t) −h′′′1 (t) + h′′1 (t) − f(0, t)−

∫ 1

0
ω(x)f (x, t) dx

h2 (t) +

+
∞∑
k=1

λ2k(u
′
k(t) + αuk(t))

(
h1 (t)− h2 (t)

∫ 1

0
ω(x) cosλkdx

)}
. (19)

Further, from (11) and (15), we obtain:

u′k(t) + αuk(t) =
1

bk

{[
(α + αk)(γ

2
k + β2k)eαkt + eγkt

[
αk(ααk − 2αγk − γ2k − β2k)×

× cosβkt +
αk
βk

((γk − αk)(γ2k + β2k) + α(γ2k − β2k − αkγk)) sinβkt

]]
ϕ0k+

+

[
−2(α+ αk)γke

αkt + eγkt
[
(2αγk + α2

k + β2k + γ2k) cosβkt+

+
1

βk
(α(α2

k + β2k − γ2k) + γk(α
2
k − β2k − γ2k)) sinβkt

]]
ϕ1k +

[
(α+ αk)e

αkt+

+ eγkt
[
−(α+ αk) cosβkt+

1

βk
(αγk − ααk + β2k + γ2k − αkγk) sinβkt

]]
ϕ2k+
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+

∫ t

0
Fk(τ ;u, a, b)

[
(α+ αk)e

αk(t−τ) + eγk(t−τ)
[
(−α+ αk) cosβk(t− τ)+

+

(
γk + α

βk
(γk − αk) + βk

)
sinβk(t− τ)

]]
dτ

}
(k = 1, 2, ...) . (20)

In order to obtain an equation for the second and third components of the solution
{u(x, t), a(t), b(t)} of problem (1) - (3), (6), (7), we substitute expression (20) into (18)
and (19) :

a(t) = [h(t)]−1
{(

h′′′1 (t) + h′′1 (t) −
∫ 1

0
ω(x)f (x, t) dx

)
g(0, t)−

−
(
h′′′2 (t) + h′′2 (t) − f(0, t)

)∫ 1

0
ω(x)g (x, t) dx+

+

∞∑
k=1

λ2k
bk

{[
(α + αk)(γ

2
k + β2k)eαkt + eγkt

[
αk(ααk − 2αγk − γ2k − β2k)×

× cosβkt +
αk
βk

((γk − αk)(γ2k + β2k) + α(γ2k − β2k − αkγk)) sinβkt

]]
ϕ0k+

+

[
−2(α+ αk)γke

αkt + eγkt
[
(2αγk + α2

k + β2k + γ2k) cosβkt+

+
1

βk
(α(α2

k + β2k − γ2k) + γk(α
2
k − β2k − γ2k)) sinβkt

]]
ϕ1k +

[
(α+ αk)e

αkt+

+ eγkt
[
−(α+ αk) cosβkt+

1

βk
(αγk − ααk + β2k + γ2k − αkγk) sinβkt

]]
ϕ2k+

+

∫ t

0
Fk(τ ;u, a, b)

[
(α+ αk)e

αk(t−τ) + eγk(t−τ)
[
(−α+ αk) cosβk(t− τ)+

+

(
γk + α

βk
(γk − αk) + βk

)
sinβk(t− τ)

]]
dτ

}
(
g(0, t)

∫ 1

0
ω(x) cosλkxdx−

∫ 1

0
ω(x)g (x, t) dx

) }
, (21)

b(t) = [h(t)]−1
{(

h′′′2 (t) + h′′2 (t) − f (0, t)

)
h1 (t) −h′′′1 (t) + h′′1 (t) − f(0, t)−

∫ 1

0
ω(x)f (x, t) dx

h2 (t) +

+

∞∑
k=1

λ2k
bk

{[
(α + αk)(γ

2
k + β2k)eαkt + eγkt

[
αk(ααk − 2αγk − γ2k − β2k)×
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× cosβkt +
αk
βk

((γk − αk)(γ2k + β2k) + α(γ2k − β2k − αkγk)) sinβkt

]]
ϕ0k+

+

[
−2(α+ αk)γke

αkt + eγkt
[
(2αγk + α2

k + β2k + γ2k) cosβkt+

+
1

βk
(α(α2

k + β2k − γ2k) + γk(α
2
k − β2k − γ2k)) sinβkt

]]
ϕ1k +

[
(α+ αk)e

αkt+

+ eγkt
[
−(α+ αk) cosβkt+

1

βk
(αγk − ααk + β2k + γ2k − αkγk) sinβkt

]]
ϕ2k+

+

∫ t

0
Fk(τ ;u, a, b)

[
(α+ αk)e

αk(t−τ) + eγk(t−τ)
[
(−α+ αk) cosβk(t− τ)+

+

(
γk + α

βk
(γk − αk) + βk

)
sinβk(t− τ)

]]
dτ

} (
h1 (t)− h2 (t)

∫ 1

0
ω(x) cosλkxdx

) }
.

(22)
Thus, the solution of problem (1) - (3), (6), (7) is reduced to the solution of system

(14), (21), (22) with respect to unknown functions u(x, t), a(t) and b(t).
The following lemma is true.

Lemma 1. If {u(x, t), a(t), b(t)} –is any classical solution to problem (1) (1)-(3), (6),
(7), then the functions

uk(t) = 2

∫ 1

0
u(x, t) cosλkxdx (k = 1, 2, ...)

satisfy the system (11).

Corollary 1. Lemma 1 implies that to prove the uniqueness of the solution to problem
(1) - (3), (6), (7), it suffices to prove the uniqueness of the solution to system (14), (21),
(22).

Now, in order to study problem (1) - (3), (6), (7), consider the following spaces:
1. Let us denote by B3

2,T [8] the collection of all functions u(x, t) of the form

u(xit) =
∞∑
k=1

uk(t) cosλkx, λk =
π

2
(2k − 1),

considered inDT for which all functions uk(t) ∈ C[0, T ] and

JT (u) ≡

( ∞∑
k=1

(λ3k||uk(t) ||C[0,T ])
2

)1/2

<∞.

The norm in this set is defined as follows:

‖u(x, t)‖
B3,

2,T
= JT (u).
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2. Let us denote by E3
T the spaces of the vector of functions {u(x, t), a(t), b(t)} such

that

u(x, t) ∈ B3
2,T , a(t) ∈ C[0, T ] , b(t) ∈ C[0, T ] .

We equip this space with a norm:

‖z‖E3
T

= ‖u(x, t)‖B3
2,T

+ ‖a(t)‖C[0,T ] + ‖b(t)‖C[0,T ] .

It is known that B3
2,T and E3

T are Banach spaces.

Consider the following operator in space E3
T

Φ(u, a, b) = {Φ1(u, a, b),Φ2(u, a, b),Φ3(u, a, b)},

where

Φ1(u, a, b) = ũ(x, t) ≡
∞∑
k=1

ũk(t) cosλkx, ,Φ2(u, a, b) = ã(t), ,Φ3(u, a, b) = b̃(t)

where ũk(t) (k = 1, 2, ...), ã(t) and b̃(t) are equal, respectively, to the right-hand sides
(11), (21) and (22).

Accept the notation

α2k = −1

2

((
α− 1

3

)
λ2k +

2

27

)
+

[
1

4

((
α− 1

3

)
λ2k +

2

27

)2

+
1

27

(
λ2k −

1

3

)3
]1/2

, (23)

β2k =
1

2

((
α− 1

3

)
λ2k +

2

27

)
+

[
1

4

((
α− 1

3

)
λ2k +

2

27

)2

+
1

27

(
λ2k −

1

3

)3
]1/2

. (24)

Then

α1k = 3
√
α2k , β1k = − 3

√
β2k .

Hence, taking into account (23) and (24), we obtain:

α1k + β1k =
∣∣∣ 3
√
α2k − 3

√
β2k

∣∣∣ =

∣∣∣∣∣∣ α2k − β2k
3

√
α2
2k + 3

√
α2kβ2k + 3

√
β22k

∣∣∣∣∣∣ ≤ 9α

2
+

11

2
.

It is easy to see that

|αk| ≤
∣∣∣∣α1k + β1k −

1

3

∣∣∣∣ ≤ 9α

2
+

13

6
≡ ε1 , |γk| =

∣∣∣∣−1

3
− α1k + β1k

2

∣∣∣∣ ≤ 9α

4
+

5

4
≡ ε2 ,

ε3λk ≡
√

2

3
λk ≤ βk ≤

3

√√√√1

2

(
α− 1

27

)
+

√
1

4

(
α− 1

27

)2

+
1

27
kλk ≡ ε4λk ,
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bk = (αk − γk)2 + β2k ≥ β2k ≥ ε23λ2k ,

Taking these relations into account, we find:( ∞∑
k=1

(λ3k ‖ũk(t)‖C[0,T ])
2

)1/2

≤ ρ0(T )

( ∞∑
k=1

(λ3k |ϕ0k |)2
)1/2

+ ρ1(T )

( ∞∑
k=1

(λ3k |ϕ1k |)2
)1/2

+

+ρ2(T )

( ∞∑
k=1

(λ2k |ϕ2k |)2
)1/2

+ ρ2(T )
√
T

(∫ T

0

∞∑
k=1

(λ2k | fk(τ) |)2dτ

)1/2

+

+ρ2(T )T ‖a(t)‖C[0,T ]

( ∞∑
k=1

(λ3k ‖uk(t)‖C[0,T ])
2

)1/2

,

+ρ2(T )
√
T ‖b(t)‖C[0,T ]

(∫ T

0

∞∑
k=1

(λ2k | gk(τ) |)2dτ

)1/2

, (25)

‖ã(t)‖C[0,T ] ≤
∥∥∥[h(t)]−1

∥∥∥
C[0,T ]

×

×
{∥∥∥∥(h′′′1 (t) + h′′1 (t) −

∫ 1

0
ω(x)f (x, t) dx

)
g(0, t)−

−
(
h′′′2 (t) + h′′2 (t) − f(0, t)

)∫ 1

0
ω(x)g (x, t) dx

∥∥∥∥
C[0,T ]

+

+

( ∞∑
k=1

λ−2k

)1/2(
‖g(0, t)‖ C[0,T ] ‖ω(x)‖ L2(0,1) +

∥∥∥∥∫ 1

0
ω(x)g (x, t) dx)

∥∥∥∥
C[0,T ]

)
×

×

ρ3(T )

( ∞∑
k=1

(λ3k |ϕ0k |)2
)1/2

+ ρ4(T )

( ∞∑
k=1

(λ3k |ϕ1k |)2
)1/2

+ρ5(T )

( ∞∑
k=1

(λ2k |ϕ2k|)2
)1/2

+ ρ5(T )
√
T

(∫ T

0

∞∑
k=1

(λ2k |fk(τ)|)2dτ

)1/2

+

+ρ5(T )T ‖a(t)‖C[0,T ]

( ∞∑
k=1

(λ3k ‖uk(t)‖C[0,T ])
2

)1/2

+

+ρ5(T )
√
T ‖b(t)‖ C[0,T ]

(∫ T

0

∞∑
k=1

(λ2k |gk(τ)|)2dτ

)1/2
  , (26)

∥∥∥b̃(t)∥∥∥
C[0,T ]

≤
∥∥∥[h(t)]−1

∥∥∥
C[0,T ]

×
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×
{∥∥∥∥(h′′′2 (t) + h′′2 (t) − f (0, t)

)
h1 (t) −

−

h′′′1 (t) + h′′1 (t) − f(0, t)−
∫ 1

0
ω(x)f (x, t) dx

h2 (t)

∥∥∥∥∥∥
C[0,T ]

+

+

( ∞∑
k=1

λ−2k

)1/2 (
‖h1 (t)‖ C[0,T ] + ‖h2 (t)‖ C[0,T ] ‖ω(x)‖ L2(0,1)

)
×

×

ρ3(T )

( ∞∑
k=1

(λ3k |ϕ0k |)2
)1/2

+ ρ4(T )

( ∞∑
k=1

(λ3k |ϕ1k |)2
)1/2

+ρ5(T )

( ∞∑
k=1

(λ2k |ϕ2k|)2
)1/2

+ ρ5(T )
√
T

(∫ T

0

∞∑
k=1

(λ2k |fk(τ)|)2dτ

)1/2

+

+ρ5(T )T ‖a(t)‖C[0,T ]

( ∞∑
k=1

(λ3k ‖uk(t)‖C[0,T ])
2

)1/2

+

+ρ5(T )
√
T ‖b(t)‖ C[0,T ]

(∫ T

0

∞∑
k=1

(λ2k |gk(τ)|)2dτ

)1/2
  , (27)

where

ρ0(T ) =

√
6

ε23

{
(ε22 + ε24)e

ε1T + ε1e
ε2T

[
ε1 + 2ε2 +

1

ε3
(ε22 + ε24 + ε1ε3)

]}
,

ρ1(T ) =

√
6

ε23

{
2ε2e

ε1T +1 e
ε2T

[
2ε2 +

1

ε3
(ε21 + ε22 + ε24)

]}
,

ρ2(T ) =

√
6

ε23

{
eε1T + eε2T

[
1 +

1

ε3
(ε1 + ε2)

]}
,

ρ3(T ) =
1

ε23

{
(α+ ε1)(ε

2
2 + ε24)e

ε1T + eε2T
[
ε1(αε1 + 2αε2+

+ ε22 + ε24 +
ε2
ε3

((ε1 + ε2)(ε
2
2 + ε24) + α(ε22 + ε24 + ε1ε3))

]}
,

ρ4(T ) =
1

ε23

{
2ε2(α+ ε1)e

ε1T + eε2T
[
ε21 + ε22 + ε24+

+2αε2 +
1

ε3
(ε2(ε

2
1 + ε22 + ε24) + α(ε21 + ε24 + ε1ε3))

]}
,

ρ5(T ) =
1

ε23

{
(α+ ε1)e

ε1T + eε2T
[
α+ ε1 +

1

ε3
(αε2 + αε1 + ε22 + ε24 + ε1ε2)

]}
.

Suppose that the given problem (1) - (3), (6), (7) satisfy the following conditions:
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1. ϕi(x) ∈ C2[0, 1], ϕ′′′i (x) ∈ L2(0, 1) and ϕ′i(0) = ϕi(1) = ϕ′′i (1) = 0 (i = 0, 1).

2. ϕ2(x) ∈ C1[0, 1], ϕ′′2(x) ∈ L2(0, 1) and ϕ′2(0) = ϕ2(1) = 0 .

3. f(x, t), fx(x, t) ∈ C(DT ), fxx(x, t) ∈ L2(DT ) and fx(0, t) = f(1, t) = 0 (0 ≤ t ≤
T ).

4. g(x, t), gx(x, t) ∈ C(DT ), gxx(x, t) ∈ L2(DT ) and gx(0, t) = g(1, t) = 0 (0 ≤ t ≤ T ).

5. h(t) ∈ C3[0, T ] , h (t) ≡ h1(t) g (0, t)−h2(t)
∫ 1
0 ω(x)g (x, t) dx 6= 0 (0 ≤ t ≤ T ), ω(x) ∈

L2(0, 1).

Then from (25) - (27) we have:

‖ũ(x, t)‖B3
2,T
≤ A1(T ) +B1(T ) ‖a(t)‖C[0,T ] ‖u(x, t)‖

B3,
2,T

+ C1(T ) ‖b(t)‖C[0,T ] , (28)

‖ã(t)‖C[0,T ] ≤ A2(T ) +B2 (T ) ‖a(t)‖C[0,T ] ‖u(x, t)‖B3
2,T

+ C3(T ) ‖b(t)‖C[0,T ] , (29)∥∥∥b̃(t)∥∥∥
C[0,T ]

≤ A3(T ) +B3 (T ) ‖a(t)‖C[0,T ] ‖u(x, t)‖B3
2,T

+ C3(T ) ‖b(t)‖C[0,T ] . (30)

where

A1(T ) = ρ0(T )
∥∥ϕ′′′0 (x)

∥∥
L2(0,1)

+ ρ1(T )
∥∥ϕ′′′1 (x)

∥∥
L2(0,1)

+

+ρ2(T )
∥∥ϕ′′2(x)

∥∥
L2(0,1)

+ ρ2(T )
√
T ‖fxx(x, t)‖L2(DT ) ,

B1(T ) = ρ2(T )T,C1(T ) = ρ2(T )
√
T ‖gxx(x, t)‖L2(DT ) ,

A2(T ) =
∥∥∥[h(t)]−1

∥∥∥
C[0,T ]

×

×
{∥∥∥∥(h′′′1 (t) + h′′1 (t) −

∫ 1

0
ω(x)f (x, t) dx

)
g(0, t)−

−
(
h′′′2 (t) + h′′2 (t) − f(0, t)

)∫ 1

0
ω(x)g (x, t) dx

∥∥∥∥
C[0,T ]

+

+

( ∞∑
k=1

λ−2k

)1/2(
‖g(0, t)‖ C[0,T ] ‖ω(x)‖ L2(0,1) +

∥∥∥∥∫ 1

0
ω(x)g (x, t) dx)

∥∥∥∥
C[0,T ]

)
×

×
(
ρ3(T )

∥∥ϕ′′′0 (x)
∥∥
L2(0,1)

+ ρ4(T )
∥∥ϕ′′′1 (x)

∥∥
L2(0,1)

+

+ρ5(T )
∥∥ϕ′′2(x)

∥∥
L2(0,1)

+ ρ5(T )
√
T ‖fxx(x, t)‖L2(DT )

)}
,

B2(T ) =
∥∥[h(t)]−1

∥∥
C[0,T ]

( ∞∑
k=1

λ−2k

)1/2

×
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×

(
‖g(0, t)‖ C[0,T ] ‖ω(x)‖ L2(0,1) +

∥∥∥∥∫ 1

0
ω(x)g (x, t) dx)

∥∥∥∥
C[0,T ]

)
ρ5(T )T ,

C2(T ) =
∥∥[h(t)]−1

∥∥
C[0,T ]

×

×

( ∞∑
k=1

λ−2k

)1/2 (
‖g(0, t)‖ C[0,T ] ‖ω(x)‖ L2(0,1)+

+

∥∥∥∥∫ 1

0
ω(x)g (x, t) dx)

∥∥∥∥
C[0,T ]

)
ρ5(T )

√
T ‖gxx(x, t)‖L2(DT ) ,

A3(T ) =
∥∥∥[h(t)]−1

∥∥∥
C[0,T ]

×
{∥∥∥∥(h′′′2 (t) + h′′2 (t) − f (0, t)

)
h1 (t) −

−

h′′′1 (t) + h′′1 (t) − f(0, t)−
∫ 1

0
ω(x)f (x, t) dx

h2 (t)

∥∥∥∥∥∥
C[0,T ]

+

+

( ∞∑
k=1

λ−2k

)1/2 (
‖h1 (t)‖ C[0,T ] + ‖h2 (t)‖ C[0,T ] ‖ω(x)‖ L2(0,1)

)
×

×
(
ρ3(T )

∥∥ϕ′′′0 (x)
∥∥
L2(0,1)

+ ρ4(T )
∥∥ϕ′′′1 (x)

∥∥
L2(0,1)

+

ρ5(T )
∥∥ϕ′′2(x)

∥∥
L2(0,1)

+ ρ5(T )
√
T ‖fxx(x, t)‖L2(DT )

)}
,

B3(T ) =
∥∥[h(t)]−1

∥∥
C[0,T ]( ∞∑

k=1

λ−2k

)1/2(
‖h1 (t)‖ C[0,T ] + ‖h2 (t)‖ C[0,T ] ‖ω(x)‖ L2(0,1)

)
ρ5(T )T ,

C3(T ) =
∥∥[h(t)]−1

∥∥
C[0,T ]

×

×

( ∞∑
k=1

λ−2k

)1/2(
‖h1 (t)‖ C[0,T ] + ‖h2 (t)‖ C[0,T ] ‖ω(x)‖ L2(0,1)

)
ρ5(T )

√
T ‖gxx(x, t)‖L2(DT ) .

From inequalities (28) - (30) we conclude:

‖ũ(x, t)‖B3
2,T

+ ‖ã(t)‖C[0,T ] +
∥∥∥b̃(t)∥∥∥

C[0,T ]
≤

≤ A(T ) +B(T ) ‖a(t)‖C[0,T ] ‖u (x, t)‖
B3,

2,T
+ C(T ) ‖b(t)‖C[0,T ] , (31)

where
A(T ) = A1(T ) +A2(T ) +A3(T )

B(T ) = B1(T ) +B2(T ) +B3(T ) , C(T ) = C1(T ) + C2(T ) + C3(T ) .

So, the following theorem is proved.
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Theorem 2. Let conditions 1-5 be satisfied and

(A(T ) + 2)(B(T )(A(T ) + 2) + C(T )) < 1 . (32)

Then the problem (1)-(3), (6),(7) has a unique solution in the ball K = KR(|| z ||E3
T
≤

R = A(T ) + 2) from E3
T .

Proof. In space E3
T consider the equation

z = Φz , (33)

where z = {u, a, b} , the components Φi(u, a, b) (i = 1, 2, 3) , of the operator Φ(u, a, b) ,
are defined by the right-hand sides of equations (14), (21), (22).

Consider the operator Φ(u, a, b) in the ball K = KR from E3
T . Similarly to (31), we

obtain that for any z1, z2, z3 ∈ KR the following estimates are valid:

‖Φz‖E3
T
≤ A(T ) +B(T ) ‖a(t)‖C[0,T ] ‖u(x, t)‖B3

2,T
+ C(T ) ‖b(t)‖C[0,T ] ,

≤ A(T ) + (A(T ) + 2)(B(T )(A(T ) + 2) + C(T )), (34)

‖Φz1 − Φz2‖E3
T
≤

≤ B(T )R(‖a1(t)− a2(t)‖C[0,T ] + ‖u1(x, t)− u2(x, t)‖B3
2,T

) + C(T ) ‖b1(t)− b2(t)‖C[0,T ] .

(35)
Then, by virtue of (32), from (34) and (35), it is clear that the operator Φ(u, a, b) ,

satisfies the conditions of the contraction mapping principle on the setK = KR. Therefore,
the operator Φ(u, a, b) , in the ball K = KR has a unique fixed point {z} = {u , a, b}, which
is a solution to equation. (33), i.e. is the only solution of systems (14), (21), (22) in the
ball K = KR.

The function u(x, t), as an element of space B3
2,T , is continuous and has continuous

derivatives ux(x, t), uxx(x, t) in DT .
Similarly, [7], it can be shown that ut(x, t), utxx(x, t) utt(x, t), uttt(x, t) are continuous

in DT .
It is easy to check that equation (1), conditions (2), (3), (6) and (7) are satisfied in

the usual sense. Then, {u(x, t), a(t), b(t)} is a solution of problem (1) - (3), (6), (7). By
the corollary of Lemma 1, it is unique in the ball K = KR. Theorem is proved.

Using Theorem 1, the last theorem implies the unique solvability of the initial problem
(1) - (4).

Theorem 3. Let all conditions of Theorem 2 be satisfied and

∫ 1

0
ω(x)ϕ0 (x) dx = h1 (0) ,

∫ 1

0
ω(x)ϕ1 (x) dx = h′1 (0) ,

∫ 1

0
ω(x)ϕ2 (x) dx = h′′1 (0) ,

ϕ0 (0) = h2 (0) , ϕ1 (0) = h′2 (0) , ϕ2 (0) = h′′2 (0) ..

Then problem (1) - (5) has a unique classical solution in the ball K = KR(|| z ||E3
T
≤

R = A(T ) + 2) from E3
T .
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