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Interpolation Theorems on the Nikolskii-Morrey type Spaces
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Abstract. In the paper was studied a differential and differential-difference properties of functions
from intersection of Nikolski-Morrey type spaces H lµ
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(Gϕ), (µ = 1, 2, . . . , N).
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1. Introduction

In the paper, we study some differential properties functions from spaces type
N⋃
µ=1

H lµ

pµ,ϕ,β
(Gϕ), more precisely we prove inequality type Riesz-Torin for functions from

spaces type H lµ

pµ,ϕ,β
(Gϕ), (µ = 1, 2, . . . , N), and also we prove that for the functions from

intersection this spaces, the generalized mixed derivatives Dνf satisfy the Holder condition
in the metric Lq(G) and C(G). The space H l

p,ϕ,β(G)is defined in [1] as a linear normed
space of functions f , on G with the finite norm (mi > li − ki > 0, i = 1, 2, ..., n)

‖f‖Hl
p,ϕ,β(G) = ‖f‖p,ϕ,β;G

+

n∑
i=1

sup
0<h<h0

∥∥∥∆mi
i

(
ϕi (h) , Gϕ(h)

)
Dki
i f
∥∥∥
p,ϕ,β

ϕi (h)li−ki
, (1)

where
‖f‖p,ϕ,β;G = ‖f‖Lp,ϕ,β(G) = sup

x∈G,t>0

(
|ϕ ([t]1)|−β ‖f‖p,Gϕ(t)(x)

)
, (2)

∣∣ϕ ([t]1)
∣∣−β =

n∏
j=1

(ϕj ([t]1))
−βj , βj ∈ [0, 1] , j = 1, 2, ..., n; l ∈ (0,∞)n, mi ∈ N, ki ∈ N0,

p ∈ [1,∞), [t]1 = min {1, t} , and vector-functions ϕ(t) = (ϕ1(t), ..., ϕn(t)) with Lebesgue
measurable functions ϕj(t) > 0, t > 0, lim

t→+0
ϕj(t) = 0, lim

t→+∞
ϕj(t) = L ≤ ∞, j = 1, 2, ..., n.

Denote by A the set of vector functions ϕ.
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For any x ∈ Rn,

Gϕ(t) (x) = G ∩ Iϕ(t) (x) = G ∩
{
y : |yj − xj | <

1

2
ϕj(t), j = 1, 2, ..., n

}
,

Let for any t > 0, |ϕ ([t]1)| ≤ C, where C is some positive constant. Then the
embeddings Lp,ϕ,β(G)→ Lp(G) and H l

p,ϕ,β(G)→ H l
p (G) hold, i.e.

‖f‖p,G ≤ c‖f‖p,ϕ,β;G, and ‖f‖Hl
p(G) ≤ c ‖f‖Hl

p,ϕ,β(G) . (3)

Note that the spaces Lp,ϕ,β(G) and H l
p,ϕ,β(G) are Banach spaces. The space H l

p,ϕ,β(G),

in the case βj = 0 (j = 1, ..., n) it coincides with the Nikolski space H l
p (G). The spaces of

such type with different norms were introduced and studied in [3]-[8].

2. Preliminaries

Assuming that ϕj(t) (j = 1, 2, ..., n) are also differentiable on [0, T ].

Let λµ ≥ 0 (µ = 1, 2, ..., N) and
N∑
µ=1

λµ = 1, 1
p =

N∑
µ=1

λµ
pµ

, 1
q =

N∑
µ=1

λµ
qµ

, l =
N∑
µ=1

lµλµ, and

Ω(·, y), Mi (·, y) ∈ C∞0 (Rn) be such that

S (Mi) = suppMi ⊂ Iϕ(t) =

{
y : |yj | <

1

2
, j = 1, 2, ..., n

}
.

Assume that for any 0 < T ≤ 1 is a fixed number:

V =
⋃

0<t≤T

{
y :

y

ϕ(t)
∈ S (Mi)

}
.

It is clear that V ⊂ Iϕ(t) and suppose that U + V ⊂ G. Assume ϕ(t)(j = 1, 2, . . . , n) are
also differentiable on [0, T ].

Lemma 1. Let 1 ≤ pµ ≤ qµ ≤ rµ ≤ ∞; 0 < η, t < T ≤ 1, ν = (ν1, ν2, ..., νn), νj ≥ 0 are
integers, j = 1, 2, ..., n; ∆mi

i (ϕi(t)) ∈ Lp,ϕ,β(G) and let

QiT =

T∫
0

n∏
j=1

(ϕj(t))
−νj−(1−βjp)

(
1
p
− 1
q

)
ϕ′i(t)

(ϕi(t))
1−

N∑
µ=1

lµi λµ

dt <∞,

A (x) =
n∏
j=1

∫
Rn

∫
Rn

f(x+ y + z)Ων

(
y

ϕ(T )
,
ρ (ϕ(T ), x)

2ϕ(T )

)

×Ω

(
z

ϕ (T )
,
ρ (ϕ(T ), x)

2ϕ(T )

)
f (x+ y + z) dydz. (4)
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Aiη (x) =

η∫
0

Li (x, t)

n∏
j=1

(ϕj(t))
νj−2 ϕ

′
i(t)

ϕi(t)
dt (5)

AiηT (x) =

T∫
η

Li (x, t)
n∏
j=1

(ϕj(t))
νj−2 ϕ

′
i(t)

ϕi(t)
dt (6)

where

Li (x, t) =

∫
Rn

+∞∫
−∞

Mi

(
y

ϕ(t)
,
ρ (ϕ(t), x)

ϕ(t)

)

× ζi
(

u

ϕi(t)
,
ρi (ϕi(t), x)

2ϕi(t)
,
1

2
ρ′i (ϕi(t), x)

)
∆mi
i (ϕi (δ)u) f (x+ y + uei) dudy (7)

Then for any x ∈ U the following inequalities

sup
x∈U
‖A‖qUψ(ξ)(x)

≤ C1

N∏
µ=1

{‖f‖pµ,ϕ,β;G}λµ×

×
n∏
j=1

(ϕj(t))
−νj−(1−βjp)

(
1
p
− 1
q

) n∏
j=1

(ψj [ξ]1)
βj

p
q , (8)

sup
x∈U

∥∥Aiη∥∥qUψ(ξ)(x)
≤ C2

N∏
µ=1

{∥∥∥(ϕi(t))
−lµi ∆mi

i

(
ϕi(t), Gϕ(t)

)
f
∥∥∥
pµ,ϕ,β;G

}λµ

×
∣∣Qiη∣∣ n∏

j=1

(ψj ([ξ]1))
βj

p
q , (9)

sup
x∈U

∥∥AiηT∥∥qUψ(ξ)(x)
≤ C2

N∏
µ=1

{∥∥∥(ϕi(t))
−lµi ∆mi

i

(
ϕi(t), Gϕ(t)

)
f
∥∥∥
p,ϕ,β;G

}λµ

×
∣∣QiηT ∣∣ n∏

j=1

(ψj ([ξ]1))
βj

p
q , (10)

where Uψ(ξ) (x) =
{
x : |xj − xj | < 1

2ψj (ξ) , j = 1, 2, ..., n
}

and ψ ∈ A, C1, C2 are the
constants independent of ϕ, ξ, η and T .

Proof. Using the Minkowsky inequality for any x ∈ U

∥∥Aiη∥∥qUψ(ξ)(x)
≤

η∫
0

‖Li(·, t)‖qUψ(ξ)(x)

n∏
j=1

(ϕj(t))
νj−2 ϕ

′
i (t)

ϕi(t)
dt, (11)
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and we get

‖Li(·, t)‖qUψ(ξ)(x)
≤ C1

 ∫
Uψ(ξ)(x)

N∏
µ=1

{|Li(·, t)|}λµqdx


1
q

.

Once again using the Hölder’s inequality with indication αµ =
qµ
qλµ

, µ = 1, 2, . . . , N

(
N∑
µ=1

1
αµ

= q
∑ λµ

qµ
= 1). Then we have

‖Li(·, t)‖qUψ(ξ)(x)
≤ C2

N∏
µ=1

{‖Li(·, t)‖qµUψ(ξ)(x)}
λµ . (12)

Taking Hölder inequality (qµ ≤ rµ) we get

‖Li(·, t)‖qUψ(ξ)(x)
≤ ‖Li(·, t)‖rUψ(ξ)(x)

n∏
j=1

(ψj(ξ))
1
qµ
− 1
rµ . (13)

Let X be a characteristic function of the set S (Mi) = suppMi. Noting that 1 ≤
pµ ≤ rµ ≤ ∞, sµ ≤ rµ

(
1
sµ

= 1− 1
pµ

+ 1
rµ

)
, and apply for |Li| the Hölder inequality(

1
pµ

+
(

1
pµ
− 1

rµ

)
+
(

1
sµ
− 1

rµ

)
= 1
)
, and we obtain

‖Li(·, t)‖rµ,Uψ(ξ)(x)
≤

≤ sup
x∈Uψ(ξ)(x)

∫
Rn

∣∣∣∣∣∣
+∞∫
−∞

ζi

(
u

ϕi(t)
,
ρi (ϕi(t), x)

ϕi(t)
,
1

2
ρ′i (ϕ(t), x)

)

×∆mi
i (ϕi(t)) f (x+ y + uei) du|pµ χ

(
y

ϕ(t)

)
dy

) 1
pµ
− 1
rµ

× sup
y∈V

 ∫
Uψ(ξ)(x)

∣∣∣∣∣∣
+∞∫
−∞

ζi

(
u

ϕi(t)
,
ρi (ϕi(t), x)

ϕi(t)
,
1

2
ρ′i (ϕ(t), x)

)

×∆mi
i (ϕi(t)u) f (x+ y + uei) du|pµ dx)

1
pµ

×

∫
Rn

∣∣∣∣Mi

(
y

ϕ(t)
,
ρ (ϕ(t), x)

ϕ(t)
, ρ′ (ϕ(t), x)

)∣∣∣∣sµ dy
 1

sµ

(14)

(suppose that |Mi(x, y, z)| ≤ C|M̃i(x)|).
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For any x ∈ U we have

∫
Rn

∣∣∣∣∣∣
+∞∫
−∞

ζi

(
u

ϕi(t)
,
ρi (ϕi(t), x)

ϕi(t)
,
1

2
ρ′i (ϕ(t), x)

)

×∆mi
i (ϕi (δ)u) f (x+ y + uei) du|pµ χ

(
y

ϕ(t)

)
dy

≤
∫

(U+V )ϕ(t)(x)

∣∣∣∣∣∣
+∞∫
−∞

ζi

(
u

ϕi(t)
,
ρi (ϕi(t), x)

ϕi(t)
,
1

2
ρ′i (ϕ(t), x)

)

× ∆mi
i (ϕi (δ)u) f (y + uei) du|pµ dy ≤

≤ ϕi(t)pµ+pµl
µ
i

∥∥∥ϕi(t)−lµi ∆mi
i

(
ϕi (δ)u,Gϕ(t)

)∥∥∥pµ
pµ,ϕ,β

n∏
j=1

(ϕj(t))
βjpµ . (15)

For y ∈ V

∫
Uψ(ξ)(x)

∣∣∣∣∣∣
+∞∫
−∞

ζi

(
u

ϕi(t)
,
ρi (ϕi(t), x)

ϕi(t)
,
1

2
ρ′i (ϕ(t), x)

)
∆mi
i (ϕi (δ)u) f (x+ y + uei) du

∣∣∣∣∣∣
pµ

dx

≤
∫

Gϕ(ξ)(x)

∣∣∣∣∣∣
+∞∫
−∞

ζi

(
u

ϕi(t)
,
ρi (ϕi(t), x)

ϕi(t)
,
1

2
ρ′i (ϕ(t), x)

)
∆mi
i (ϕi (δ)u) f (x+ uei) du

∣∣∣∣∣∣
pµ

dx

≤ (ϕi(t))
pµl

µ
i

∥∥∥∥∥∥
+∞∫
−∞

ζi

(
u

ϕi(t)
,
ρi (ϕi(t), x)

ϕi(t)
,
1

2
ρ′i (ϕ(t), x)

)

×ϕi(t)−l
µ
i ∆mi

i

(
ϕi (δ)u,Gϕ(t)

)
fdu

∥∥∥pµ
pµ,Gϕ(t)(x)

≤ ϕi(t)p+pl
µ
i

∥∥∥ϕi(t)−lµi ∆mi
i

(
ϕi (δ) , Gϕ(t)

)∥∥∥pµ
pµ,ϕ,β

n∏
j=1

(ψj([ξ]1))
βjpµ (16)

∫
Rn

∣∣∣∣M̃i

(
y

ϕ(t)

)∣∣∣∣sµ dy
 1

sµ

=
∥∥∥M̃i

∥∥∥sµ
sµ
·
∏
j=1

ϕj(t). (17)

From inequalities (11)-(17) for (rµ = qµ) and for any x ∈ U reduce to the estimation

∥∥Aiη∥∥qUψ(ξ)(x)
≤ C1

N∏
µ=1

{∥∥∥(ϕi(t))
−lµi ∆mi

i (ϕi (δ)u) f
∥∥∥
pµ,ϕ,β;G

}λµ
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×
∣∣Qiη∣∣ n∏

j=1

(ψj([ξ]1))
βj

p
q

(
Qiη <∞

)
. (18)

In the case Qiη,T <∞ inequality (10) and (8) is proved in the same way.

From last inequalities it follows that

∥∥Aiη∥∥q,ψ,β1;U
≤ C1

N∏
µ=1

{∥∥∥(ϕi(t))
−lµi ∆mi

i

(
ϕi(t), Gϕ(t)

)
f
∥∥∥
pµ,ϕ,β;G

}λµ
, (19)

∥∥AiηT∥∥q,ψ,β1;U
≤ C2

N∏
µ=1

{∥∥∥(ϕi(t))
−lµi ∆mi

i

(
ϕi(t), Gϕ(t)

)
f
∥∥∥
pµ,ϕ,β;G

}λµ
. (20)

C ′1 and C ′2 are the constants independent of ϕ.

3. Main results

Theorem 1. Let G ⊂ Rn satisfy the condition of flexible ϕ-horn[1], 1 ≤ pµ ≤ qµ ≤ ∞,µ =
1, 2, . . . , N, ν = (ν1, ν2, .., νn), νj ≥ 0 be entire j = 1, 2, ..., n, QiT <∞ (i = 1, 2, ..., n) and

let f ∈
N⋃
µ=1

H lµ

pµ,ϕ,β
(Gϕ). Then the following embedding hold

Dν :
N⋃
µ=1

H lµ

pµ,ϕ,β(Gϕ)→ Lq,ψ,β1(G)

more precisely, for f ∈
N⋃
µ=1

H lµ

pµ,ϕ,β
(Gϕ) there exists a generalized derivative Dνf and the

following inequalities are valid:

‖Dνf‖q,G ≤ C1H(t)
∏
µ=1

{
‖f‖Hlµ

pmu,ϕ,β(Gϕ)

}λµ
, (21)

‖Dνf‖q,ψ,β1;G ≤ C2

∏
µ=1

{
‖f‖Hlµ

pmu,ϕ,β(Gϕ)

}λµ
, p ≤ q <∞. (22)

In particular, if

QiT,0 =

T∫
0

n∏
j=1

(ϕj(t))
−νj−(1−βjp) 1p ×

× ϕ′i(t)

(ϕi(t))
1−

N∑
µ=1

lµλµ

dt <∞, (i = 1, 2, . . . , n) ,
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then the function Dνf (x) is continuous on G, and

sup
x∈G
|Dνf(x)| ≤ C1H0(t)

∏
µ=1

{
‖f‖Hlµ

pµ,ϕ,β
(Gϕ)

}λµ
(23)

where H(T ) =
n∑
i=0
|QiT |, H0(T ) =

n∑
i=0
|QiT,0|,

Q0
T =

n∏
j=1

(ϕj(t))
−νj−(1−βjp)( 1p−

1
q
)

0 < T ≤ min {1, T0}, T0 is a fixed number; C1, C2 are the constants independent of f ,
also C1 is independent from T .

Proof. At first note that in the conditions of our theorem there exists a generalized
derivative Dνf on G. Indeed, from the condition QiT <∞ for all (i = 1, 2, ..., n) it follows
that for f ∈ H lµ

pµ,ϕ,β
(G)→ H lµ

pµ(G), there exists Dνf ∈ Lpµ(G) and for almost every point
of x ∈ G integral representation is valid.

Dνf(x) = f
(ν)
ϕ(t)(x) + (−1)|ν|

n∑
i=1

T∫
0

+∞∫
−∞

∫
Rn

K
(ν)
i

(
y

ϕ(t)
,
ρ (ϕ(t), x)

ϕ(t)

)

×ζi
(

u

ϕi(t)
,
ρi (ϕi(t), x)

2ϕi(t)
,
1

2
ρ′i (ϕi(t), x)

)
×∆mi

i (ϕi (δ)u) f (x+ y + uei)
n∏
j=1

(ϕj(t))
−νj−2 ϕ

′
i(t)

ϕi(t)
dtdudy, (24)

f
(ν)
ϕ(T )(x) =

n∏
j=1

(ϕj(T ))−2−νj ×

×
∫
Rn

∫
Rn

Ω(ν)

(
y

ϕ(T )
,
ρ (ϕ(T ), x)

2ϕ(T )

)
Ω

(
z

ϕ(T )
,
ρ (ϕ(T ), x)

2ϕ(T )

)
f(x+ y + z)dydz, (25)

Applying the Minkowsky inequality we have

‖Dνf‖q,G ≤
∥∥∥f (ν)ϕ(T )

∥∥∥
q,G

+
n∑
i=1

∥∥AiT∥∥q,G . (26)

By means of inequality (8) and (9) for Mi = K
(ν)
i , η = T we get inequality (21). By

means of inequality (19) for Mi = K
(ν)
i , η = T we get inequality (22).

Now let conditions QiT < ∞(i = 1, 2, . . . , n), then take into account (24),and (25),
from inequality (26) we get ∥∥∥Dνf − f (ν)ϕ(T )

∥∥∥
∞,G
≤
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≤ C
n∑
i=1

∣∣QiT ∣∣ ∏
µ=1

 sup
0<t<t0

∥∥∥∥∥∆mi
i

(
ϕi(t), Gϕ(t)

)
f

(ϕi(t))
lµi

∥∥∥∥∥
p,ϕ,β;G


λµ

.

As T → 0, the left side of this inequality tends to zero, since f
(ν)
ϕ(T ) (x) is continuous on G

and the convergence on L∞(G) coincides with the absolutely convergence. Consequently,
the derivative function is continuous G.

Let γ be an n-dimensional vector.

Theorem 2. Let all the conditions of Theorem 1 be fulfilled. Then for QiT <∞ (i = 1, 2, ..., n)
the derivative Dνf satisfies on G the Hölder generalized condition, i.e. the following in-
equality is valid:

‖∆ (γ,G)Dνf‖q,G ≤

≤ C
∏
µ=1

{
‖f‖Hlµ

pµ,ϕ,β
(Gϕ)

}λµ
· |R (|γ| , ϕ;T )| , (27)

in particular, if QiT,0 <∞, (i = 1, 2, . . . , n) , then

sup
x∈G
|∆ (γ,G)Dνf (x)| ≤ C

∏
µ=1

{
‖f‖Hlµ

pµ,ϕ,β
(Gϕ)

}λµ
· |R0 (|γ| , ϕ, T )| . (28)

where R (|γ| , ϕ, T ) = max
i

{
|γ| , Qi|γ|, Q

i
|γ|,T

}
(h0 (|γ| , ϕ, T ) = max

i

{
|γ| , Qi|γ|,0, Q

i
|γ|,T,0

})
.

Proof. According to Lemma 8.6 from [2] there exists a domain

Gω ⊂ G (ω = ζr (x) , ζ > 0 r (x) = ρ (x, ∂G) , x ∈ G)

and assume that |γ| < ω, then for any x ∈ Gω the segment connecting the points x, x+ γ
is contained in G. For all the points of this segment,from identies (24), (25) after same
transformations we get

‖∆ (γ,G)Dνf (x)‖ ≤ ‖B (·, γ) ‖q,G+

+
n∑
i=1

(‖B1 (·, γ) ‖q,G + ‖B2 (·, γ) ‖q,G) , (29)

where

B (x, γ) =
n∏
j=1

(ϕj(t))
−2−νj

×
∫
Rn

∫
Rn

|f (x+ y + z)|
∣∣∣∣Ω(ν)

(
y − γ
ϕ(t)

,
ρ (ϕ(t), x)

2ϕ(t)

)
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− Ω(ν)

(
y

ϕ(t)
,
ρ (ϕ(t), x)

2ϕ (T )

)∣∣∣∣ dydz ≤ n∏
j=1

(ϕj(t))
−2−νj ×

×
|γ|∫
0

dζ

∫
Rn

∫
Rn

|f (x+ ζeζ + z)|
∣∣∣∣DjΩ

(ν)

(
y

ϕ(t)
,
ρ (ϕ(t), x)

2ϕ(t)

)
−

− Ω(ν)

(
y

ϕ(t)
,
ρ (ϕ(t), x)

2ϕ (T )

)∣∣∣∣ dydz,
B1 (x, γ) =

|γ|∫
0

∫
Rn

+∞∫
−∞

∣∣∣∣ζi( u

ϕi(t)
,
ρi (ϕi (t, x))

ϕi(t)
,
1

2
ρ′ (ϕ(t), x)

)∣∣∣∣×
×
∣∣∣∣K(ν)

i

(
y

ϕ(t)
,
ρ (ϕ (t, x))

ϕ(t)

)∣∣∣∣ |∆mi
i (ϕi (δ)u) f (x+ y + uei)| dydudt

B2 (x, γ) =

T∫
|γ|

∫
Rn

+∞∫
−∞

∣∣∣∣K(ν)
i

(
y

ϕ(t)
,
ρ (ϕ (t, x))

ϕ(t)

)∣∣∣∣×
×
∣∣∣∣ζi( u

ϕi(t)
,
ρi (ϕi (t, x))

ϕi(t)
,
1

2
ρ′i (ϕ(t), x)

)∣∣∣∣×
×

1∫
0

|∆mi
i (ϕi (δ)u) f (x+ y + vγ)| dvdudydt.

Here 0 < T ≤ min {1, T0}. Additionally, we assume that |γ| < T , then |γ| < min (ω, T )
and for x ∈ G \Gω then

∆ (γ,G)Dνf (x) = 0.

Taking into account ξeγ+Gω ⊂ G, based around the generalized Minkowsky inequality,
from inequality (8) for U = G, we have

‖B (·, γ)‖q,Gω ≤ C1 |γ|
∏
µ=1

{
‖f‖Hlµ

pµ,ϕ,β
(Gϕ)

}λµ
. (30)

By means of inequality (9),(10) for U = G, Mi = K
(ν)
i , η = |γ| we get

‖B1 (·, γ)‖q,Gω ≤ C2

∣∣∣Qi|γ|∣∣∣×
×
∏
µ=1

{∥∥∥(ϕi(t))
−lµi ∆mi

i

(
ϕi(t), Gϕ(t)

)
f
∥∥∥
pµ,ϕ,β;G

}λµ
(31)

‖B2 (·, γ)‖q,Gω ≤ C3

∣∣∣Qi|γ|,T ∣∣∣×
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×
∏
µ=1

{∥∥∥(ϕi(t))
−lµi ∆mi

i

(
ϕi(t), Gϕ(t)

)
f
∥∥∥
pµ,ϕ,β;G

}λµ
. (32)

From inequalities (29) –(32) we get the required inequality (27).
Let |γ| ≥ min (ω, T ), then

‖∆ (γ,G)Dνf‖q,G ≤ 2 ‖Dνf‖q,G ≤ C (ωT ) ‖Dνf‖q,G |R (|γ| , ϕ;T )| .

Estimating for ‖Dνf‖q,G by means of inequality (21), in this case we get estimation
(27).
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Abstract. The condition of the property of the employment period a one class of service systems
is found in work under enough general conditions on a stream of demands and character of service.
It is established that for the considered service system the necessary and sufficient condition of the
property of the employment period is equivalent to the ergodicity condition for the same system.
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1. Introduction

Investigation of any service system makes necessary to analyze a random process re-
lated with transmission of this system from one state to another one. A lot of these
systems with nonreliable devices are described by homogeneous Markov process with two
components.

Investigations on the reliability of the service was founded by B.V. Gnedenko [1]. Then
these investigations were continued by various authors. Statement of the problems and
investigated in these works process mainly have different characters.

In the work by N.N. Yejov, T. Annaev [2] the period of employment of the service
system with non-reliable devices, when we have non-homogeneous and Puasson input
flow. G.P. Basharin [1] considered the systems with bounded turn of non-reliable devices,
three possible service subjects (direct, inverse, random choice of the demand from the
turn) and when input flow consists of ˆ the sum of finite number of simple Hows, each
which corresponds to its own parameter of the exponential service low. Enough general
one dimensional system with non-reliable devices was studied by G.P. Klimov [4], using
the method of included Markov chain. In the work [5] using the methods of the functional
analysis the process is investigated that describe a wide class of service systems considered
in [2,3]. Considering the result of [2] and [5] in [6] the ergodicity condition is found for the
service system with n (n ≥ 1) number of non-reliable devices and non-homogeneous input
of the demands.

As is known independently from the character of the service the employment period
is the main characteristics of the service system. Namely by these characteristics each
service system works.

http://www.cjamee.org 122 c© 2013 CJAMEE All rights reserved.
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In the present work the property condition of the period of employment of a class of
service systems is investigated.

The advantage of the obtained results consists of the fact that for the considered service
system the necessary and sufficient condition of property of the employment period, related
with some functional equation is equivalent to the ergodicity condition for the same system.
This condition is found in the sense of mathematical expectation in the form of inequality.

Let’s consider homogeneous Markov process {ξt, ηt}, t ≥ 0 with phase process
{0+, 1±, 2±, ...}R+ where R+ = {x : x ≥ 0} and satisfies to the following transmission
probabilities by ∆ ↓ 0(

0+, x
){ (0+, x+ ∆) : 1− λ (x) ∆ + o (∆)

(k+, 0) : 1− λk (x) ∆ + o (∆) , k ≥ 1

(
k+,∆

)


(k+, x+ ∆) : 1− [λ+ (x) + µ− (x) + ν (x)] ∆ + o (∆)(
(k+, r)

+
, x+ ∆

)
: λ+r (x) ∆ + o (∆) , r ≥ 1(

(k − r)+ , 0
)

: ν (x) ∆ + o (∆)
(k−, 0) : µ− (x) ∆ + o (∆) ,

(1)

(
k−,∆

)
(k−, x+ ∆) : 1− [λ− (x) + µ+ (x) + ν (x)] ∆ + o (∆)(

(k + r)− , x+ ∆
)

: λ−r (x) ∆ + o (∆) , r ≥ 1(
(k − 1)+ , 0

)
: ν (x) ∆ + o (∆)

(k+, 0) : µ+ (x) ∆ + o (∆) ,

where ν (x) , µ± (x) , λ±2 (x) , r ≥ 1- non negative functions and

λ± (x) =

∞∑
k=1

λ±k (x) , λ (x) =

∞∑
k=1

λk (x) .

Such kind of process are met in the investigation of the service systems with non-reliable
devices and intensities depending on some parameter x ∈ R+ = [x,+∞}. In this work by
means of mathematical expectation the property condition and Laplace transformation is
found for the employment period of the considered service system.

Let to the one-line service system with expectation non-homogeneous Puasson flow

input with intensity λ± (x) , λ± (x) =
∞∑
i=1
λ±k (x). The service period has intensity ν (x).

The device may be broken during the service then repaired. The intensity of breakage and
repairing are µ− (x) , µ+ (x) correspondingly.

The state (0+, x) means that at the considered time moment the device is free, capa-
ble, and the stopping period is equal to x. The state (k±, x) , x ≥ 1 means that at the
considered time moment there exist k number of demands to the system, the device is
capable (non-capable) x units of time (the time expended to repairing is also equal to x).

It is clear that this system will be described by the process {ξt, ηt} , t ≥ 0 given in (1).
If the initial state of the system is (k+, 0) , k ≥ 1 then ξ+ defines the time till the end

of the service, or breakage of the device. If the initial state is (k−, 0) , k ≥ 1 then ξ− is the
period expended for the repairing of the device.
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2. Main result

Let’s investigate employment period of transmissions probabilities (1) .
Let τ+k be the period of transmissions of the process {ξt, ηt} from the state (k+, 0) , k ≥

1 to the state (0, 0).
The quantity τ+k is called the employment period of the service system following to

Takara [7].
Let’s define by π± (x) the Puasson process with local characteristics λ± (u) , k ≥ 1 by

ξ± = x. Then

τ+k = ξ+
k+S+(ξ+)−1 with probability

ν(ξ+)
ν(ξ+)+µ−(ξ+)

,

τ+k = ξ+
k+S+(ξ+)

with probability
µ−(ξ+)

ν(ξ+)+µ−(ξ+)
,

(2)

It is easy to check that

τ−k = ξ− + τ+
k+π−(ξ−)

. (3)

Introduce

Me−sτ
±
k = ϕ±k (s) , (k ≥ 1)

Thus

τ+k = τ+k−1k + τ+k−2k−1 + ...+ τ+0
1 (4)

where all terms are independent and have such distribution that τ+1 ≡ τ
+0
1 and considering

(4)

ϕ+
k (s) = [ω (s)]k ,

where ω (s) = ϕ+
1 (s). Then from (3) we obtain

ϕ−k (s) = Me−sξ− [ω (s)]k+π
−(ξ−) .

Considering this from (2) we can get

ωk = Me−sξ
+

[
ν (ξ+)

ν (ξ+) + µ− (ξ+)
ωk+π

+(ξ+)−1+

+
µ− (ξ+)

ν (ξ+) + µ− (ξ+)
Me−sξ

−
ωk+π

+(ξ+)+π−(ξ−)
]

or

Me−sξ
+ ν (ξ+)

ν (ξ+) + µ− (ξ+)
ωπ

+(ξ+)−1+

+Me−sξ
+ µ− (ξ+)

ν (ξ+) + µ− (ξ+)
ωπ

+(ξ+)Me−sξ
−
ωπ

−(ξ−) = 1

]
(5)

Define

L (s, ω) = Me−sξ
+ ν (ξ+)

ν (ξ+) + µ− (ξ+)
ωπ

+(ξ+)+
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+ωMe−sξ
+ µ− (ξ+)

ν (ξ+) + µ− (ξ+)
ωπ

+(ξ+)Me−sξ
−
ωπ

−(ξ−).

Then (5) may be rewritten in the form of equation

ω = L (s, ω) . (6)

Now let’s consider the equation (6) in unit interval 0 ≤ ω ≤ 1.

Let c > 0. Then L (s, ω) is down convex in ω ∈ [0, 1] function and the curve, describing
this function has unique joint point ω∗ with straight line y = ω. Consequently in this case
the equation (6) has unique solution ω∗.

Let’s find necessary and sufficient condition for the property of the random quantity
τ+1 . For this purpose it is enough to check that the inequality

dL (0, ω)

dω

∣∣∣∣
ω=1

< 1 (7)

is valid. From this that ω (0) = 1, i.e. τ+1 is eigenrandom quantity. For L (0, ω) we have

L (0, ω) = M
ν (ξ+)

ν (ξ+) + µ− (ξ+)
ωπ

+(ξ+) + ωM
µ− (ξ+)

ν (ξ+) + µ− (ξ+)
ωπ

+(ξ+)Mωπ
−(ξ−),

dL (0, ω)

dω

∣∣∣∣
ω=1

= Mπ+
(
ξ+
) ν (ξ+)

ν (ξ+) + µ− (ξ+)
ωπ

+(ξ+)+

+ωM
µ− (ξ+)

ν (ξ+) + µ− (ξ+)
ωπ

+(ξ+)Mωπ
−(ξ−),

dL (0, ω)

dω

∣∣∣∣
ω=1

= Mπ+
(
ξ+
) ν (ξ+)

ν (ξ+) + µ− (ξ+)
+M

µ− (ξ+)

ν (ξ+) + µ− (ξ+)
+

+M
µ− (ξ+)

ν (ξ+) + µ− (ξ+)
Mπ−

(
ξ−
)

+Mπ+
(
ξ+
) µ− (ξ+)

ν (ξ+) + µ− (ξ+)
.

From the condition (7) one can get

Mπ+
(
ξ+
)

+M
µ− (ξ+)

ν (ξ+) + µ− (ξ+)
Mπ−

(
ξ−
)
< M

ν (ξ+)

ν (ξ+) + µ− (ξ+)
(8)

As

Mθπ
±(x) = exp


x∫
0

λ± (u, θ) du

 ,

where

λ± (u, θ) =
∞∑
i=1

λ±k (u) θk
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then

Mπ
±(x) =

x∫
0

·
λ
±

(u, 1) du,

(here z (x, 1) is a derivative of the function z (x, θ) by x = 0).
Considering last relations the inequality (8) takes a form

M

ξ+∫
0

·
λ
+

(u, 1) du+M
µ− (ξ+)

ν (ξ+) + µ− (ξ+)
M

ξ−∫
0

·
λ
−

(u, 1) du < M
ν (ξ+)

ν (ξ+) + µ− (ξ+)
. (9)

If ϕ+
1 (s) is known, then it is possible to define ϕ+

k (s) for any k ≥ 2.
In [8] is proved that the inequality (9) is ergodicity condition for the service system

described above. We establish that this inequality is necessary and sufficient condition of
property of the employment period of the service system.
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stances of Poisoning
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Abstract. According to statistical data, with the development of oil, chemical, gas industries cases
of poisoning caused by toxic substances employed in these branches have become more frequent
recently. A special place among them is occupied by carbon monoxide, poisoning with which
has been growing steadily. Considering such consequences of similar-poisonings as myocardial
infarction, Parkinson’s disease u.a. it is expedient to perform monitoring of a patient after staying
in a stationary hospital which determines optimum time of its performance, kind and the number
of analysis required for developing an intelligent system. This paper proposes an elaboration of
an intelligent information system for monitoring in cases of poisonings with toxic substances using
carbon monoxide as an example.

Key Words and Phrases: Carbon monoxide, poisoning, monitoring, parametric criteria, non-
parametric criteria, biostatistical methods.
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1. Introduction

The quote adopted by the World Health Organization in 1998, says: ” .... prompt
and adequate treatment of acute poisoning can save lives by minimizing the impact of
poisoning ”. İf the poisoning was discovered and treated in ti me, so its results can show
up after a long period of time. A few weeks later, parkinsonism, heart muscle damage
inflicted deaths can occur. Clearly, these people are poisoned by toxic substances or other
doses are in need of long-term monitoring [1]. Monitoring changing position of the object,
and its performance is desirable observation or comparison with the previous ones.

Along with the diagnosis of poisoning by carbon monoxide poisoning in order to fore-
cast has a great importance for the consequences of monitoring. It is to be observed during
a certain time health status of persons poisoned. During the monitoring, in order to solve
the problem of statistical data analysis methods can be applied.

∗Corresponding author.
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2. Statistics and Literature review

The number of people affected by carbon monoxide in the Central Europe and South-
western Europe over the 2004 is shown in Table 1 [2, 3].

Table 1.

Consolidated Table of carbon monoxide poisonings
Country/Region Extrapolated In-

cidence
Population Esti-
mated Used

Carbon monoxide poisoning in Central Europe (Extrapolated
Statistics)

Austria 3,406 8,174,762

Czech Republic 519 10,246,178

Germany 34,343 82,424,609

Hungary 4,180 10,032,375

Liechtenstein 13 33,436

Poland 16,094 38,626,349

Slovakia 2,259 5,423,567

Slovenia 838 2,011,473

Switzerland 3,104 7,450,867

Azerbaijan 3,278 7,868,385

Portugal 4,385 10,524,145

Spain 16,783 40,280,780

Georgia 1,955 4,693,892

The different aspect of toxic substances, including carbon monoxide poisoning is di-
agnose making, management and treatment for her tactics based on antidote therapy
complement each other and are carried out under the supervision of a doctor, but one
of the main problems seen in a long time the importance of the patient’s condition after
treatment. Because a number of studies have shown that carbon monoxide poisoning are
not only harmful effects on the human body, its results are still manifests itself after a
long period of time. This is mainly disorders of the nervous system, cardiovascular system
diseases. According to scientists poisoned by carbon monoxide, 37% of patients suffered
from cardiac muscle damage.1/4 of the poisoned people had died after 7 years. Profes-
sor Timothy Henry, head of the research process in the U.S, says: ”The main result of
the study of carbon monoxide poisoning in the delivery of long-term negative impact on
health.” Professor Henry said that the number of patients a result of poisoning observed
in disorders of cardiac activity was higher in all the possibilities of scientists [4].

The last years innovations in the construction industry; in the narrow streets sur-
rounded on both sides with “skyscrapers”, the speed of vehicles is reduced, the carbon
dioxide emitted from machines gas is accumulated in the air close to the ground surface
at the respiratory level of people.

At low air condition, carbon dioxide creates a hazardous situation for people’s health.
One of the reasons for the increase in the number of cardiovascular diseases is carbon
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dioxide poisoning. Table 5.1. was drawn by the information of Baku City Emergency and
Urgent Medical Help Station (BCEUMHS).

Table 5.1

Information of BCEUMHS about myocardial infarction for 2006-2013 years.

Years Appeal an hospitalization Interest rate indicator

2006 1573 1,7%

1205 76,6%

2007 1627 1.1%

1321 81,2%

2008 1797 1,7%

1472 81,9%

2009 1601 1,5%

1362 85%

2010 1311 0.3%

1153 88%

2011 1289 0.2%

1216 94%

2012 1211 0.2%

1154 95%

2013 1054 0.2%

1006 95,4%

Comings of carbon monoxide poisoning the concentration of toxic substance in the course,
the amount to be included in the body of the organism, the situation timely, adequate
medical assistance provided. In general, the higher the percentage of fatal outcome. How-
ever, fixed in 2% of patients had severe poisoning neuro psychological found quitting the
gap is observed. More than 10.8% of the patients after 3 years neuro physical disorders
(memory disturbance, personality disorders) suffer.

In recent years, innovations in the chemical and construction industry for example,
streets surrounded by tall and thin skyscrapers in both sides, traffic congestion is reduced
with respect to the speed of vehicles, carbon monoxide which are removed from vehicles
accumulates in the air near-surface where people breathe in a closed environment and
carbon monoxide collected in the atmosphere, in less windy conditions creates a dangerous
situation for the health of people. All of these lead to chronic intoxication. One of the
reasons for the increase of cardiovascular diseases is chronic intoxication. For these reasons,
the followings need to be considered:

- Differential diagnosis of patients in comatose;

- Health surveillance to poisoned person after a certain period of time.
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3. Methods

Solution of the first problem is carried out using mathematical and artificial intel-
ligence methods in intelligent information system. The second is monitring issue after
receiving treatment outcome. Monitoring is advisable for both once poisoned also for
persons affected by chronic intoxication.

Monitoring needs to be conducted after successful treatment in hospital. Therefore,
starting time of monitoring should coincide with the end of the treatment. Functional pa-
rameters and biochemical analysis of carbon monoxide victim needs to be examined from
time to time during the monitoring (fixed time interval). Particularly, type of poisoning,
more affected poisoning of the body and more nervous and cardiovascular systems, mainly
due to the majority of these indicators are checked by selecting from among the more spe-
cific ones. In most cases, the determination of patient treatment verification of indicators
reflecting the health of people selects in the process of stationer treatment. Analysis in the
selected interval of time should be checked for prevention and prognoses of consequences
after poisoning.

Analysis should be checked in a certain time interval to carbon monoxide victim after
antidote therapy and appropriate treatment in order to control the situation. Double
autocorrelation and non-parametric methods [5] is used for comparison and detection
of analyze results with most specificity. Any change or signs in the toxicated or treated
people could be observed by using these methods. The application of appropriate methods
allows the assessment of independent indications,symptoms assessment of before and after
treatment, assessment of the differences between the dynamics of change and plays an
important role in the detection of change differences.

4. Monitoring Tips

Time changes in carbon monoxide poisoning should be controlled after receiving treat-
ment in order to avoid the consequences of toxication. Time series method is used in those
situations. The basis of time series analysis is that former happenings have important in-
dications for future happenings. Time series data is a sequence of successive moments of
time, which reflects to the situation. In contrast to randomly selected analysis, time series
based on observation data of equal times. Time series can be often found in medicine.
Time series analysis has two goals: determination the nature of queue and prognosis. In
both cases, the model must be specified before the turn to the interpretation of the data.

According to the analysis of time series, data consists of systematic component and
a random voice complication detection components which arranged in a regular variable.
Majority of research methods allows to observe the change in the index on a regular basis
using a variety of methods for filtering noise. Routine variables of time series have two
classes: either the trend or seasonal components.

Change dynamics reflects the trend. Trend consists of the variable components changed
through the time organized in a systematic linear or non-linear. The seasonal component
is repeated periodically [6].
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Time series process used to identify prognostic factors of data in the past, today linked
to a similar effect in the near future. Analysis of observations is a continuous process
which estimated in a certain discrete moments of time (when you can evenly across the
distribution). For that reason indications which can cause a dangerous development in
near future should be selected (months, sometimes years).

There is not “automate” methods for detection of time series. If the trend (increasing
or decreasing) is monotone, the queue is not difficult to analyze. If the time series has
enough offense in that case smoothing process should be conducted primarily as a method
of filtration. Smoothing process is a kind of moderation of data. In this case, the non-
systematic errors repel each other. The most common method of smoothing method is
moving average, when m the members of the neighboring row of each member shall be
replaced by a simple average, m – is a price of intervals. Also, the trend is to be used for
the detection of exponential smoothing. Many monotone time series described by linear to
express analytically. If there is non-linear component, set of data needs to be carried out
to remove it. For this reason, most of the time logarithmic, exponential, or polynomial
transformations can be used. In some cases, the least squares method is carried out in
the smoothing. All of these methods are given the relatively smooth line noise filtering,
transforms to circle.

Moving average method determine the start of a new trend, also warns of the end
or return. This method allows you to keep track of the development process, it can be
viewed as trend lines. However, this method is not used for making predictions, because
it follows a trend, but it can’t predict only shows the start of a new trend. Smoothed
curve and the trend observed during the performance of the simplified average, short-term
floating-average rate reflect dynamics more accurately for long intervals calculation.

Moving average is defined as follows:

yt =
1

m

t+p∑

i=t−p

yi , (1)

whereyi, - value of the i-th level; m - the number of levels from smooth intervals -
(m = 2p + 1) ; yt dynamic row of the current level; i- number smooth level range; p-
m single range valuep = (m− 1) /2 .

Smooth change interval depends on the determination of the indicators. Thus, indica-
tors of irregular, small changes smooth interval assumed to be more. If you are required
to take into account changes in smoothing, small gap becomes smaller.

Moving average method is used if time series is organized in straight lines. Because
this time is not misrepresent the dynamics of the index. If the range is non-linear, usage
of this method can cause distortion of indicators . It is used when smooth is exponential
[7].

Analytical smoothing method is an identification of development trends as time series
function.

ŷt = f (t) , (2)

whereŷt- theoretical value of time series with analytical expression for the time t-time.
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Theoretical value are derived from the mathematical model.
Indicating the trend of development, the following features are implemented:

1. The linear function with straight line graphs:

ŷt = a0 + att

2. Exponential function
ŷt = a0 ∗ at1 ,

3. Exponential function second degree (parabola)

ŷt = a0 + a1 ∗ t+ a2t
2 ;

4. Logarithmic function:
ŷt = a0 + a1 ln t .

Estimation of functions parameters are carried out by least squares method. In this
case, the solution is the minimum value of the sum of theoretical and empirical levels
squares: ∑

(ŷt − yi)
2 → min , (3)

where ŷt, — calculated,yt — real levels.
Smooth on a straight line is used in cases where the increments are fixed.
Smooth with exponential function is applied in geometric changes in the when there

is a steady increase in the ratios.
Secondary exponential function smooth is used to changes dynamic range and stable

chain increases.
The smooth on logarithmic function reflects growth of the number of decrease, the

recent increase in the time series.
Counting accuracy of the analytical expressions is defined as follows: sum of empirical

series of price must coincide with the sum of the smoothed series levels. In this case, small
errors can occur due to the calculated values:

∑
y =

∑
ŷt . (4)

Autocorrelation is used to determine patterns of additional data change in time series
smooth method. Autocorrelation function, determine indication whether it is increasing
or decreasing based on seasonal fluctuations.

Determination model is used to assess the trend model accuracy:

R2 =
σ2
ŷ

σ2
y

, (5)

where σ2
ŷ- theoretical model dispersion of the data variance,σ2

y - empirical dispersion of the
data.
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Trend model shows development tendency of R2 close to 1 indicators in values. Ac-
cording to the time series method, data processing is carried out in three stages:

In the first phase filtering is carried out not to take into consideration distortions
resulting from seasonal or other changes. The main goal of filtration is to find outy-changes
affected from x -changes, eliminate factors that will affect that relationship further. A few
known methods for filtering floating above the average value is the most widely used.

According to the moving average price at the time of moving to and from in the price
index is calculated by determining the average number. In this situation, the long-term
periods doesn’t show accurately value compared to the changes in the short-term periods.
However, filtration should be conducted carefully. Important information may be lost as
a result of the smoothing filter. Therefore, filtration should be carried out in several ways,
the results should be verified with the help of correlation analysis.

The second stage is a conduction of the forecast index. For this reason regression model
selection and installation is carried out.

Regression analysis is used for two reasons:
- Detection of relationship between the measured parameters;
- Prognoses of the value of a variable based on the value of regression equation for non-
dependent.

Monitoring with carbon monoxide poisoning shows interesting facts according to the
method of time series in the monitoring of indicators to determine whether certain mo-
ments of time, but also forecast of the change indicators. Time series method is using
to show the changed indicators of regression equation by time to time. Single regression
equation shows the variation of the moments and observation of a person poisoned by a
factor. Changes of signs in time, creates time series of dynamic rows. The characteristics
of that rows is time factor (x ), and dependant variable (y) factor, the sign of the value
change. The dependence between them can be shown as regression equation.

The changes indications by using the method of time series depends on single factor
regression equation or multivariate factor of regression equation. In addition, the figure
forecast in a single-factor regression equation is given by:

y = a+ b ∗ x (6)

where a - the free member; b - determines the slope of the regression line rectangular axes.
According to the least squares method to determine the parameters of the equations will
be as follows:

a ∗ n+ b
∑

x =
∑

y (7)

a
∑

x + b
∑

x2 =
∑

y ∗ x (8)

Formulas given for determination of parameters:

a = y − b ∗ x (9)

b =
y ∗ x− ȳ ∗ x̄

x2 − x̄2
(10)
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Multivariate regression equation is used to monitor and prediction of the dynamics of
change of many traits at the same time:

ŷx = a+ b1x1 + b2x2 + ...+ bmxm (11)

Based on the assumption of multivariate regression testing is not possible, dependants
becomes more obvious on the basis of the probabilities. Because the regression coefficients
for the various tendencies traits values cause a shift in the regression line, and can change
direction. Even one trait value in the presence causes a change in the outcome. Despite it
is necessary to monitor the observation of a large number of indicators in carbon monoxide
poisoning, more realistic indication of each individual was considered more appropriate to
the forecast by the factorial regression. This has been confirmed in numerous experiments.
The prognosis by regression equation is given for a certain time after the end of the
monitoring period.

In the third stage, the quality of the model should be estimated.
The regression is carried out by adequacy of the model determination:

R2 =
N∑

i=1

(
_
y i −ȳ)2/

N∑

i=1

(yi − ȳ)2. (12)

where - ŷi- relevant to xithe theoretical or estimated valueyi.
Determination coefficient shows variables depending on the degree of compared dis-

persion. The adequacy of the regression equation is increasing in respect to R2 high value.
Determination coefficient regression model useful for prediction. The regression equation
for the determination of a criteria of Fisher are used:

F =
R2

1′ −R2
∗ n−m− 1

m
(13)

where R - determination coefficient, n - number of observations, m - number of parameters
in x variables (the number of factors in linear regression model).

This criterion assesses the significance factors included in the regression equation.
Calculated F -value of the significance level αup, are compared with 1 and n-m − 1 in
table value. If the calculated Fvalue exceeds the value of the table, i.e., F ≥ Ftable, then
x factor included in the model is statistical significance. If the calculated F is less than
table value, x variable doesn’t affect to y variables changes and the inclusion in the model
is inappropriate.

Determination coefficient with the help of correlation is defined as follows:

r =
√
R2 (14)

Determination coefficient, -1, +1 varies in correlation coefficient. Determination coeffi-
cient is close +1 shows close relation of y variables with x factor to prove that indicator is
the most significant factors for formalization of consequences. In this regard, the regression
model can be used to forecast the indicator.



Conducting of Monitoring and Experiments in Toxic Substances of Poisoning 11

The indicators selected for monitoring medicine will be:

xi ∈ {X} , i = 1, n

where xi– indicator.

There are ending regulatory values for given parameters. Based on this, there is specific
change interval for ∀xi (in some cases, the standards are different for men and women).
Standards in accordance with the upper and lower boundaries is yi and zi. Then

yi < xi < zi

should be. Each xi is observed in T = {t1, t2, ..., tk} time. k– is the number of measure-
ments. Then xji can be described as an arbitrary parameter, where i = 1, 2, ..., n, j =
1, 2, ..., k. Lower and upper variables can be considered as pathology:

xji < yi or x
j
i > zi

Autocorrelation functions are established for observation of any change of variable x i
j in T = {t1, t2, ..., tk}time. It should be noted that the numbers do not reflect the cost of
health indicators, the random number generator has been used. Kas the number of points
used in the determination during the observation period, sometimes it means the number
of years or months. For example, 100-point numbers with a given distribution (fig.2a),
trend (fig.2b), smoothing curve (moving average) (fig.2c), forecasting (fig.2d), shown a
certain time autocorrelation (fig.2e) and partial autocorrelation function (fig.2d). This
series show ascending value of numbers.

a) b)



12 I.H. Mirzazada, U.R. Naghizade

c) d)

e) f)

Fig.2. Characteristic of time series with ascending numbers

Partial correlation shows variables between two random variables, when taken the
effect of internal values of autocorrelation doesn’t take into account. Partial autocor-
relation is almost same with simple autocorrelation in small moving. In practice, the
periodic dependence of the specific autocorrelation is showing as “clean”. The appearance
of autocorrelation and partial autocorrelation depends on the length of the time series.
Autocorrelation function shows the model accurately when the series is long. When the
range is short, correlation loses its accuracy and autocorrelation and autocorrelation es-
timation degree is decreasing. Meanwhile, the trend shows that there is not a periodic
function in autocorrelation changes.

Regression equation for distribution, coefficient of determination (fig.3a), scatter re-
gression of the order given as follows (fig.3b):
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Fig.3a

Fig.3b

According to Fisher criteria, this statistics is significance.

Another example for number of shows with normal distribution in fig.4a,b,c,d,e,f [8].
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a) b)

c) d)

e) f)

Fig.4. Characteristic of time series with normal distribution numbers

Regression equation for distribution, coefficient of determination, scatter and regression
of the order given as follows (fig.5a,b):
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Fig.5a

Fig.5b

Smoothing curve,autocorrelation and special autocorrelation functions shows that there
is trend in that range. Determination coefficient value shows that forecast is impossible.
According to Fisher theory, the value of indication is not significance.

During the course of the monitoring indicators of each time interval along with the ob-
servation of one or several indicators needs to be found observed. Mann-Whitney criteria
is used for the evaluation of the difference between two independent indicators, Wilcoxon
T-criterion is used for evaluation of monitoring from treatment period, any indication of a
change in a certain time, Friedman method is used to measure the difference between dou-
ble monitoring difference evaluation and Kruskal-Wallis criterion is applied for assessment
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of presence of indicators in several measurements.
Conclusions. This work proposes a time series method for monitoring the state of a

patient after treatment of carbon monoxide poisoning. The said method allows to trace
dynamics of indices in time intervals and detect a more important index for observation
of treatment resistant symptoms and elimination of excessive checks. For comparison of
the indices in time intervals parametric and non-parametric criteria of biostatistics are
employed.
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A Variable Exponent Hardy’s Inequality Approach for
Some Nonlinear Eigenvalue Problem
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Abstract. Applying a new bounded ness and compactness result for Hardy’s operator (
x∫
0

f(t) dt)

and its conjugate (
l∫
x

f(t) dt) in variable exponent spaces Lp(·)(0, l) and applying the Mountain

Pass Theorem approaches in this paper it has been proved an existence result for the eigenvalue
problem 

−
(
|y′|p(x)−2y′

)′
= λ yp(x)−1 +

(
y

xα(l−x)α
)q(x)−1 a(x)

xα(l−x)α ,

y(x) > 0, 0 < x < l,

y(0) = y(l) = 0.

where the exponent function p : (0, l)→ (1,∞) is monotone near the origin and l also satisfying a
log-regularity conditions in this points.

Key Words and Phrases: variable exponent spaces, inequality, eigenvalue problem, mountain
pass theorem, functional.

2010 Mathematics Subject Classifications: 26D10, 42B37, 35D05, 35J60, 35P30

1. Introduction

In this paper, we shall study an existence result for the nonlinear eigenvalue problem
−
(
|y′|p(x)−2y′

)′
= λ yp(x)−1 +

( y
xα(l−x)α

)q(x)−1 a(x)
xα(l−x)α ,

y(x) > 0, 0 < x < l,

y(0) = y(l) = 0.

(1)

Let Lip0(0, l) be a class of Lipshitsz continuous functions f : (0, l) → R with f(0) =
f(l) = 0. Close this class of functions in a norm∥∥f∥∥

Ẇ 1
p(.)

(0,l)
=
∥∥f ′∥∥

Lp(.)(0,l)
.

∗Corresponding author.
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The obtained variable exponent Sobolev type space denote as Ẇ 1
p(·)(0, l). This is a reflexive

Banach space if 1 < p− := inf
(0,l)

p(x), p+ := sup
(0,l)

p(x) <∞ (see, e.g. [14, 15])

In space Ẇ 1
p(·)(0, l), consider an eigenvalue problem (1) with Dirichlet conditions in the

ends of a finite interval (0, l).
Let λ1 be the first eigenvalue number of the p(x)-Laplace’s operator. In other words,

λ1 = inf
{y∈AC(0,l), y 6=0, y(0)=y(l)=0}

l∫
0

|y′(x)|p(x) dx

l∫
0

|y(x)|p(x) dx
(2)

It is satisfied 
− d
dx

(∣∣dy1
dx

∣∣p(x)−2 dy1
dx

)
= λ1

∣∣y1(x)
∣∣p(x)−2y1(x),

y(x) > 0, 0 < x < l,

y(0) = y(l) = 0.

(3)

for the first eigenvalue λ1 and the eigenfunction y1(x) of the problem (2). It has been
shown in [3] that there are infinitely many discreet eigenvalues 0 ≤ λ1 < λ2... < λk... of
the problem (3) such that λk → ∞ as k → ∞. At that, the first eigenvalue may be
no strongly positive. In the cited work, it was stated that the first eigenvalue is strongly
positive ( λ1 > 0) if one dimensional case and a monotony exponent function p(x) be
considered.

To prove the existence of solution of problem (1), we shall apply a Montain pass
theorem due to Ambrosetti and Rabinowitz [2, 1]. In order to carry out this, we need
some new variable exponent boundedness and compactness results for Hardy’s operator
and its conjugate [7, 8, 12, 9].

Theorem 1. Let q, p : (0, l)→ (1,∞) be measurable functions such that 1 < p− ≤ p(x) ≤
q(x) ≤ q+ <∞. Assume that, α ∈ (1− 1

p+
, 1), and be satisfied the conditions:

lim sup
x→0

|f(x)− f(0)| ln 1

x
<∞, lim sup

x→l
|f(x)− f(l)| ln 1

l − x
<∞, (4)

moreover,

p+ ≤ q− < 1

α− 1 + 1
p+

. (5)

holds.
Then the set of functions {y(t) ∈ AC(0, l) : y(0) = y(l) = 0} with bounded norm∥∥y′(x)

∥∥
Lp(.)(0,l)

are compactly embedded into the class of functions with finite norm∥∥∥ y

xα(l − x)α

∥∥∥
Lq(.)(0,l)

. (6)
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For an exact characterization of the Hardy’s inequality in variable exponent spaces not
using the regularity conditions (4) on the exponent functions see, the recent works [11, 13])

Theorem 2. Let p : (0, l) → (1,∞) be measurable function, such that, 1 < p− ≤ p(x) ≤
p+ <∞. Assume that, p satisfies (4) near the origin and l. Then it holds an inequality∥∥∥ y(x)

x(l − x)

∥∥∥
p(x);(0,l)

≤ C

l

∥∥y′(x)
∥∥
p(x);(0,l)

(7)

for all absolutely continuous functions u : (0, l) → R with u(0) = u(l) = 0. Moreover, a
positive constant C in (7) depends on p−, p+, C1, C2.

From Theorem 2 one gets easily the following Sobolev type inequality

1

lC
‖y‖Lp(·)(0,l) ≤ ‖y

′‖Lp(·)(0,l) (8)

for any absolutely continuous function y in (0, l) with limits y(0) = y(l) = 0.

Theorem 3. Let q, p : (0, l) → (1,∞) be measurable functions, such that, 1 < p− ≤
p(x) ≤ p+ < q− ≤ q(x) ≤ q+ < ∞, and the conditions (4) be satisfied. Let the exponent
function p be monotony near the origin and l. Assume a real positive number α satisfies
(5). Then there exists a positive solution of the problem (1) from space Ẇ 1

p(·)(0, l) for any

λ < λ1 and a(x) ∈ L∞(0, l).

The proof of the above result relies on the celebrated Mountain Pass Theorem of
Ambrosetti and Rabinowitz [1] in the following variant.

Theorem 4. Let X be a real Banach space and let F : X → R be C1-functional. Suppose
that F satisfies the Palas-Smale condition and the following geometric assumptions:

• 1) there exists positive constants ρ, c0 such that F (u) ≥ c0 for all u ∈ X with
‖u‖ = ρ;

• 2) F (0) < c0 and there exists v ∈ X such that ‖v‖ > ρ and F (v) < c0.

Then the functional F posseses at least a critical point.

For the multidimensional case n ≥ 3 and constant exponents p = 2, 2 < q < 2n
n−2 , α =

0, a(x) = 1 we refer to [4], where an enhanced description of nonlinearities and eigenvalue
number ranges, enabling multiplicity of solutions for the problem (1) is given applying the
Lusternik-Schnirelman category approache in manifold. For the variable exponent setting,
we cite [6], where constant exponents q, α = 0, a(x) = 1 has been considered in case n ≥ 2.
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For a solution of problem (1) we call a function y ∈ Ẇ 1
p(·)(0, l) that satisfies the integral

identity

l∫
0

|y′|p(x)−2y′v′ dx− λ
l∫

0

y
p(x)−1
+ v dx

−
l∫

0

( y+
xα(l − x)α

)q(x)−1 va(x)

xα(l − x)α
dx = 0

(9)

for any test function v ∈ Ẇ 1
p(·)(0, l).

Consider in Ẇ 1
p(·)(0, l) the functional I : Ẇ 1

p(·)(0, l)→ R defined as

I(y) =

l∫
0

1

p(x)
|y′|p(x) dx−

l∫
0

λ

p(x)
y
p(x)
+ dx−

l∫
0

a(x)

q(x)

( y+
xα(l − x)α

)q(x)
dx, (10)

where y+ = max (y(x), 0) .
Correct setting a solution notion. Verify correctness of the solution notion and the

functional I(y) setled in E := Ẇ 1
p(·)(0, l). The first integral in (9) is well defined by virtue

of Holder’s inequality and y, v ∈ Ẇ 1
p(·)(0, l). By virtue of (7) and Holder’s inequalities

second and third integrals are well-defined:

l∫
0

|y+|p(x)−2|y+v| dx ≤ c0
∥∥|y+|p(x)−1∥∥Lp′(·)(0,l) · ∥∥v∥∥Lp(·)(0,l)

≤ c0
(

1 +
∥∥y+∥∥p+−1Lp(·)(0,l)

)∥∥v∥∥
Lp(·)(0,l)

c0l
(

1 + Clp
+−1‖y′‖p

+−1
Lp(·)(0,l)

)
‖v′‖Lp(·)(0,l).

For the third integral by use of Young’s inequality, it follows

l∫
0

(
y+

xα(l − x)α

)q(x)−1 ∣∣∣ v

xα(l − x)α

∣∣∣ dx
l∫

0

a(x)

q′(x)

( y+
xα(l − x)α

)q(x)
dx+

l∫
0

a(x)

q(x)

∣∣ v

xα(l − x)α
∣∣q(x) dx = i1 + i2

For every summand here we have the inequalities

i1 ≤
l∫

0

Kq(x)

q−
( y+
Kxα(l − x)α

)q(x)
dx ≤ 1 +Kq+

q−

l∫
0

( y+
Kxα(l − x)α

)q(x)
dx
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≤ 1 +Kq+

q−

(
1 +

(
ε‖y′‖Lp(·)(0,l) + Cε‖y‖Lp(·)(0,l)

)q+−1)
≤ 1

q−
+

1

q−
(
ε‖y′‖Lp(·)(0,l) + Cεl

2
∥∥ y

x(l − x)

∥∥
Lp(·)(0,l)

)q+−1
≤ 1

q−
+

1

q−
(
ε+ C2Cεl

)q+−1‖y′‖q+−1
Lp(·)(0,l)

≤ C3

∥∥y∥∥
Ẇ 1
p(·)(0,l)

with
K =

∥∥∥ y+
xα(l − x)α

∥∥∥
Lq(·)(0,l)

, ε > 0.

Notice, here it has been used the inequality∥∥y∥∥
Y
≤ ε
∥∥y∥∥

X
+ Cε

∥∥y∥∥
Z

(11)

for a triple Banach spaces Y ⊂ X ⊂ Z with the imbedding Y ⊂⊂ X to be compactly
[10] and Theorem 1 and Theorem 2.

Same chain of inequalities hold for the i2 too.

The Gatox derivative of I(y) and its continuity.
Show that the functional I(u) has a continuous Gatox derivative I ′(u) ∈ E∗ and for

every v ∈ E it holds

< I ′(u), v >=

l∫
0

|y′|p(x)−2y′v′ dx− λ
l∫

0

|y|p(x)−2yv dx

−
l∫

0

a(x)
( y+
xα(l − x)α

)q(x)−2 y+
xα(l − x)α

· v

xα(l − x)α
dx. (12)

Derivatives of J(y). For a functional J(u) =
l∫
0

|y′|p(x) dx number r, a function v ∈ E

using the mean value theorem, and Lebesgue’s limit theorem tending r → 0, it follows

J (y + rv)− J(y)

r
=

l∫
0

1

p(x)

1

r

(
|y′(x) + rv′(x)|p(x) − |y′(x)|p(x)

)
dx

=

l∫
0

|y′(x) + θrv′(x)|p(x)−2y′(x)v′(x) dx→
l∫

0

|y′(x)|p(x)−2y′(x)v′(x) dx, (13)

where θ ∈ (0, 1) depends on x, y(x).
We have used that |y′(x) + θrv′(x)|p(x)−2 → |y′(x)|p(x)−2 as r → 0 a.e. x ∈ (0, l). We

have also used that there exists an integrable majorant function for all r ∈ (−1, 1) in order
to apply the Legesgue theorem:∣∣∣|y′(x) + θrv′(x)|p(x)−2y′(x)v′(x)

∣∣∣
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≤
(
|y′(x)|+ |r||v′(x)|

)p(x)−2( |y′|+ |v′|
2

)2
≤
(
|y′(x)|+ |r||v′(x)|

)p(x)
≤ 2p(x)−1

(
|y′(x)|p(x) + |r|p(x)|v′(x)|p(x)

)
.

Therefore, the upper passage to the limit in (13) is legitimately.
The continuity of derivatives J(y). Show J ∈ C1(E,E∗). Let yn → y in E. Then for a

v ∈ E we have

| < J ′(yn)− J ′(y), v > | =
∣∣∣ 1∫
0

(
|y′n|p(x)−2y′n − |y′|p(x)−2y′

)
v′ dx

∣∣∣
Using Egorov’s theorem, there is a set A ⊂ (0, l) with |A| < δ such that y′n → y′ uniformly
in (0, l) \ A. Let N(ε) ∈ N be such that |y′n(x)− y′(x)| < ε, x ∈ (0, l) \ A as n > N(ε).
Then

| < J ′(yn)− J ′(y), v > | ≤
∫

(0,1)\A

∣∣|y′n|p(x)−2y′n − |y′|p(x)−2y′∣∣|v′| dx
+

∫
A

∣∣|y′n|p(x)−1 + |y′|p(x)−1
∣∣|v′| dx

≤ Cε‖v‖Ẇ 1
p(·)(0,l)

+ c0‖v‖Ẇ 1
p(·)(0,l)

(
‖y′n‖

p+

Lp(·)(A)
+ ‖y′‖p

−

Lp(·)(A)

)
Therefore and since y′n → y′ in Lp(·)(0, 1),

‖J(yn)− J(y)‖E∗ ≤ Cε+ c0‖y′n‖Lp(·)(A) + c0‖y′‖Lp(·)(A)

≤ (C + 1)ε+ 2c0‖y′‖Lp(·)(A) < ε

choosing sufficiently small δ > 0 and ε.
Derivatives of F (y). For a functional

F (y) =

l∫
0

y
p(x)
+ dx, where y+(x) = max{y(x), 0},

show that

< F ′(y), v >=

l∫
0

y
p(x)−2
+ y+v dx.

By the same way, as above,

F (y + rv)− F (y)

r
=

l∫
0

1

p(x)
·

(y + rv)
p(x)
+ − yp(x)+

r
dx



A Variable Exponent Hardy’s Inequality Approach for Some Nonlinear Eigenvalue Problem 23

=

l∫
0

ζ
p(x)−1
+ v dx→

l∫
0

y
p(x)−1
+ v dx as r → 0,

where ζ is a number between y+ and (y + rv)+.
Continuity of derivatives of F (y). To show F ∈ C1(E,E∗) let yn → y in E. From

Theorem 2 it follows yn → y in Lp(·)(0, l). For a fixed v ∈ E we have

| < F ′(yn)− F ′(y), v > | =
∣∣∣ l∫
0

(
(yn)

p(x)−1
+ − yp(x)−1+

)
v dx

∣∣∣
Since yn → y in Lp(·)(0, l) there exists a subsequence ynk converging y almost everywhere
in (0, l). Denote it again yn. Using Egorov’s theorem there exists a set |A| < δ with any
small δ > 0, such that, the convergence yn to y is uniformly on (0, l) \A.

Then since |(yn)+ − y+| ≤ |yn − y|, it follows

| < F ′(yn)− F ′(y), v > | =
∣∣∣ ∫
(0,1)\A

(
(yn)

p(x)−1
+ − yp(x)−1+

)
v dx

∣∣∣
+
∣∣∣ ∫
A

(
(yn)

p(x)−1
+ − yp(x)−1+

)
v dx

∣∣∣
≤ ε

∫
(0,1)\A

|v| dx+

∫
A

(yn)
p(x)−1
+ |v| dx+

∫
A

y
p(x)−1
+ |v| dx

Applying Holder’s inequality here one gets

| < F ′(yn)− F ′(y), v > |

≤
(
Cε+ ‖(yn)

p(x)−1
+ ‖Lp′(·)(A) + ‖yp(x)−1+ ‖Lp′(·)(A)

)
‖v‖Lp(·)(0,l) (14)

Applying for any g ∈ Lp(·) the inequality

‖gp(·)−1‖Lp′(·) ≤ ‖g‖
p+−1
Lp(·)

+ ‖g‖p
−−1
Lp(·)

in the right hand side (14) one gets

| < F ′(yn)− F ′(y), v > |(
(C + 1)ε+ 3‖y‖p

−−1
Lp(·)(A)

)
‖v‖Lp(·)(0,l)

Choosing sufficiently small δ > 0 and applying inequality (11) this is exceeded

(C + 2)C1ε‖v‖E .
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Hence
‖F (yn)− F (y)‖E∗ ≤ (C + 2)C1ε,

which proves the continuity of derivative of functional F.
Derivatives of G(y). By the same way, find the Gatox derivative of the functional

G(u) =

l∫
0

a(x)

q(x)

( y+
xα(l − x)α

)q(x)
dx

in E and show its continuity. Show that

< G′(y), v >=

l∫
0

a(x)
( y+
xα(l − x)α

)q(x)−1
· v

xα(l − x)α
dx. (15)

By the same way, as above,

G (y + rv)−G(y)

r
=

l∫
0

a(x)

q(x)
· 1

r

(( (y + rv)+
xα(l − x)α

)q(x)
−
( y+
xα(l − x)α

)q(x))
v dx

=

l∫
0

a(x)

q(x)
· 1

xα(l − x)α

((y + rv)
q(x)
+ − yq(x)+

r

)
v dx

Using the mean value formula this equals

l∫
0

a(x) · 1

xα(l − x)α
θq(x)−1v dx,

where θ is a quantity ranged between y+ and (y + rv)+. Tending r → 0 and applying
Lebesgue convergence theorem from this one gets (15). For this, it has been used that
a ∈ L∞ and v, θ ∈ Lq(·)(0, l). The last inclusion follows from Holder’s inequality and
Theorem 2:

‖θ‖Lq(·)(0,l) ≤ ‖(y + rv)+‖Lq(·)(0,l) + ‖y+‖Lq(·)(0,l)
≤ 2‖y‖Lq(·)(0,l) + r‖v‖Lq(·)(0,l)

≤ 2l2α‖ y

xα(l − x)α
‖Lq(·)(0,l) + rl2α‖ v

xα(l − x)α
‖Lq(·)(0,l).

Applying the compact embedding result from Theorem 2 by using inequality (11) from
here we get

‖θ‖Lq(·)(0,l) ≤ ε2l
2αC1

(
‖y′‖Lp(·)(0,l) + r‖v′‖Lp(·)(0,l)

)
+

Cε2l
2α
(
‖y‖Lp(·)(0,l) + 2l2αr‖v‖Lp(·)(0,l)

)
.
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This guaranties the limiting prosses using Lebesgue Theorem.
Continuity of derivatives of G(y). Show the continuity of derivative of the functional

G. Let yn → y in E. Show that G′(yn) → G′(y) in E∗. In this way, let v ∈ E be any
function.

We have
| < G′(yn)−G′(y), v > |

=
∣∣∣ l∫
0

a(x)
(( (yn)+

xα(l − x)α

)q(x)−1
−
( (yn)+
xα(l − x)α

)q(x)−1)
· v

xα(l − x)α
dx
∣∣∣

As the preceding estimates since |(yn)+ − y+| ≤ |yn − y|, we have

| < G′(yn)−G′(y), v > | =
∣∣∣ ∫
(0,1)\A

|a(x)|
(xα(l − x)α)q(x)

(
(yn)

q(x)−1
+ − yq(x)−1+

)
v dx

∣∣∣
+
∣∣∣ ∫
A

|a(x)|
(xα(l − x)α)q(x)

(
(yn)

q(x)−1
+ − yq(x)−1+

)
v dx

∣∣∣
≤ ε

∫
(0,1)\A

|a(x)| · |v|
xα(l − x)α

dx+

∫
A

|a(x)| (yn)
q(x)−1
+ |v|

(xα(l − x)α)q(x)
dx

+

∫
A

|a(x)| yq(x)−1+ |v|
(xα(l − x)α)q(x)

dx

(we have included a little neighborhoods of origin and l to the set A).
Applying Holder’s inequality in the preceding inequality, one gets

| < G′(yn)−G′(y), v > |

≤
[
Cε+

∥∥∥( (yn)+
xα(l − x)α

)q(x)−1∥∥∥
Lq
′(·)(A)

+
∥∥∥( y+
xα(l − x)α

)q(x)−1∥∥∥
Lq
′(·)(A)

]
·
∥∥∥ v

xα(l − x)α

∥∥∥
Lq(·)(0,l)

(16)

Applying in the case g(x) =
(

y+(x)
xα(l−α)

)q(x)−1
and p(x) = q(x) the inequality

‖gp(·)−1‖Lp′(·) ≤ ‖g‖
p+−1
Lp(·)

+ ‖g‖p
−−1
Lp(·)

in the right hand side (16) one gets

| < G′(yn)−G′(y), v > |

≤
(

(C + 1)ε+ 3
∥∥∥ y

xα(l − x)α

∥∥∥q−−1
Lq(·)(A)

)∥∥∥ v

xα(l − x)α

∥∥∥
Lq(·)(0,l)
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Choosing sufficiently small δ > 0 and applying inequality (11) this is exceeded

(C + 2)C1ε‖v‖E .

This entails
‖G′(y)−G′(yn)‖E∗ ≤ C1ε,

which proves the continuity of functional G′.
Weak lower semi continuity of I(y).
Lower semi continuity of J(y) . First show the weak lower semi continuity (w.l.s.c.)

of J(y). (In order to show this, some people use the fact from [5] asserting that a convex
functional is w.l.s.c. if it is a strongly lower semi continuous).

Show that J(y) is convex in E. For any θ ∈ (0, 1) and y, z ∈ E we have

J
(
θy + (1− θ)z

)
=

l∫
0

∣∣θy′(x) + (1− θ)z′(x)
∣∣p(x) dx,

by convexity of the function xp,

≤ θ
l∫

0

∣∣y′(x)
∣∣p(x) + (1− θ)

l∫
0

∣∣z′(x)
∣∣p(x) dx

To show the strong lower semi continuity of J(y) in E set yn → y. We have

l∫
0

|y′n|p(x) dx−
l∫

0

|y′|p(x) dx =

l∫
0

d

dt
|y′ + t(y′n − y′)|p(x) dx

=

l∫
0

p(x)|y′ + t(y′n − y′)|p(x)−2
(
y′ + t(y′n − y′)

)
(y′n − y′) dx

=

l∫
0

p(x)
(
|y′ + t(y′n − y′)|p(x)−2

(
y′ + t(y′n − y′)

)
− |y′|p(x)−2y′

))(
y′ + t(y′n − y′)− y′

) dx
t

+

l∫
0

|y′|p(x)−2y′(y′n − y′) dx,

since the first integral is positive by the convexity it holds an inequality,
(
|a|p−2a −

|b|p−2
)
(a − b) ≥ 0, for any a, b ∈ R that entails |b|p−2b ≥ |a|p−2a + p|a|p−2a(b − a),

therefore,

≥
l∫

0

|y′|p(x)−2y′(y′n − y′) dx.
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Now, it remains to take a limit in the preseeding inequality, in order to show that J(y) is
weakly lower semi continues in E :

lim inf
n→∞

l∫
0

|y′n|p(x) dx ≥
l∫

0

|y′|p(x) dx+ lim inf
n→∞

l∫
0

|y′|p(x)−2y′(y′n − y′) dx

≥
l∫

0

|y′|p(x) dx,

i.e.

lim inf
n→∞

J(yn) ≥ J(y)

Lower semi continuity of I(y). Let {yn} ⊂ E be a weakly convergent subsequence of
E tending to y ∈ E, i.e. yn ⇀ y . Show that lim inf

n→∞
I(yn) ≥ I(y). By Theorem 1 the space

E compactly imbedded into the class (6). By this, there exists a subsequence ynk that

converges strongly to y in the norm
∥∥∥(x(l − x)

)−α
·
∥∥∥
Lq(.)(0,l)

. and ‖‖Lp(·)(0,l) This means

lim inf
n→∞

I(ynk) = lim inf
n→∞

l∫
0

1

p(x)
|y′nk |

p(x) dx

− lim
n→∞

l∫
0

λ

p(x)
|(ynk)+|p(x) dx− lim

n→∞

l∫
0

a(x)

q(x)

∣∣∣ (ynk)+
xα(l − x)α

∣∣∣q(x) dx
≥

l∫
0

1

p(x)
|y′|p(x) dx−

l∫
0

λ

p(x)
|y+|p(x) dx

−
l∫

0

a(x)

q(x)

∣∣∣ y+
xα(l − x)α

∣∣∣q(x) dx = I(y)

Therefore,

lim inf
n→∞

I(ynk) ≥ I(y),

that proves lower semi continuity of I(y).

Palas-Smale condition (PS). Recall the notion of PS -condition.

Let {yn} ⊂ E be a sequence such that

1) I(yn) is bounded ;

2) I ′(yn)→ I ′(y) in E∗.
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Then there exists a subsequence ynk that converges to y strongly in E. Since I(yn) is
bounded, we may assume that I(ynk)→ c by some real number c ∈ R. To save simplicity,
denote ynk as yn.

Boundedness of y′n in E . From condition 1) it follows that there exists an M > 0 not
depending on n such that |I(yn)| ≤M , i.e.

l∫
0

1

p(x)

(
|y′n|p(x) − λ(yn)

p(x)
+

)
dx−

l∫
0

a(x)

q(x)

( (yn)+
xα(l − x)α

)q(x)
dx ≤M,

or
l∫

0

a(x)

q(x)

( (yn)+
xα(l − x)α

)q(x)
dx ≥

l∫
0

1

p(x)

(
|y′n|p(x) − λ(yn)

p(x)
+

)
dx−M.

Then by assumption λ1 > 0 it follows that

l∫
0

a(x)
( (yn)+
xα(l − x)α

)q(x)
dx ≥ q−

p+

l∫
0

|y′n|p(x) dx−
l∫

0

λq−

p+
(yn)

p(x)
+ dx−Mq−. (17)

On other hand, from condition 2) it follows that

| < I ′(yn), v > | ≤ o(1)‖v‖W 1
p(·)(0,l)

,

i.e.
l∫

0

|y′n|p(x)−2y′nv′ dx− λ
l∫

0

(yn)
p(x)−1
+ v dx

−
l∫

0

a(x)
( (yn)+
xα(l − x)α

)q(x)−1
· v

xα(l − x)α
dx

= o(1)‖v′‖Lp(·)(0,l).

Inserting here v = yn this yields

l∫
0

|y′n|p(x) dx− λ
l∫

0

(yn)
p(x)
+ dx

−
l∫

0

a(x)
( (yn)+
xα(l − x)α

)q(x)
dx = o(1)‖y′n‖Lp(·)(0,l)

or
l∫

0

a(x)
( (yn)+
xα(l − x)α

)q(x)
dx ≤

l∫
0

(
|y′n|p(x) − λ(yn)

p(x)
+

)
dx
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+o(1)‖y′n‖Lp(·)(0,l). (18)

From (18) and (17) and the assumption q− > p+ it follows that

(q−
p+
− 1
) l∫
0

|y′n|p(x) dx ≤ λ
(q−
p+
− 1
) l∫

0

(yn)
p(x)
+ dx+Mq− + o(1)‖y′n‖Lp(·)(0,l)

or
l∫

0

|y′n|p(x) dx ≤ λ
l∫

0

(yn)
p(x)
+ dx+

Mq−p+

q− − p+
+ o(1)‖y′n‖Lp(·)(0,l)

Now assuming λ < λ1 and a strong positivity of the first eigenvalue λ1 in (2), (3) from
this it follows

l∫
0

|y′n|p(x) dx ≤ O(1).

The bounded ness of yn in E has been proved.

Now, after establishment of the bounded ness {yn} in E, we may apply the the weak
convergence for some subsequence {ynk}. Moreover, show the strong convergence yn → y
in E. Remaining the notation yn in place of ynk , the weak convergence yn → y in E, we
have the equality for PS-sequence:

l∫
0

|y′n|p(x)−2y′nv′ dx− λ
l∫

0

(yn)
p(x)−1
+ v dx

−
l∫

0

a(x)
( (yn)+
xα(l − x)α

)q(x)−1
· v

xα(l − x)α
dx

= o(1)‖v′‖Lp(·)(0,l). (19)

Inserting in (19) v = yn − y, we get

l∫
0

|y′n|p(x)−2y′n(y′n − y′) dx− λ
l∫

0

(yn)
p(x)−1
+ (yn − y) dx

−
l∫

0

a(x)
( (yn)+
xα(l − x)α

)q(x)−1
· yn − y
xα(l − x)α

dx

= o(1)‖y′n − y′‖Lp(·)(0,l). (20)
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From (20), we easily get

l∫
0

(
|y′n|p(x)−2y′n − |y′|p(x)−2y′

)
(y′n − y′) dx+

l∫
0

|y′|p(x)−2y′(y′n − y′)

= λ

l∫
0

(
(yn)

p(x)−1
+ − yp(x)−1+

)
(yn − y) dx+ λ

l∫
0

y
p(x)−1
+ (yn − y)

+

l∫
0

a(x)
[( (yn)+
xα(l − x)α

)q(x)−1
−
( y+
xα(l − x)α

)q(x)−1]
· yn − y
xα(l − x)α

dx

+

l∫
0

a(x)
( y+
xα(l − x)α

)q(x)−1 yn − y
xα(l − x)α

dx

+o(1)‖y′n − y′‖Lp(·)(0,l). (21)

Now, since yn → y weakly in E , we see that the additional terms in (21) tend to zero:
those are

lim
n→∞

l∫
0

|y′|p(x)−2y′(y′n − y′) = 0 (22)

that is implied from the fact that for y ∈ E it is |y′|p(x)−2y′ ∈ E∗ ( that is |y′|p(x)−2y′ ∈ Lp′

).

The convergence

lim
n→∞

l∫
0

y
p(x)−1
+ (yn − y) = 0 (23)

follows from the fact that y
p(x)−1
+ ∈ E∗, and yn → y weakly in E since

∣∣∣ l∫
0

y
p(x)−1
+ (yn − y) dx

∣∣∣ ≤ C(l)

l∫
0

( y+
x(l − x)

)p(x)−1∣∣ yn − y
x(l − x)

∣∣ dx, (24)

where C(l) = l2 max
{
lp

+−1, lp
−−1}. Applying inequality (7) to the expression (24) we find

that is exceeded

≤ C(l)
∥∥∥ yn − y
x(l − x)

∥∥∥
Lp(·)

∥∥∥ yp(x−1)+

x(l − x)

∥∥∥
Lp
′(·)

≤ C2
2C(l)

∥∥y′n − y′∥∥Lp(·)(‖y′‖p+−1Lp(·)
+ ‖y′‖p

−−1
Lp(·)

)
≤ C3

∥∥y′n − y′∥∥E .
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The convergence

lim
n→∞

l∫
0

a(x)
( y+
xα(l − x)α

)q(x)−1 yn − y
xα(l − x)α

dx = 0 (25)

follows from the fact that a(x)
xα(l−x)α

(
y+

xα(l−x)α

)q(x)−1
∈ E∗, since

∣∣∣ l∫
0

a(x)
( y+
xα(l − x)α

)q(x)−1 yn − y
xα(l − x)α

dx
∣∣∣

≤ C1(l)‖a‖L∞ ·
∥∥∥ yn − y
x(l − x)

∥∥∥
Lq(·)
·
∥∥∥( y+
x(l − x)

)q(x)−1∥∥∥
Lq
′(·)

≤ C1(l)C
2
2‖a‖L∞ ·

∥∥∥y′n − y′∥∥Lp(·) · (∥∥y′∥∥q+−1Lp(·)
+
∥∥y′∥∥q−−1

Lp(·)

)
≤ C4

∥∥yn − y∥∥E ,
where C1(l) = max

{
l2(1−α)q

+
, l2(1−α)q

−}
. Applying the limits (22), (23), (25) it follows

from (21) that

l∫
0

(
|y′n|p(x)−2y′n − |y′|p(x)−2y′

)
(y′n − y′) dx

= λ

l∫
0

(
(yn)

p(x)−1
+ − yp(x)−1+

)
(yn − y) dx

+

l∫
0

a(x)
[( (yn)+
xα(l − x)α

)q(x)−1
−
( y+
xα(l − x)α

)q(x)−1]
· yn − y
xα(l − x)α

dx

+o(1)‖y′n − y′‖Lp(·)(0,l) + o(1). (26)

We need the following two inequalities for a, b ∈ R (see e.g., [? ] in the case of n
-dimensional vectors)(

|a|p−1a− |b|p−2
)

(a− b) ≥ γ1(p)|a− b|p if p ≥ 2,(
|a|p−1a− |b|p−2

)
(a− b) ≥ γ2(p)

|a− b|2(
|a|+ |b|

)2−p if p ≤ 2. (27)

In order to finish the proof of convergence yn → y in E , we shall use Egorov’s theorem
in order to show a convergence to zero of the first summand in the right hand side (26),
and compact imbedding theorem, to show the convergence of second summand.
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For λ ≥ 0, p ≥ 2 using (27) it follows from (21) that

γ1(p)

l∫
0

|y′n − y′|p(x) dx ≤ λ
l∫

0

(
(yn)

p(x)−1
+ − yp(x)−1+

)
(yn − y) dx

+

l∫
0

a(x)
[( (yn)+
xα(l − x)α

)q(x)−1
−
( y+
xα(l − x)α

)q(x)−1]
· yn − y
xα(l − x)α

dx

+o(1)‖y′n − y′‖Lp(·)(0,l) + o(1). (28)

Using mean value theorem, the last integral (28) is estimated as

∣∣∣ l∫
0

a(x)
[( (yn)+
xα(l − x)α

)q(x)−1
−
( y+
xα(l − x)α

)q(x)−1]
· yn − y
xα(l − x)α

dx
∣∣∣

≤ (q+ − 1)‖a(x)‖L∞ ·
l∫

0

( yn − y
xα(l − x)α

)2
· |yn|

q(x)−2 + |y|q(x)−2(
xα(l − x)α

)q(x)−2 dx

Further, applying Holder’s inequality in the right hand side it is exceeded

≤ (q+ − 1)‖a(x)‖L∞
∥∥∥ yn − y
xα(l − x)α

∥∥∥2
Lq(·)
·
(∥∥∥ |yn|+ |y|
xα(l − x)α

∥∥∥
Lq(·)

)q+−2
→ 0 (29)

as n→∞ by using the compact embedding E into the weighted class (6) in Theorem 2.

Using Egorov’s theorem there exists a set |A| < δ with any small δ > 0, such that
the convergence yn to y is uniformly on Ac = (0, l) \ A. Applying that, and the Holder
inequality, we see

l∫
0

(
(yn)

p(x)−1
+ − yp(x)−1+

)
(yn − y) dx

≤ ε
∫
Ac

(
(yn)

p(x)−1
+ + y

p(x)−1
+

)
dx (30)

+

∫
A

(
|yn|p(x) + |yn|p(x)−2|y|2 + |yn|2|y|p(x)−2 + |y|p(x)

)
dx < (M + 4)ε

choosing sufficiently small δ > 0 and large n.

Inserting in (28) the estimates (30), (29) we get the strong convergence yn → y in E
for the case p(x) ≥ 2.
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It remains to consider the case p < 2. Inserting the second inequality (27) in (28) and
applying the Holder inequality, we get

γ2(p)

l∫
0

|y′n − y′|2(
|y′n|+ |y′|

)2−p dx ≤ λ
l∫

0

(
(yn)

p(x)−1
+ − yp(x)−1+

)
(yn − y) dx

+

l∫
0

a(x)
[( (yn)+
xα(l − x)α

)q(x)−1
−
( y+
xα(l − x)α

)q(x)−1]
· yn − y
xα(l − x)α

dx (31)

+o(1)‖y′n − y′‖Lp(·)(0,l) + o(1)

The second integral in the right hand side (31) is estimated as

∣∣∣ l∫
0

a(x)
[( (yn)+
xα(l − x)α

)q(x)−1
−
( y+
xα(l − x)α

)q(x)−1]
· yn − y
xα(l − x)α

dx
∣∣∣

≤ ‖a(x)‖L∞ ·
l∫

0

( yn − y
xα(l − x)α

)
· |yn|

q(x)−1 + |y|q(x)−1(
xα(l − x)α

)q(x)−1 dx

On base of Holder’s inequality

≤
∥∥∥ yn − y
xα(l − x)α

∥∥∥
Lq(·)
·
[∥∥∥ yn
xα(l − x)α

∥∥∥q+−1
Lq(·)

+
∥∥∥ y

xα(l − x)α

∥∥∥q+−1
Lq(·)

]
→ 0

as n→∞ on base of compactness Theorem 2.

By the same way, it is not difficult to show that

l∫
0

(
(yn)

p(x)−1
+ − yp(x)−1+

)
(yn − y) dx→ 0 as n→∞

Therefore,
l∫

0

|y′n − y′|2(
|y′n|+ |y′|

)2−p dx = o(1) as n→∞.

Applying it Holder’s inequality, we get

‖y′n − y′‖4Lp(·) ≤ c0

(∫ l

0

|yn − y|2

(|yn|+ |y|)2−p
dx

) (
‖yn‖Lp(·) + ‖yn‖Lp(·)

)2−p+
= o(1).

as n→∞.
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This proves the PS-property of the functional I(y). Now, we are ready to the ap-
plication of Mountain pass theorem in order to get an existence result for the problem
(1).

Mountain pass theorem.Let y be a fixed function in E. Inserting ty in place of y
we see that

I(ty) =

l∫
0

tp(x)

p(x)
|y′| dx− λ

l∫
0

tp(x)

p(x)
y
p(x)
+ dx−

l∫
0

tq(x)

q(x)

y
q(x)
+(

xα(l − x)α
)q(x) dx

For sufficiently large t > 0 we have the estimation

I(ty0) ≤
tp

+

p−

l∫
0

|y′|p(x) dx− λt
p−

p+

l∫
0

y
p(x)
+ dx− tq

−

q+

l∫
0

y
q(x)
+(

xα(l − x)α
)q(x) dx

Using the condition q− > p+ from this it follows I(y) < 0 for sufficiently large t > 0.
On other hand, I(y) > 0 for sufficiently small norm ‖y′‖Lp(·) . Indeed, for such y ∈ E

it holds the estimates

I(y) ≥ C1

l∫
0

( |y′|
‖y′‖Lp(·)

)p(x)
‖y′‖p(x)

Lp(·)
dx−

l∫
0

1

q−

( y
q(x)
+

Nxα(l − x)α

)q(x)
N q(x) dx

≥ C1‖y′‖p
+

Lp(·)

l∫
0

( |y′|
‖y′‖Lp(·)

)p(x)
dx− N q+

q−

l∫
0

( y
q(x)
+

xα(l − x)α

)q(x)
dx

≥ C1‖y′‖p
+

Lp(·)
− N q+

q−
,

where N = ‖ y+
xα(l−x)α ‖Lq(·) , using the Theorem 2, N ≤ C‖y′‖Lp(·) ,

≥ C1‖y′‖p
+

Lp(·)
− 1

q−
‖y′‖q

−

Lp(·)
≥ C1

2
‖y′‖p

+

Lp(·)

choosing ‖y′‖Lp(·) =
(
q−C1

2

) 1
q−−p+ .

Therefore, all conditions of Mountain pass theorem is satisfied by the sphere ‖y‖E = ρ

with ρ =
(
q−C1

2

) 1
q−−p+ . Then there exists a point y0 ∈ E such that I(ŷ) = c = inf I(y)

and c = inf sup I(y) and such that I ′(ŷ) = 0, i.e. for any v ∈ E it holds

0 =< I ′(ŷ), v >=

l∫
0

|ŷ′|p(x)−2ŷ′v′ dx− λ
l∫

0

ŷ
p(x)−1
+ v dx
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−
l∫

0

a(x)
( ŷ+
xα(l − x)α

)q(x)−1
· v

xα(l − x)α
dx.

that is a solution of the problem (1). It remains to show that y0 is positive. Insert in the
preceding equality v = y− := (−y)+. Then

0 =

l∫
0

|ŷ′|p(x)−2ŷ′ŷ′− dx− λ
l∫

0

ŷ
p(x)−1
+ ŷ− dx

−
l∫

0

a(x)
( ŷ+
xα(l − x)α

)q(x)−1
· ŷ−
xα(l − x)α

dx.

=

l∫
0

|ŷ′−|p(x) dx

Therefore, ŷ− = 0, i.e ŷ=0, then ŷ is a positive solution of the problem (1).
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On the Boundedness of Commutators Dunkl-type Max-
imal Operator in the Dunkl-type Morrey Spaces

Y.Y. Mammadov∗, S.A. Hasanli

Abstract. In this paper we consider the generalized shift operator, associated with the Dunkl
operator and we investigate maximal commutators associated with the generalized shift operator.
The boundedness of the Dunkl-type maximal commutator Mb,α from the Dunkl-type Morrey space
Lp,λ,α(R) to Lp,λ,α(R) for all 1 < p <∞ when b ∈ BMOα(R) are proved.

Key Words and Phrases: commutator, generalized shift operator, Dunkl-type maximal function,
Dunkl-type B–Morrey space, BMOα space.

2010 Mathematics Subject Classifications: 42B20, 42B25, 42B35

1. Introduction

The Hardy–Littlewood maximal function, fractional maximal function and fractional
integrals are important technical tools in harmonic analysis, theory of functions and partial
differential equations. On the real line, the Dunkl operators are differential-difference
operators associated with the reflection group Z2 on R. In the works [2, 11, 21, 29] the
maximal operator associated with the Dunkl operator on R were studied. Let b be a locally
integrable function on Rn and T be a Calderon-Zygmund operator. The commutator is
defined for smooth functions f as

[b, T ]f = bT (f)− T (bf).

Coifman, Rochberg and Weiss [8] stated that [b, T ] is a bounded operator on Lp(Rn), 1 <
p <∞, when b is a BMO function. Chanillo [7] proved that the commutators of the Riesz
potentials characterize the function space BMO. In [10] proved that b ∈ BMO(Rn) if and
only if the maximal commutator Mb is bounded from the Morrey space Lp,λ(Rn). In this
work, we study the maximal commutator (Dunkl-type Dunkl-type maximal commutator)
associated with the Dunkl operator on R. We obtain the necessary and sufficient conditions
for the boundedness of the Dunkl-type maximal commutator.

For x ∈ Rn and r > 0, let B(x, r) denote the open ball centered at x of radius r.

∗Corresponding author.
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Let f ∈ Lloc1 (Rn). The maximal operator M and the Riesz potential Iβ are defined by

Mf(x) = sup
t>0
|B(x, t)|−1

∫
B(x,t)

|f(y)|dy.

The operator M play important role in real and harmonic analysis (see, for example
[30]).

In the theory of partial differential equations Morrey spacesMp,λ(Rn) play an impor-
tant role. They were introduced by C. Morrey in 1938 [26] and defined as follows: For
0 ≤ λ ≤ n, 1 ≤ p <∞, f ∈Mp,λ(Rn) if f ∈ Llocp (Rn) and

‖f‖Mp,λ
≡ ‖f‖Mp,λ(Rn) = sup

x∈Rn, r>0
r
−λ
p ‖f‖Lp(B(x,r)) <∞.

If λ = 0, then Mp,λ(Rn) = Lp(Rn), if λ = n, then Mp,λ(Rn) = L∞(Rn), if λ < 0 or
λ > n, then Mp,λ(Rn) = Θ, where Θ is the set of all functions equivalent to 0 on Rn.

These spaces appeared to be quite useful in the study of the local behaviour of the
solutions to elliptic partial differential equations, apriori estimates and other topics in the
theory of partial differential equations.

Also by WMp,λ(Rn) we denote the weak Morrey space of all functions f ∈WLlocp (Rn)
for which

‖f‖WMp,λ
≡ ‖f‖WMp,λ(Rn) = sup

x∈Rn, r>0
r
−λ
p ‖f‖WLp(B(x,r)) <∞,

where WLp(Rn) denotes the weak Lp-space.
F. Chiarenza and M. Frasca [9] studied the boundedness of the maximal operator M

in Morrey spaces Mp,λ. Their results can be summarized as follows:
Theorem A. Let 0 < α < n and 0 ≤ λ < n, 1 ≤ p <∞.

1) If 1 < p <∞, then M is bounded from Mp,λ to Mp,λ .
2) If p = 1, then M is bounded from M1,λ to WM1,λ.

2. Definitions, notation and preliminaries

Let α > −1/2 be a fixed number and µα be the weighted Lebesgue measure on R,
given by

dµα(x) :=
(
2α+1Γ(α+ 1)

)−1 |x|2α+1 dx.

For every 1 ≤ p ≤ ∞, we denote by Lp,α(R) = Lp(R, dµα) the spaces of complex-valued
functions f , measurable on R such that

‖f‖p,α ≡ ‖f‖Lp,α =

(∫
R
|f(x)|p dµα(x)

)1/p

<∞ if p ∈ [1,∞),

and
‖f‖∞,α ≡ ‖f‖L∞ = ess sup

x∈R
|f(x)| if p =∞.
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For 1 ≤ p <∞ we denote by WLp,α(R), the weak Lp,α(R) spaces defined as the set of
locally integrable functions f with the finite norm

‖f‖WLp,α
= sup

r>0
r (µα {x ∈ R : |f(x)| > r})1/p .

Note that

Lp,α ⊂WLp,α and ‖f‖WLp,α
≤ ‖f‖p,α for all f ∈ Lp,α(R).

Let B(x, t) = {y ∈ R : |y| ∈ ] max{0, |x|− t}, |x|+ t[ } and Bt ≡ B(0, t) =]− t, t[, t > 0.
Then

µαBt = bα t
2α+2,

where bα =
[
2α+1 (α+ 1) Γ(α+ 1)

]−1
.

Let M ]
α be the Dunkl-type sharp maximal function defined by

M ]
γf(x) = sup

r>0

1

µαBr

∫
Br

|τxf(y)− fBr(x)| dµα(y),

where fBr(x) = 1
µαBr

∫
Br
τxf(y) dµα(y).

We denote by BMOα(R) (Dunkl-type BMO space) the set of locally integrable func-
tions f with finite norm

‖f‖BMOα = sup
r>0, x∈R

1

µαBr

∫
Br

|τxf(y)− fBr(x)| dµα(y) <∞

or

‖f‖BMOα = inf
C

sup
r>0, x∈R

1

µαBr

∫
Br

|τxf(y)− C| dµα(y).

BMO (X, ν) space is defined as the space of locally integrable functions f with the
following finite norm

‖f‖∗ = sup
t>0, x∈X

ν(B(x, t))−1
∫

B(x,t)

|f(y)− fB(x,t)|dν(y) <∞,

where fB(x,t) = ν(B(x, t))−1
∫
B(x,t) f(y)dν(y).

Theorem 1. [24] Let f ∈ BMO (X, ν) and ν doubling measure. For any r > 0, then

ν
∣∣{y ∈ B(x, t) : |f(x)− fB(x,t)| > r

}∣∣ ≤ Cν(B(x, t))e
−cr
‖f‖∗ ,

where the constants C and c are independent of f and r.

It is clear that BMO(X, ν) = BMOp(X, ν) if the John-Nirenberg inequality holds.
The following theorem holds.
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Theorem 2. 1) Let f ∈ Lloc1,α(R). If

sup
t>0, x∈R

µα(Bt)
−1
∫
Bt

|τyf(x)− fBt |pdµα(y)

1/p

= ‖f‖BMOp,α <∞

then for any 1 < p <∞,

‖f‖BMOα ≤ ‖f‖BMOp,α ≤ Ap‖f‖BMOα ,

where the constant Ap depends only on p.
2) Let f ∈ BMOα(R). Then, there is a constant C > 0 such that

|fBr − fBt | ≤ C‖f‖BMOα ln
t

r
, 0 < 2r < t,

where C is independent of f, x, r and t.

Proof. We need to introduce the maximal operator defined on a space of homogeneous
type (X, ρ, ν). By this we mean a topological space X = R equipped with a continuous
pseudometric d and a positive measure ν satisfying

νB(x, 2r) ≤ C0νB(x, r) (1)

with a constant C0 being independent of x and r > 0. Here B(x, r) = {y ∈ X : ρ(x, y) <
r}, ρ(x, y) = |x − y|. Let (X, ρ, ν) be a space of homogeneous type, where X = R,
dν(x) = dµα(x). It is clear that this measure satisfies the doubling condition (1).

Since ∫
Br

τy|f(x)|dµα(y) ≈
∫

B(x,r)

|f(y)| dν(y)

we get

sup
t>0, x∈R

µ(Bt)
−1
∫
Bt

|τyf(x)− C|dµα(y)

≈ sup
t>0, x∈X

ν(B(x, t))−1
∫

B(x,t)

|f(y)− C| dν(y)

= ‖f‖BMO(X,ν) ≈ ‖f‖BMOp(X,ν) ≈ ‖f‖BMOp,α .

Similarly, we can prove

|fBr − fBt | ≤ C‖f‖BMOα ln
t

r
, 0 < 2r < t.
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For all x, y, z ∈ R, we put

Wα(x, y, z) = (1− σx,y,z + σz,x,y + σz,y,x)∆α(x, y, z)

where

σx,y,z =

{
x2+y2−z2

2xy if x, y ∈ R \ {0},
0 otherwise

and ∆α is the Bessel kernel given by

∆α(x, y, z) =

{
dα

([(|x|+|y|)2−z2][z2−(|x|−|y|)2])α−1/2

|xyz|2α , if |z| ∈ Ax,y,
0, otherwise,

where dα = (Γ(α+ 1))2/(2α−1
√
π Γ(α+ 1

2)) and Ax,y = [||x| − |y||, |x|+ |y|].

Properties 1. (see Rösler [32]) The signed kernel Wα is even with respect to all variables
and satisfies the following properties

Wα(x, y, z) = Wα(y, x, z) = Wα(−x, z, y),

Wα(x, y, z) = Wα(−z, y,−x) = Wα(−x,−y,−z)

and ∫
R
|Wα(x, y, z)| dµα(z) ≤ 4.

In the sequel we consider the signed measure νx,y, on R, given by

νx,y =


Wα(x, y, z) dµα(z) if x, y ∈ R \ {0},

dδx(z) if y = 0,
dδy(z) if x = 0.

Definition 1. For x, y ∈ R and f a continuous function on R, we put

τxf(y) =

∫
R
f(z) dνx,y(z).

The operators τx, x ∈ R, are called Dunkl translation operators on R and it can be
expressed in the following form (see [32])

τxf(y) = cα

∫ π

0
fe ((x, y)θ) h1(x, y, θ)(sin θ)

2α dθ

+cα

∫ π

0
fo ((x, y)θ) h2(x, y, θ)(sin θ)

2α dθ,

where (x, y)θ =
√
x2 + y2 − 2|xy| cos θ, f = fe + fo, fo and fe being respectively the odd

and the even parts of f , with

cα ≡
(∫ π

0
(sin θ)2α dθ

)−1
=

Γ(α+ 1)√
π Γ(α+ 1/2)

,
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h1(x, y, θ) = 1− sgn(xy) cos θ

and

h2(x, y, θ) =

{
(x+y) [1−sgn(xy) cos θ]

(x,y)θ
, if xy 6= 0,

0, if xy = 0.

Using the change of variable z = (x, y)θ, we have also (see [4])

τxf(y) = cα

∫ π

0
{f ((x, y)θ) + f (−(x, y)θ)

+
x+ y

(x, y)θ
[f ((x, y)θ)− f (−(x, y)θ)]

}
(1− cos θ)(sin θ)2α dθ.

Now we define the Dunkl-type fractional maximal function by

Mβ,αf(x) = sup
r>0

(
µαBr

) β
2α+2

−1
∫
Br

τx|f |(y) dµα(y), 0 ≤ β < 2α+ 2.

If β = 0, then Mα ≡M0,α is the Hardy-Littlewood maximal operator associated with
the Dunkl operator (see [2, 11, 21, 29]).

The following theorem is our main result in which we obtain the necessary and sufficient
conditions for the Dunkl-type fractional maximal operator Mβ,α to be bounded from the
spaces Lp,α(R) to Lq,α(R), 1 < p < q <∞ and from the spaces L1,α(R) to the weak spaces
WLq,α(R), 1 < q <∞.

Theorem 3. ([12]) Let 0 < β < 2α+ 2 and 1 ≤ p ≤ 2α+2
β .

1) If 1 < p < 2α+2
β , then the condition 1

p −
1
q = β

2α+2 is necessary and sufficient for the
boundedness of Mβ,α from Lp,α(R) to Lq,α(R).

2) If p = 1, then the condition 1 − 1
q = β

2α+2 is necessary and sufficient for the
boundedness of Mβ,α from L1,α(R) to WLq,α(R).

3) If p = 2α+2
β , then Mβ,α is bounded from Lp,α(R) to L∞(R).

Theorem 4. [11]
1. If f ∈ L1,ω,α (R) and ω ∈ A1,α(R), then Mαf ∈WL1,ω,α (R) and

‖Mαf‖WL1,ω,α ≤ C1,α‖f‖L1,ω,α ,

where C1,α depends only on α.
2. If f ∈ Lp,ω,α (R), 1 < p <∞ and ω ∈ Ap,α(R), then Mαf ∈ Lp,ω,α (R) and

‖Mαf‖Lp,ω,α ≤ Cp,α‖f‖Lp,ω,α ,

where Cp,α depends only on p, α.
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Definition 2. Let 1 ≤ p < ∞, 0 ≤ λ ≤ 2α+ 2. We denote by Mp,λ,α(R) Dunkl-type
Morrey space (≡ D-Morrey space) as the set of locally integrable functions f(x), x ∈ R,
with the finite norm

‖f‖Mp,λ,α
= sup

t>0, x∈R

(
t−λ

∫
Bt

[τx|f(y)| ]pdµα(y)

)1/p

.

Theorem 5. [13]
1. If f ∈M1,λ,α (R), 0 ≤ λ < 2α+ 2, then Mαf ∈WM1,λ,α (R) and

‖Mαf‖WM1,λ,α
≤ C1,λ,α‖f‖M1,λ,α

,

where C1,λ,α depends only on λ,α and n.
2. If f ∈Mp,λ,α (R), 1 < p <∞,0 ≤ λ < 2α+ 2, then Mαf ∈Mp,λ,α (R) and

‖Mαf‖Mp,λ,α
≤ Cp,λ,α‖f‖Mp,λ,α

,

where Cp,λ,α depends only on p,λ,α and n.

Theorem 6. [13] Let 0 < β < 2α+ 2, 0 ≤ λ < 2α+ 2− β and 1 ≤ p < 2α+2−λ
β .

1) If 1 < p < 2α+2−λ
α , then condition 1

p −
1
q = α

2α+2−λ is necessary and sufficient for
the boundedness Mβ,α from Mp,λ,α(R) to Mq,λ,α(R).

2) If p = 1, then condition 1 − 1
q = α

2α+2−λ is necessary and sufficient for the bound-
edness Mβ,α from M1,λ,α(R) to WMq,λ,α(R).

For 1 ≤ p, θ ≤ ∞, 0 ≤ λ ≤ 2α+ 2 and 0 < s < 1, the Besov-Morrey space for the
Dunkl operators on R (Besov-Morrey-Dunkl space) Bs

pθ,λ,α(R) consists of all functions f
in Lp,λ,α(R) so that

‖f‖Bspθ,λ,α = ‖f‖Lp,λ,α +

(∫
R

‖τxf(·)− f(·)‖θLp,λ,α
|x|2α+2+sθ

dµα(x)

)1/θ

<∞. (2)

Besov spaces in the setting of the Dunkl operators studied by C. Abdelkefi and M.
Sifi [3, 4], R. Bouguila, M.N. Lazhari and M. Assal [5], L. Kamoun [19], Y.Y. Mammadov
[22] and V.S. Guliyev, Y.Y. Mammadov [12]. In the following theorem we prove the
boundedness of the Dunkl-type fractional maximal operator Mβ,α in the Dunkl-type Besov
spaces.

Theorem 7. ([12]) For 1 < p < q <∞, 0 ≤ λ ≤ 2α+ 2, 1
p−

1
q = β

2α+2−λ , 1 ≤ θ ≤ ∞ and
0 < s < 1 the Dunkl-type fractional maximal operator Mβ,α is bounded from Bs

pθ,λ,α(R) to
Bs
qθ,λ,α(R). More precisely, there is a constant C > 0 such that

‖Mβ,αf‖Bsqθ,λ,α ≤ C‖f‖Bspθ,λ,α

hold for all f ∈ Bs
pθ,λ,α(R).



44 Y.Y. Mammadov, S.A. Hasanli

For a real parameter α ≥ −1/2, we consider the Dunkl operator, associated with the
reflection group Z2 on R :

Λα(f)(x) =
d

dx
f(x) +

2α+ 1

x

(
f(x)− f(−x)

2

)
(3)

Note that Λ−1/2 = d/dx.
For α ≥ −1/2 and λ ∈ C, the initial value problem :

Λα(f)(x) = λf(x), f(0) = 1, x ∈ R

has a unique solution Eα(λx) called Dunkl kernel [6, 27, 33] and given by

Eα(λx) = jα(iλx) +
λx

2(α+ 1)
jα+1(iλx), x ∈ R,

where jα is the normalized Bessel function of the first kind and order α [34], defined by

jα(z) = 2αΓ(α+ 1)
Jα(z)

zα
= Γ(α+ 1)

∞∑
n=0

(−1)n(z/2)2n

n!α(n+ α+ 1)
, z ∈ C.

We can write for x ∈ R and λ ∈ C (see Rösler [32], p. 295)

Eα(−iλx) =
Γ(α+ 1)√
πΓ(α+ 1/2)

∫ 1

−1
(1− t2)α−1/2 (1− t) eiλxt dt.

Note that E−1/2(λx) = eλx.
The Dunkl transform Fα of a function f ∈ L1,α(R), is given by

Fαf(λ) :=

∫
R
Eα(−iλx) f(x)dµα(x), λ ∈ R.

Here the integral makes sense since |Eα(ix| ≤ 1 for every x ∈ R [32], p. 295.
Note that F−1/2 agrees with the classical Fourier transform F , given by:

Ff(λ) := (2π)−1/2
∫
R
e−iλx f(x)dx, λ ∈ R.

Proposition 1. (see Soltani [28])
(i) If f is an even positive continuous function, then τxf is positive.
(ii) For all x ∈ R the operator τx extends to Lp,α(R), p ≥ 1 and we have for f ∈

Lp,α(R),
‖τxf‖p,α ≤ 4‖f‖p,α. (4)

(iii) For all x, λ ∈ R and f ∈ L1,α(R), we have

Fα (τxf) (λ) = Eα(iλx)Fαf(λ).
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Let f and g be two continuous functions on R with compact support. We define the
generalized convolution ∗α of f and g by

f ∗α g(x) :=

∫
R
τxf(−y) g(y) dµα(y), x ∈ R.

The generalized convolution ∗α is associative and commutative [32]. Note that ∗−1/2 agrees
with the standard convolution ∗.

Proposition 2. (see Soltani [28])
(i) If f is an even positive function and g a positive function with compact support,

then f ∗α g is positive.
(ii) Assume that p, q, r ∈ [1,+∞[ satisfying 1/p+1/q = 1+1/r (the Young condition).

Then the map (f, g) 7→ f ∗α g, defined on Ec × Ec, extends to a continuous map from
Lp,α(R)× Lq,α(R) to Lr,α(R), and we have

‖f ∗α g‖r,α ≤ 4‖f‖p,α ‖g‖q,α.

(ii) For all f ∈ L1,α(R) and g ∈ L2,α(R), we have

Fα (f ∗α g) = (Fαf) (Fαg) .

3. Maximal commutators in Lp,λ,α(R)

The commutator generated by the Dunkl-type maximal operator Mα, for given a mea-
surable function b is formally defined by

[Mα, b]f = Mα(bf)− bMα(f)

and for given a measurable function b, the Dunkl-type maximal commutator is defined by

Mb,α(f)(x) := sup
r>0

µα(Br)
−1
∫
Br

τy|(b(x)− b(y))f(x)|dµα(y),

for all x ∈ R.

Lemma 1. Let 1 < s < ∞, b ∈ BMO(R). Then, there exists C > 0 such that for all
x ∈ R

M ]
α(Mb,αf)(x) ≤ C‖b‖BMOα

(
(Mα(Mαf)s)

1
s (x) +Mα (Mα|f |s)

1
s (x)

)
holds.

Proof. From the boundedness of the Dunkl-type maximal operator Mα and the point-
wise inequality we have

M ]
α(Mb,αf)(x) ≤ 2Mα(Mb,αf)(x), x ∈ R.
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Since Mb,α(f)(y) = sup
t>0

Mb,t,α(f)(y) then, we get

Mb,t,α(f)(y) = (µαBt)
−1
∫
Bt

τy(|b(y)− b(z)||f(z)|)dµα(z)

≤ (µαBt)
−1
∫
Bt

τy(|b(z)− bBt ||f(z)|)dµα(z)

+ |b(y)− bBt |(µαBt)−1
∫
Bt

τy|f(z)|dµα(z)

≤ (µαBt)
−1

∫
Bt

[τy|b(z)− bBt |]s
′
dµα(z)

 1
s′
∫
Bt

[τy|f(z)|]sdµα(z)

 1
s

+ |b(y)− bBt |(µαBt)−1
∫
Bt

τy|f(z)|dµα(z)

≤ C‖b‖BMOα (Mα|f |s)
1
s (y) + |b(y)− bBt |(µαBt)−1

∫
Bt

τy|f(z)|dµα(z).

By the Hölder inequality, we have

(µαBr)
−1
∫
Br

τx

|b(y)− bBt |(µαBt)−1
∫
Bt

τy|f(z)|dµα(z)

 dµα(y)

≤ (µαBr)
−1
∫
Br

τx [|b(y)− bBt |Mαf(y)] dµα(y)

≤ (µαBr)
−1

∫
Br

[τx|b(y)− bBr |]s
′
dµα(y)

 1
s′
∫
Br

τx(Mαf)s(y)dµα(y)

 1
s

+ (µαBr)
−1
∫
Br

τx [|bBt − bBr |Mαf(y)] dµα(y)

≤ C‖b‖BMOα (Mα(Mαf)s)
1
s (x).

Therefore

Mα(Mb,αf)(x) = sup
r>0

(µαBr)
−1
∫
Br

τx(Mb,αf)(y)dµα(y)
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≤ C‖b‖BMOα

(
(Mα(Mαf)s)

1
s (x) + sup

r>0
(µαBr)

−1
∫
Br

τx (Mα|f |s)
1
s (y)dµα(y)

)
≤ C‖b‖BMOα

(
(Mα(Mαf)s)

1
s (x) +Mα (Mα|f |s)

1
s (x)

)
. (5)

Proposition 3. [18] For all weights ω and all nonnegative function f satisfying ν({x ∈
X : f(x) > β}) <∞ for all β > 0, there exists a positive constant C such that

1. If ν(X) =∞, then∫
X

f(y)g(y)dν(y) ≤ C
∫
X

M ]f(y)Mg(y)dν(y).

2. If ν(X) <∞, then∫
X

f(y)g(y)dν(y) ≤ C
∫
X

M ]f(y)Mg(y)dν(y) + Cg(X)νX(f),

where g is nonnegative function, g(X) =
∫
X

g(x)dν(x), νX(f) = 1
ν(X)

∫
X

f(y)dν(y).

Lemma 2. Let 1 < p <∞, ω ∈ Ap,α(R). Then

‖fω
1
p ‖Lp,α ≤ C‖ω

1
pM ]

αf‖Lp,α

where a constant C > 0 is independent of f .

Proof. Let (X, ν) be a space of homogeneous type. According to Proposition 1, we
have

‖fω
1
p ‖Lp,α ≤ C sup

‖g‖Lp′,γ≤1

∣∣∣∣∣∣
∫
R

f(y)g(y)ω
1
p (y)dµα(y)

∣∣∣∣∣∣
= C sup

‖g‖Lp′≤1

∣∣∣∣∣∣
∫
X

f(y)g(y)ω
1
p (y)dν(y)

∣∣∣∣∣∣ ≤ C sup
‖g‖Lp′≤1

∣∣∣∣∣∣
∫
X

M ]f(y)M(gω
1
p )(y)dν(y)

∣∣∣∣∣∣ .
Hence

‖fω
1
p ‖Lp,α ≤ C sup

‖g‖Lp′,γ≤1

∣∣∣∣∣∣
∫
R

M ]
αf(y)Mα(gω

1
p )(y)dµα(y)

∣∣∣∣∣∣ .
Finally by using the Hölder inequality and Theorem 4, we get

‖fω
1
p ‖Lp,α ≤ C sup

‖g‖Lp′,γ≤1
‖ω

1
pM ]

αf‖Lp,α‖ω
− 1
pMα(gω

1
p )‖Lp′,γ

≤ C sup
‖g‖Lp′,γ≤1

‖ω
1
pM ]

αf‖Lp,α‖g‖Lp′,γ ≤ C‖ω
1
pM ]

αf‖Lp,α .
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Theorem 8. Let b ∈ BMOα(R), 1 < p <∞, ω ∈ Ap,α(R). Then Mb,α is bounded on the
space Lp,ω,α(R).

Proof. By using Lemma 1, Lemma 2 and Theorem 4, we have Mb,α is bounded on the
space Lp,ω,γ(R).

Operators Mb,α and [Mα, b] are essentially different from each other. For example, Mb,α

is a positive and sublinear operator, but [Mα, b] is neither positive nor sublinear. However,
if b satisfy some additional conditions, then operator Mb,α is controled by [Mα, b].

Theorem 9. Let 1 < p < ∞, 0 ≤ λ < 2α + 2.Then the commutator Mb,α is bounded on
Lp,λ,α(R) if and only if b ∈ BMOα(R).

Proof. Sufficiency: Let 1 < p <∞, 0 ≤ λ < 2α+ 2, f ∈ Lp,λ,α(R). We have∫
Bt

τy [Mb,αf ]p (x)dµα(y) ≤
∫
R

τy [Mb,αf ]p (x)(MαχBt(y))δdµα(y), x ∈ R.

Taking into account the properties of Ap,α(R), we can easily see that (MαχBt)
δ ∈

Ap,α(R), for any 0 < δ < 1. Then by using Lemma 2 and Theorem 8 we obtain∫
Bt

τy [Mb,αf ]p (x)dµα(y) ≤ C ‖b‖pBMOα

∫
R

τy|f(x)|p(MαχBr(y))θdµα(y)

≤ C ‖b‖pBMOα

∫
Br

τy|f(x)|pdµα(y)

+ C ‖b‖pBMOα

∞∑
j=1

∫
B

2j+1r
\B

2jr

τy|f(x)|p(MαχBr(y))θdµα(y)

≤ C ‖b‖pBMOα

∫
Br

τy|f(x)|pdµα(y)

+ C ‖b‖pBMOα

∞∑
j=1

∫
B

2j+1r
\B

2jr

τy|f(x)|p r(2α+2)θ

(|y|+ r)(2α+2)θ
dµα(y)

≤ C ‖b‖pBMOα
‖f‖pLp,λ,α

rλ +
∞∑
j=1

1

(2j + 1)(2α+2)θ
(2j+1r)λ


≤ C rλ ‖b‖pBMOα

‖f‖pLp,λ,α .

Necessity: Let Mb,α be bounded from Lp,λ,α(R) to Lp,λ,α(R),
1 < p <∞.

Obviously,

‖f‖Lp,λ,α = sup
t>0, x∈R

t−λ ∫
Bt

τy|f(x)|pdµα(y)

1/p

.
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Now we consider f = χBr . It is easy to compute that

‖χBr‖Lp,λ,α ≈ sup
t>0, x∈R

t−λ ∫
Bt

τyχBr(x)dµα(y)

1/p

≈ sup
t>0, x∈R

t−λ ∫
Bt

χBr(y)dµα(y)

1/p

≈ sup
Bt⊂Br

(
t−λµα(Bt ∩Br)

)1/p
≤ r

2α+2−λ
p .

Then
1

(µαBt)

∫
Bt

|τzb(x)− fBt | dµα(z)

=
1

(µαBt)

∫
Bt

∣∣∣∣τzb(x)− 1

(µαBt)

∫
Bt

τzb(y)dµα(y)

∣∣∣∣ dµα(z)

≤ 1

(µαBt)

∫
Bt

1

(µαBt)

∫
Bt

|τzb(x)− τzb(y)| dµα(y)dµα(z)

≤ 1

(µαBt)

∫
Bt

1

(µαBt)

∫
Bt

|τz(b(x)− b(y))| dµα(y)dµα(z)

≤ 1

(µαBt)

∫
Bt

Mb,αχBt(z)dµα(z)

≤ Ct−2α−2+λ‖Mb,αχBt‖Lp,λ,α‖χBt‖Lp′,λ,α ≤ Ct
2α+2−λ

p′ + 2α+2−λ
p

−2α−2+λ ≤ C.

Theorem 10. Let 0 ≤ λ < 2α+2, b ∈ BMOα(R). Then the commutator Mb,α is bounded
from L1,λ,α(R) to WL1,λ,α(R).

Proof. Let 0 ≤ λ < 2α + 2, f ∈ L1,λ,α(R). This assertion is easily obtained from
f(x) ≤Mαf(x) . Finally, by using (5) and Theorem 5, we get

‖Mb,αf‖WL1,λ,α
≤ ‖Mα(Mb,αf)‖WL1,λ,α

≤ ‖b‖BMOα
‖ (Mα(Mαf)s)

1
s +Mα (Mα|f |s)

1
s ‖WL1,λ,α

≤ C ‖b‖BMOα
‖f‖L1,λ,α

.
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Abstract. We consider the generalized Morrey spacesMp(·),ϕ(Ω) with variable exponent p(x) and
a general function ϕ(x, r) defining the Morrey-type norm. In case of unbounded sets Ω ⊂ Rn we
prove the boundedness of the conditions in terms of Calderón-Zygmund-type integral inequalities
for oscillatory integral operators and its commutators in the vanishing generalized weighted Morrey
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1. Introduction

The classical Morrey spaces were originally introduced by Morrey in [51] to study the
local behavior of solutions to second order elliptic partial differential equations. For the
properties and applications of classical Morrey spaces, we refer the readers to [20, 22, 24,
51]. Mizuhara [52] and Nakai [55] introduced generalized Morrey spaces. Later, Guliyev
[24] defined the generalized Morrey spaces Mp,ϕ with normalized norm.

As it is known, last two decades there is an increasing interest to the study of vari-
able exponent spaces and operators with variable parameters in such spaces, we refer for
instance to the surveying papers [18, 40, 43, 59], on the progress in this field, including top-
ics of Harmonic Analysis and Operator Theory, see also references therein. For mapping
properties of maximal functions and singular integrals on Lebesgue spaces with variable
exponent we refer to [11, 12, 13, 15, 16, 17, 42, 45].

Variable exponent Morrey spaces Lp(·),λ(·)(Ω), were introduced and studied in [2] and
[53] in the Euclidean setting and in [41] in the setting of metric measure spaces, in case
of bounded sets. The boundedness of the maximal operator in variable exponent Morrey
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spaces Lp(·),λ(·)(Ω) under the log-condition on p(·), λ(·) was proved in [2]. In [54] the
maximal operator was considered in a somewhat more general space, but under more
restrictive conditions on p(x). P. Hästö in [35] used his new ”local-to-global” approach
to extend the result of [2] on the maximal operator to the case of the whole space Rn.
The boundedness of the maximal operator and the singular integral operator in variable
exponent Morrey spaces Lp(·),λ(·) in the general setting of metric measure spaces was proved
in [41].

Generalized Morrey spaces of such a kind in the case of constant p were studied in
[4], [46], [52], [55]. In the case of bounded sets the boundedness of the maximal operator,
singular integral operators and the potential operator in generalized variable exponent
Morrey type spaces was proved in [29], [30], [31] and in the case of unbounded sets in [32],
see also [36, 37, 56].

In the case of constant p and λ, the results on the boundedness of potential operators
and classical Calderón-Zygmund singular operators go back to [1] and [58], respectively,
while the boundedness of the maximal operator in the Euclidean setting was proved in
[14]; for further results in the case of constant p and λ (see, for instance, [3]– [5]).

We consider the Hardy-Littlewood maximal operator

Mf(x) = sup
r>0
|B(x, r)|−1

∫
B̃(x,r)

|f(y)|dy.

A distribution kernel K(x, y) is a ”standard singular kernel”, that is, a continuous
function defined on {(x, y) ∈ Ω× Ω : x 6= y} and satisfying the estimates

|K(x, y)| ≤ C|x− y|−n for all x 6= y,

|K(x, y)−K(x, z)| ≤ C |y − z|σ

|x− y|n+σ
, σ > 0, if |x− y| > 2|y − z|,

|K(x, y)−K(ξ, y)| ≤ C |x− ξ|σ

|x− y|n+σ
, σ > 0, if |x− y| > 2|x− ξ|

Calderón-Zygmund type singular operator and the oscillatory integral operator are
defined by

Tf(x) =

∫
Ω
K(x, y)f(y)dy, (1)

Sf(x) =

∫
Ω
eP (x,y)K(x, y)f(y)dy, (2)

where P (x, y) is a real valued polynomial defined on Ω × Ω. Lu and Zhang [50] used
L2-boundedness of T to get Lp- boundedness of S with 1 < p <∞.

Let
T ∗f(x) = sup

ε>0
|Tεf(x)|

be the maximal singular operator, where Tεf(x) is the usual truncation

Tεf(x) =

∫
{y∈Ω:|x−y|≥ε}

K(x, y)f(y)dy.
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We find the condition on the Morrey function ϕ(x, r) for the boundedness of the

oscillatory integral operator in generalized weighted Morrey spaceMp(·),ϕ
ω (Ω) with variable

p(x) under the log-condition on p(·).
The paper is organized as follows. In Section 2 we provide necessary preliminaries on

variable exponent weighted Lebesgue and generalized weighted Morrey spaces. In Section
3 we treat oscillatory integral operators and its commutators in Mp(·),ϕ(Ω).

The main results are given in Theorems 7, 8, 9, 11, 12, 13. We emphasize that the
results we obtain for generalized weighted Morrey spaces are new even in the case when
p(x) is constant, because we do not impose any monotonicity type condition on ϕ(x, r).

We use the following notation: Rn is the n-dimensional Euclidean space, Ω ⊂ Rn is
an open set, χE(x) is the characteristic function of a set E ⊆ Rn, B(x, r) = {y ∈ Rn :
|x− y| < r}), B̃(x, r) = B(x, r)∩Ω, by c,C, c1, c2 etc, we denote various absolute positive
constants, which may have different values even in the same line. By A . B we mean that
A ≤ CB with some positive constant C independent of appropriate quantities. If A . B
and B . A, we write A ≈ B and say that A and B are equivalent.

2. Preliminaries on variable exponent weighted Lebesgue and
generalized weighted Morrey spaces

We refer to the book [16] for variable exponent Lebesgue spaces but give some basic
definitions and facts. Let p(·) be a measurable function on Ω with values in (1,∞). An
open set Ω which may be unbounded throughout the whole paper. We mainly suppose
that

1 < p− ≤ p(x) ≤ p+ <∞, (3)

where p− := ess inf
x∈Ω

p(x), p+ := ess sup
x∈Ω

p(x). By Lp(·)(Ω) we denote the space of all

measurable functions f(x) on Ω such that

Ip(·)(f) =

∫
Ω
|f(x)|p(x)dx <∞.

Equipped with the norm

‖f‖p(·) = inf

{
η > 0 : Ip(·)

(
f

η

)
≤ 1

}
,

this is a Banach function space. By p′(·) = p(x)
p(x)−1 , x ∈ Ω, we denote the conjugate

exponent.

The space Lp(·)(Ω) coincides with the space{
f(x) :

∣∣∣∣∫
Ω
f(y)g(y)dy

∣∣∣∣ <∞ for all g ∈ Lp′(·)(Ω)

}
(4)
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up to the equivalence of the norms

‖f‖Lp(·)(Ω) ≈ sup
‖g‖

Lp
′(·)≤1

∣∣∣∣∫
Ω
f(y)g(y)dy

∣∣∣∣ (5)

see [47, Proposition 2.2], see also [44, Theorem 2.3], or [60, Theorem 3.5].
For the basics on variable exponent Lebesgue spaces we refer to [61], [44].

P(Ω) is the set of bounded measurable functions p : Ω→ [1,∞);
P log(Ω) is the set of exponents p ∈ P(Ω) satisfying the local log-condition

|p(x)− p(y)| ≤ A

− ln |x− y|
, |x− y| ≤ 1

2
x, y ∈ Ω, (6)

where A = A(p) > 0 does not depend on x, y;
Alog(Ω) is the set of bounded exponents p : Ω→ Rn satisfying the condition (6);
Plog(Ω) is the set of exponents p ∈ P log(Ω) with 1 < p− ≤ p+ <∞;

for Ω which may be unbounded, by P∞(Ω), P log∞ (Ω), Plog∞ (Ω), Alog∞ (Ω) we denote the subsets
of the above sets of exponents satisfying the decay condition (when Ω is unbounded)

|p(x)− p(∞)| ≤ A∞
ln(2 + |x|)

, x ∈ Rn, (7)

where p∞ = lim
x→∞

p(x) > 1.

We will also make use of the estimate provided by the following lemma ( see [16],
Corollary 4.5.9).

‖χ
B̃(x,r)

(·)‖p(·) ≤ Crθp(x,r), x ∈ Ω, p ∈ Plog∞ (Ω), (8)

where θp(x, r) =

{
n
p(x) , r ≤ 1,
n

p(∞) , r ≥ 1.

A locally integrable function ω : Ω→ (0,∞) is called a weight. We say that ω ∈ Ap(Ω),
1 < p <∞, if there is a constant C > 0 such that(

1

|B̃(x, t)|

∫
B̃(x,t)

ω(x)dx

)(
1

|B̃(x, t)|

∫
B̃(x,t)

ω1−p′(x)dx

)p−1

≤ C,

where 1/p + 1/p′ = 1. We say that ω ∈ A1(Ω) if there is a constant C > 0 such that
Mω(x) ≤ Cω(x) almost everywhere.

The extrapolation theorems (Lemma 1 and Lemma 2 below) are originally due to
Cruz-Uribe, Fiorenza, Martell and Pérez [12]. Here we use the form in [16], see Theorem
7.2.1 and Theorem 7.2.3 in [16].

Lemma 1. ([16]). Given a family F of ordered pairs of measurable functions, suppose
that for some fixed 0 < p0 <∞, every (f, g) ∈ F and every ω ∈ A1,∫

Ω
|f(x)|p0ω(x)dx ≤ C0

∫
Ω|g(x)|p0ω(x)dx.
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Let p(·) ∈ P (Ω) with p0 ≤ p−. If maximal operator is bounded on L

(
p(·)
p0

)′
(Ω), then

there exists a constant C > 0 such that for all (f, g) ∈ F ,

‖f‖Lp(·)(Ω) ≤ C‖g‖Lp(·)(Ω).

Lemma 2. ([16]). Given a family F of ordered pairs of measurable functions, suppose
that for some fixed 0 < p0 < q0 <∞, every (f, g) ∈ F and every ω ∈ A1(∫

Ω
|f(x)|q0ω(x)dx

) 1
q0

≤ C0

(∫
Ω
|g(x)|p0ω

p0
q0 (x)dx

) 1
p0

.

Let p(·) ∈ P (Ω) with p0 ≤ p− and 1
p0
− 1

q0
< 1

p+
, and define q(x) by

1

p(x)
− 1

q(x)
=

1

p0
− 1

q0
.

If maximal operator is bounded on L

(
q(·)
q0

)′
(Ω), then there exists a constant C > 0 such

that for all (f, g) ∈ F ,
‖f‖Lq(·)(Ω) ≤ C‖g‖Lp(·)(Ω).

Singular operators within the framework of the spaces with variable exponents were
studied in [17]. From Theorem 4.8 and Remark 4.6 of [17] and the known results on
the boundedness of the maximal operator, we have the following statement, which is
formulated below for our goals for a bounded Ω, but valid for an arbitrary open set Ω
under the corresponding condition in p(x) at infinity.

Theorem 1. ([17, Theorem 4.8]) Let Ω ⊂ Rn be a unbounded open set and p ∈ Plog(Ω).
Then the singular integral operator T is bounded in Lp(·)(Ω).

Let λ(x) be a measurable function on Ω with values in [0, n]. The variable Morrey
space Lp(·),λ(·)(Ω) is defined as the set of integrable functions f on Ω with the finite norms

‖f‖Lp(·),λ(·)(Ω) = sup
x∈Ω, t>0

t
−λ(x)
p(x) ‖fχ

B̃(x,t)
‖Lp(·)(Ω),

respectively.
Let M ] be the sharp maximal function defined by

M ]f(x) = sup
r>0
|B(x, r)|−1

∫
B̃(x,r)

|f(y)− f
B̃(x,r)

|dy,

where f
B̃(x,t)

(x) = |B̃(x, t)|−1
∫
B̃(x,t)

f(y)dy.

Definition 1. We define the BMO(Ω) space as the set of all locally integrable functions
f with finite norm

‖f‖BMO = sup
x∈Ω

M ]f(x) = sup
x∈Ω, r>0

|B(x, r)|−1

∫
B̃(x,r)

|f(y)− f
B̃(x,r)

|dy.
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Definition 2. We define the BMOp(·)(Ω) space as the set of all locally integrable functions
f with finite norm

‖f‖BMOp(·) = sup
x∈Ω, r>0

‖(f(·)− f
B̃(x,r)

)χ
B̃(x,r)

‖Lp(·)(Ω)

‖χ
B̃(x,r)

‖Lp(·)(Ω)

.

Theorem 2. [47] Let Ω ⊂ Rn be an open unbounded set, p ∈ Plog∞ (Ω), then the norms
‖ · ‖BMOp(·) and ‖ · ‖BMO are mutually equivalent.

Before proving the main theorems, we need the following lemma.

Lemma 3. [34] Let b ∈ BMO(Ω). Then there is a constant C > 0 such that∣∣∣bB̃(x,r)
− b

B̃(x,t)

∣∣∣ ≤ C‖b‖∗ ln
t

r
for 0 < 2r < t,

where C is independent of b, x, r, and t.

Everywhere in the sequel the functions ϕ(x, r), ϕ1(x, r) and ϕ2(x, r) used in the body
of the paper, are non-negative measurable functions on Ω× (0,∞). We find it convenient
to define the generalized weighted Morrey spaces in the form as follows.

Definition 3. Let 1 ≤ p(x) <∞, x ∈ Ω. The variable exponent generalized Morrey space
Mp(·),ϕ(Ω) is defined as the set of integrable functions f on Ω with the finite norms

‖f‖Mp(·),ϕ = sup
x∈Ω,r>0

1

ϕ(x, r)tθp(x,t)
‖f‖

Lp(·)(B̃(x,r))
,

respectively.

According to this definition, we recover the space Lp(·),λ(·)(Ω) under the choice ϕ(x, r) =

r
θp(x,r)−λ(x)

p(x) :

Lp(·),λ(·)(Ω) =Mp(·),ϕ(·)(Ω)

∣∣∣∣∣
ϕ(x,r)=r

θp(x,r)−λ(x)
p(x)

.

Definition 4. (Vanishing generalized weighted Morrey space) The vanishing generalized

weighted Morrey space VMp(·),ϕ
ω (Ω) is defined as the space of functions f ∈ Mp(·),ϕ

ω (Ω)
such that

lim
r→0

sup
x∈Ω

1

ϕ1(x, t)‖ω‖
Lp(·)(B̃(x,t))

‖fχ
B̃(x,t)

‖
L
p(·)
ω (Ω)

= 0.

Everywhere in the sequel we assume that

lim
r→0

1

‖ω‖
Lp(·)(B̃(x,t))

inf
x∈Ω

ϕ(x, t)
= 0. (9)

and

sup
0<r<∞

1

‖ω‖
Lp(·)(B̃(x,t))

inf
x∈Ω

ϕ(x, t)
= 0. (10)
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which makes the spaces VMp(·),ϕ
ω (Ω) non-trivial, because bounded functions with compact

support belong then to this space.

Let L∞v (R+) be the weighted L∞-space with the norm

‖g‖L∞v (R+) = ess sup
t>0

v(t)g(t).

In the sequel M(R+),M+(R+) and M+(R+;↑)stand for the set of Lebesgue-measurable
functions on R+, and its subspaces of nonnegative and nonnegative non-decreasing func-
tions, respectively. We also denote

A =

{
ϕ ∈M+(R+; ↑) : lim

t→0+
ϕ(t) = 0

}
.

Let u be a continuous and non-negative function on R+. We define the supremal operator
Su by

(Sug)(t) := ‖u g‖Lı(0,t), t ∈ (0,∞).

The following theorem was proved in [3].

Theorem 3. Suppose that v1 and v2 are nonnegative measurable functions such that
0 < ‖v1‖L∞(0,t) < ∞ for every t > 0. Let u be a continuous nonnegative function on R.

Then the operator Su is bounded from L∞v1
(R+) to L∞v2

(R+) on the cone A if and only if∥∥∥v2Su

(
‖v1‖−1

L∞(0,·)

)∥∥∥
L∞(R+)

<∞.

We will use the following results on the boundedness of the weighted Hardy operator

Hwg(t) :=

∫ t

0
g(s)w(s)ds, H∗wg(t) :=

∫ ∞
t

g(s)w(s)ds, 0 < t <∞,

where w is a weight.

The following theorem was proved in [26, 27].

Theorem 4. Let v1, v2 and w be weights on (0,∞) and v1(t) be bounded outside a neigh-
borhood of the origin. The inequality

sup
t>0

v2(t)H∗wg(t) ≤ C sup
t>0

v1(t)g(t)

holds for some C > 0 for all non-negative and non-decreasing g on (0,∞) if and only if

B := sup
t>0

v2(t)

∫ ∞
t

w(s)ds

ess sup
s<τ<∞

v1(τ)
<∞.
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Theorem 5. Let v1, v2 and w be weights on (0,∞) and v1(t) be bounded outside a neigh-
borhood of the origin. The inequality

sup
t>0

v2(t)Hwg(t) ≤ C sup
t>0

v1(t)g(t) (11)

holds for some C > 0 for all non-negative and non-decreasing g on (0,∞) if and only if

B := sup
t>0

v2(t)

∫ t

0

w(s)ds

sup0<τ<s v1(τ)
<∞.

Moreover, the value C = B is the best constant for (11).

3. Oscillatory integral operators and its commutators in Mp(·),ϕ(Ω)

It is well-known that the commutator is an important integral operator and it plays
a key role in harmonic analysis. In 1965, Calderón [6, 7] studied a kind of commutators,
appearing in Cauchy integral problems of Lipschitz curve. Let K be a Calderón-Zygmund
singular integral operator and b ∈ BMO(Rn). A well known result of Coifman, Rochberg
and Weiss [8] states that the commutator operator [b,K]f = K(bf)− bKf is bounded on
Lp(Rn) for 1 < p <∞. The commutator of Calderón-Zygmund operators plays an impor-
tant role in studying the regularity of solutions of elliptic partial differential equations of
second order (see, for example, [9], [10], [19], [20], [22]).

Lemma 4. (see [49]). If K is a standard Calderón-Zygmund kernel and the Calderón-
Zygmund singular integral operator T is of type (L2(Ω), L2(Ω)), then for any real polyno-
mial P (x, y) and ω ∈ Ap (1 < p < ∞), there exists constants C > 0 independent of the
coefficients of P such that

‖Sf‖Lpω(Ω) ≤ C‖f‖Lpω(Ω).

Theorem 6. Let Ω ⊂ Rn be an open unbounded set, p ∈ Plog∞ (Ω). Then the operator S is
bounded in the space Lp(·)(Ω).

Proof. By the Lemma 1 and Lemma 4, we derive the operator S is bounded in the
space Lp(·)(Ω).

The following local estimates are valid.

Theorem 7. Let Ω ⊂ Rn be an open unbounded set, p ∈ Plog∞ (Ω) and f ∈ Lp(·)(Ω). Then

‖Sf‖
Lp(·)(B̃(x,t))

≤ Ctθp(x,t)

∫ ∞
t

s−θp(x,s)‖f‖
Lp(·)(B̃(x,s))

ds

s
, (12)

where C does not depend on f , x ∈ Ω and t.

Proof. We represent f as

f = f1 + f2, f1(y) = f(y)χ
B̃(x,2t)

(y), f2(y) = f(y)χ
Ω\B̃(x,2t)

(y), t > 0, (13)
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and have

‖Sf‖
Lp(·)(B̃(x,t))

≤ ‖Sf1‖Lp(·)(B̃(x,t))
+ ‖Sf2‖Lp(·)(B̃(x,t))

.

By the Theorem 6 we obtain

‖Sf1‖Lp(·)(B̃(x,t))
≤ ‖Sf1‖Lp(·)(Ω) ≤ C‖f1‖Lp(·)(Ω),

so that

‖Sf1‖Lp(·)(B̃(x,t))
≤ C‖f‖

Lp(·)(B̃(x,2t))
.

Taking into account the inequality

‖f‖
Lp(·)(B̃(x,t))

≤ Ctθp(x,t)

∫ ∞
t

s−θp(x,s)‖f‖
Lp(·)(B̃(x,s))

ds

s
,

we get

‖Sf1‖Lp(·)(B̃(x,t))
≤ Ctθp(x,t)

∫ ∞
t

s−θp(x,s)‖f‖
Lp(·)(B̃(x,s))

ds

s
. (14)

To estimate ‖Sf2‖Lp(·)(B̃(x,t))
, we observe that

|Sf2(z)| ≤ C
∫

Ω\B(x,2t)

|f(y)| dy
|y − z|n

,

where z ∈ B(x, t) and the inequalities |x− z| ≤ t, |z − y| ≥ 2t imply 1
2 |z − y| ≤ |x− y| ≤

3
2 |z − y|, and therefore

|Sf2(z)| ≤ C
∫

Ω\B̃(x,2t)
|x− y|−n|f(y)|dy,

To estimate Sf2, we first prove the following auxiliary inequality∫
Ω\B̃(x,t)

|x− y|−n|f(y)|dy

≤ Ctθp(x,t)

∫ ∞
t

s−θp(x,s)‖f‖
Lp(·)(B̃(x,s))

ds

s
. (15)

To this end, we choose δ > 0 and proceed as follows∫
Ω\B̃(x,t)

|x− y|−n|f(y)|dy ≤ δ
∫

Ω\B̃(x,t)
|x− y|−n+δ|f(y)|dy

∫ ∞
|x−y|

s−δ−1ds

≤ C
∫ ∞
t

s−n
ds

s

∫
{y∈Ω:2t≤|x−y|≤s}

|f(y)|dy ≤ C
∫ ∞
t

s−n‖f‖
Lp(·)(B̃(x,s))

‖χ
B̃(x,s)

‖Lp′(·)(Ω)

ds

s

≤ C
∫ ∞
t

s−θp(x,s)‖f‖
Lp(·)(B̃(x,s))

ds

s
. (16)
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Hence by inequality (16), we get

‖Sf2‖Lp(·)(B̃(x,t))
≤ C‖χ

B̃(x,t)
‖Lp(·)(Ω)

∫ ∞
t

s−θp(x,s)‖f‖
Lp(·)(B̃(x,s))

ds

s

= Ctθp(x,t)

∫ ∞
t

s−θp(x,s)‖f‖
Lp(·)(B̃(x,s))

ds

s
. (17)

From (14) and (17) we arrive at (12).

Theorem 8. Let Ω ⊂ Rn be an open unbounded set, p ∈ Plog∞ (Ω), ω ∈ Ap(·)(Ω) and ϕ1(x, t)
and ϕ2(x, r) fulfill condition

∫ ∞
t

ess inf
s<r<∞

ϕ1(x, r)rθp(x,r)

sθp(x,s)

ds

s
≤ Cϕ2(x, t), (18)

where C does not depend on x ∈ Ω and t. Then the singular integral operators T and T ∗

are bounded from the space Mp(·),ϕ1(Ω) to the space Mp(·),ϕ2(Ω).

Proof. Let f ∈Mp(·),ϕ1(Ω). As usual, when estimating the norm

‖Sf‖Mp(·),ϕ2 (Ω) = sup
x∈Ω, t>0

ϕ2(x, t)−1t−θp(x,t)‖Sfχ
B̃(x,t)

‖Lp(·)(Ω). (19)

We estimate ‖Sfχ
B̃(x,t)

‖Lp(·)(Ω) in (19) by means of Theorem 7 and obtain

‖Sf‖Mp(·),ϕ2 (Ω)

≤ C sup
x∈Ω, t>0

tθp(x,t)

ϕ2(x, t)tθp(x,t)

∫ ∞
t

s−θp(x,s)‖f‖
Lp(·)(B̃(x,s))

ds

s

≤ C sup
x∈Ω, t>0

1

ϕ1(x, t)tθp(x,t)
‖f‖

Lp(·)(B̃(x,t))
= C‖f‖Mp(·),ϕ1 (Ω).

It remains to make use of condition (18).

Theorem 9. Let Ω ⊂ Rn be an open unbounded set, p ∈ Plog∞ (Ω) and ϕ1(x, t) and ϕ2(x, r)
fulfill satisfy the conditions (18) and

Cγ :=

∫ ∞
t

ess inf
s<r<∞

ϕ1(x, r)rθp(x,r)

sθp(x,s)

ds

s
<∞ (20)

for every γ.

Then the singular integral operators S is bounded from the space VMp(·),ϕ1(Ω) to the
space VMp(·),ϕ2(Ω).
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Proof. The norm inequalities follow from Theorem 7, so we only have to prove that if

lim
r→0

sup
x∈Ω

1

ϕ1(x, t)tθp(x,t)
‖fχ

B̃(x,t)
‖Lp(·)(Ω) = 0⇒

lim
r→0

sup
x∈Ω

1

ϕ2(x, t)tθp(x,t)
‖Sfχ

B̃(x,t)
‖Lp(·)(Ω) = 0 (21)

otherwise.

To show that sup
x∈Ω

1
ϕ2(x,t)tθp(x,t) ‖SfχB̃(x,t)

‖Lp(·)(Ω) < ε for small r, we split the right-hand

side of (12):

sup
x∈Ω

1

ϕ2(x, t)‖ω‖
Lp(·)(B̃(x,t))

‖Sfχ
B̃(x,t)

‖
L
p(·)
ω (Ω)

≤ C0 (I1,γ(x, r) + I2,γ(x, r)) , (22)

where γ > 0 will be chosen as shown below (we may take γ < 1),

I1,γ(x, r) := ‖ω‖
Lp(·)(B̃(x,t))

∫ γ0

t
‖f‖

L
p(·)
ω (B̃(x,s))

‖ω‖−1

Lp(·)(B̃(x,s))

ds

s
,

I2,γ(x, r) := ‖ω‖
Lp(·)(B̃(x,t))

∫ ∞
γ0

‖f‖
L
p(·)
ω (B̃(x,s))

‖ω‖−1

Lq(·)(B̃(x,s))

ds

s
,

and it is supposed that r < γ. Now we choose any fixed γ > 0 such that

sup
x∈Ω

1

ϕ1(x, t)‖ω‖
Lp(·)(B̃(x,t))

‖fχ
B̃(x,t)

‖
L
p(·)
ω (Ω)

<
ε

2CC0
, for all 0 < t < γ,

where C and C0 are constants from (18) and (22), which is possible since f ∈ VMp(·),ϕ1
ω (Ω).

Then

sup
x∈Ω

CI1,γ(x, r) <
ε

2
, 0 < r < γ,

by (21).

The estimation of the second term now may be made already by the choice of r
sufficiently small thanks to the condition (10). We have

I2,γ(x, r) ≤ Cγ
ϕ2(x, r)

‖ω‖
Lp(·)(B̃(x,r))

‖f‖
VMp(·),ϕ1

ω (Ω)
,

where Cγ is the constant from (20). Then, by (10) it suffices to choose r small enough
such that

ϕ2(x, r)

‖ω‖
Lp(·)(B̃(x,r))

<
ε

2CCγ‖f‖VMp(·),ϕ1
ω (Ω)

which completes the proof of (21).
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Lemma 5. (see [62]). If K is a standard Calderón-Zygmund kernel and the Calderón-
Zygmund singular integral operator T is of type (L2(Ω), L2(Ω)), then for any real polyno-
mial P (x, y) and ω ∈ Ap (1 < p < ∞), there exists constants C > 0 independent of the
coefficients of P such that

‖[b, S]f‖Lpω(Ω) ≤ C‖b‖∗‖f‖Lpω(Ω).

Theorem 10. Let Ω ⊂ Rn be an open unbounded set, b ∈ BMO(Ω), p ∈ Plog∞ (Ω). Then
the commutator operator [b, S] is bounded on the space Lp(·)(Ω).

Proof. By Lemma 1 and Lemma 5, we derive the operator [b, S] is bounded in the
space Lp(·)(Ω).

The following weighted local estimates are valid.

Theorem 11. Let Ω ⊂ Rn be an open unbounded set, p ∈ Plog∞ (Ω) and b ∈ BMO(Ω).
Then

‖[b, S]f‖
Lp(·)(B̃(x,t))

C‖b‖∗‖tθp(x,t)

∫ ∞
t

s−θp(x,s)
(

1 + ln
s

t

)
‖f‖

Lp(·)(B̃(x,s))

ds

s
(23)

for every f ∈ Lp(·)(Ω), where C does not depend on f, x ∈ Ω and t.

Proof. We represent function f as in (13) and have

‖[b, S]f‖
Lp(·)(B̃(x,t))

≤ ‖[b, S]f1‖Lp(·)(B̃(x,t))
+ ‖[b, S]f2‖Lp(·)(B̃(x,t))

.

By Theorem 10 we obtain

‖[b, S]f1‖Lp(·)(B̃(x,t))
≤ ‖[b, S]f1‖Lp(·)(Ω)

≤ C‖b‖∗‖f1‖Lp(·)(Ω) = C‖b‖∗‖f‖Lp(·)(B̃(x,2t))
, (24)

where C does not depend on f . From (24) we obtain

‖[b, S]f1‖Lp(·)(B̃(x,t))
≤ C‖b‖∗tθp(x,t)

∫ ∞
t

s−θp(x,s)
(

1 + ln
s

t

)
‖f‖

Lp(·)(B̃(x,s))

ds

s
(25)

easily obtained from the fact that ‖f‖
Lp(·)(B̃(x,2t))

is non-decreasing in t, so that ‖f‖
Lp(·)(B̃(x,2t))

on the right-hand side of (24) is dominated by the right-hand side of (25). To estimate
‖[b, S]f2‖Lp(·)(B̃(x,t))

, we observe that

|[b, S]f2(z)| ≤ C
∫

Ω\B(x,2t)

|b(z)− b(y)| |f(y)| dy
|y − z|n

,

where z ∈ B(x, t) and the inequalities |x− z| ≤ t, |z − y| ≥ 2t imply 1
2 |z − y| ≤ |x− y| ≤

3
2 |z − y|, and therefore

|[b, S]f2(z)| ≤ C
∫

Ω\B̃(x,2t)
|x− y|−n|b(z)− b(y)| |f(y)|dy.
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To estimate [b, S]f2, we first prove the following auxiliary inequality∫
Ω\B̃(x,t)

|x− y|−n|b(z)− b(y)||f(y)|dy

≤ C‖b‖∗
∫ ∞
t

s−θp(x,s)
(

1 + ln
s

t

)
‖f‖

Lp(·)(B̃(x,s))

ds

s
. (26)

To estimate [b, S]f2(z), we observe that for z ∈ B̃(x, t) we have∫
Ω\B̃(x,t)

|x− y|−n|b(z)− b(y)||f(y)|dy

≤
∫

Ω\B̃(x,t)
|x− y|−n|b(y)− b

B̃(x,t)
||f(y)|dy

+

∫
Ω\B̃(x,t)

|x− y|−n|b(z)− b
B̃(x,t)

||f(y)|dy = J1 + J2.

To this end, we choose δ > 0, by Theorem 2 and Lemma 3 we obtain

J1 =

∫
Ω\B̃(x,t)

|x− y|−n|b(y)− b
B̃(x,t)

||f(y)|dy

≤ δ
∫

Ω\B̃(x,t)
|x− y|−n+δ|b(y)− b

B̃(x,t)
||f(y)|dy

∫ ∞
|x−y|

s−δ−1ds

≤ C
∫ ∞
t

s−n−1

∫
{y∈Ω:2t≤|x−y|≤s}

|b(y)− b
B̃(x,t)

||f(y)|dyds

≤ C
∫ ∞
t

s−n−1‖b(·)− b
B̃(x,s)

‖
Lp
′(·)(B̃(x,s))

‖f‖
Lp(·)(B̃(x,s))

ds

+ C

∫ ∞
t

s−n−1|b
B̃(x,t)

− b
B̃(x,s)

|
∫
B̃(x,s)

|f(y)|dyds

≤ C‖b‖∗
∫ ∞
t

s−θp(x,s)−n−1‖f‖
Lp(·)(B̃(x,s))

ds

+ C‖b‖∗
∫ ∞
t

s−θp(x,s)−n−1 ln
s

t
‖f‖

Lp(·)(B̃(x,s))
ds

≤ C‖b‖∗
∫ ∞
t

s−θp(x,s)
(

1 + ln
s

t

)
‖f‖

Lp(·)(B̃(x,s))

ds

s
.

To estimate J2, by (15), we have

J2 =|b(z)− b
B̃(x,t)

|
∫

Ω\B̃(x,t)
|x− y|−n|f(y)|dy

≤ C|B(x, t)|−1

∫
B̃(x,t)

|b(z)− b(y)|dy
∫ ∞
t

s−θp(x,s)‖f‖
Lp(·)(B̃(x,s))

ds

s

≤ CMbχB(x,t)(z)

∫ ∞
t

s−θp(x,s)‖f‖
Lp(·)(B̃(x,s))

ds

s
,
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where C does not depend on x, t.

Hence by inequality (26), we get

‖[b, S]f2‖Lp(·)(B̃(x,t))
. ‖χ

B̃(x,t)
‖Lp(·)(Ω)‖b‖∗

×
∫ ∞
t

(
1 + ln

s

t

)
s−θp(x,s)‖f‖

Lp(·)(B̃(x,s))

ds

s

= ‖b‖∗tθp(x,t)

∫ ∞
t

s−θp(x,s)
(

1 + ln
s

t

)
‖f‖

Lp(·)(B̃(x,s))

ds

s
. (27)

From (25) and (27) we arrive at (23).

Theorem 12. Let Ω ⊂ Rn be an open unbounded set, p ∈ Plog∞ (Ω), b ∈ BMO(Ω) and the
functions ϕ1(x, r) and ϕ2(x, r) satisfy the condition

∫ ∞
t

(
1 + ln

s

t

) ess inf
s<r<∞

ϕ1(x, r)rθp(x,r)

sθp(x,s)

ds

s
≤ Cϕ2(x, t). (28)

Then the operator [b, S] is bounded from the space Mp(·),ϕ1(Ω) to the space Mp(·),ϕ2(Ω).

Proof. Let f ∈Mp(·),ϕ1(Ω). We have

‖[b, S]f‖Mp(·),ϕ2 (Ω) = sup
x∈Ω, t>0

1

ϕ2(x, t)tθp(x,t)
‖[b, S]f‖

Lp(·)(B̃(x,t))
.

By (28), Theorems 4 and 11 we obtain

‖[b, S]f‖Mp(·),ϕ2 (Ω)

≤ C‖b‖∗ sup
x∈Ω, t>0

tθp(x,t)

ϕ2(x, t)tθp(x,t)

∫ ∞
t

s−θp(x,s)
(

1 + ln
s

t

)
‖f‖

Lp(·)(B̃(x,s))

ds

s

≤ C‖b‖∗ sup
x∈Ω, t>0

1

ϕ1(x, t)tθp(x,t)
‖f‖

Lp(·)(B̃(x,t))
= C‖b‖∗‖f‖Mp(·),ϕ1 (Ω)

which completes the proof.

Theorem 13. Let Ω ⊂ Rn be an open unbounded set, p ∈ Plog∞ (Ω), b ∈ BMO(Ω) and the
functions ϕ1(x, r) and ϕ2(x, r) satisfy the conditions (28) and

Cδ0 :=

∫ ∞
t

(
1 + ln

t

s

) ess inf
s<r<∞

ϕ1(x, r)rθp(x,r)

sθp(x,s)

ds

s
<∞ (29)

for every δ0.

Then the operator [b, S] is bounded from the space VMp(·),ϕ1(Ω) to the space VMp(·),ϕ2(Ω).
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Proof. The norm inequalities follow from Theorem 11, so we only have to prove that if

lim
r→0

sup
x∈Ω

1

ϕ1(x, t)‖ω‖
Lp(·)(B̃(x,t))

‖fχ
B̃(x,t)

‖Lp(·)(Ω) = 0⇒

lim
r→0

sup
x∈Ω

1

ϕ2(x, t)‖ω‖
Lp(·)(B̃(x,t))

‖[b, S]fχ
B̃(x,t)

‖Lp(·)(Ω) = 0 (30)

otherwise.

To show that sup
x∈Ω

1
ϕ2(x,t)‖ω‖

Lp(·)(B̃(x,t))

‖[b, S]fχ
B̃(x,t)

‖Lp(·)(Ω) < ε for small r, we split the

right-hand side of (23):

sup
x∈Ω

1

ϕ2(x, t)‖ω‖
Lp(·)(B̃(x,t))

‖[b, S]fχ
B̃(x,t)

‖Lp(·)(Ω) ≤ C0 (I1,δ0(x, r) + I2,δ0(x, r)) , (31)

where δ0 > 0 will be chosen as shown below (we may take δ0 < 1),

I1,δ0(x, r) := ‖b‖∗‖ω‖Lp(·)(B̃(x,t))

∫ δ0

t

(
1 + ln

t

r

)
‖f‖

Lp(·)(B̃(x,s))
‖ω‖−1

Lp(·)(B̃(x,s))

ds

s
,

I2,δ0(x, r) := ‖b‖∗‖ω‖Lp(·)(B̃(x,t))

∫ ∞
δ0

(
1 + ln

t

r

)
‖f‖

Lp(·)(B̃(x,s))
‖ω‖−1

Lq(·)(B̃(x,s))

ds

s
,

and it is supposed that r < δ0. Now we choose any fixed δ0 > 0 such that

sup
x∈Ω

1

ϕ1(x, t)‖ω‖
Lp(·)(B̃(x,t))

‖fχ
B̃(x,t)

‖Lp(·)(Ω) <
ε

2CC0‖b‖∗
, for all 0 < t < δ0,

where C and C0 are constants from (28) and (31), which is possible since f ∈ VMp(·),ϕ1(Ω).
Then

sup
x∈Ω

CI1,δ0(x, r) <
ε

2
, 0 < r < δ0,

by (30).

The estimation of the second term now may be made already by the choice of r
sufficiently small thanks to the condition (10). We have

I2,δ0(x, r) ≤ Cδ0
ϕ2(x, r)

‖ω‖
Lp(·)(B̃(x,r))

‖b‖∗‖f‖VMp(·),ϕ1 (Ω),

where Cδ0 is the constant from (29). Then, by (10) it suffices to choose r small enough
such that

ϕ2(x, r)

‖ω‖
Lp(·)(B̃(x,r))

<
ε

2CCδ‖b‖∗‖f‖VMp(·),ϕ1 (Ω)

which completes the proof of (30).
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One 3D in the Geometrical Middle Problem in the Non-
classical Treatment for one 3D Bianchi Integro-differential
Equation with Non-smooth Coefficients

I.G. Mamedov∗, A.J. Abdullayeva

Abstract. In this paper substantiated for a 3D Bianchi integro-differential equation with non-
smooth coefficients a three dimensional in the geometrical middle problem- 3D in the geometrical
middle problem with non-classical boundary conditions is considered, which requires no matching
conditions. Equivalence of these conditions three dimensional boundary condition is substantiated
classical, in the case if the solution of the problem in the isotropic S. L. Sobolev’s space is found. The
considered equation as a hyperbolic equation generalizes not only classic equations of mathematical
physics (Laplace equation, telegraph equation, string vibration equation) and also many models
differential equations (2D and 3D telegraph equation, 2D Bianchi equation, 2D and 3D wave
equations and etc.). It is grounded that the in the middle boundary conditions in the classic and
non-classic treatment are equivalent to each other. Thus, namely in this paper, the non-classic
problem with 3D in the geometrical middle conditions is grounded for a hyperbolic equation of
third-order. For simplicity, this was demonstrated for one model case in one of S.L. Sobolev

isotropic space W
(1,1,1)
p (G).

Key Words and Phrases: 3D in the geometrical middle problem, 3D Bianchi integro-differential
equation, 3D mathematical modeling, hyperbolic equations, equation with non-smooth coefficients,
equations with dominating mixed derivative.
2010 Mathematics Subject Classifications: 35L25, 35L35

1. Introduction

Hyperbolic equations are attracted for sufficiently adequate description of a great deal
of real processes occurring in the nature, engineering and etc. In particular, many processes
arising in the theory of fluid filtration in cracked media are described by non-smooth
coefficient hyperbolic equations.

Urgency of investigations conducted in this field is explained by appearance of local and
non-local problems for non-smooth coefficients equations connected with different applied
problems. Such type problems arise for example, while studying the problems of moisture,
transfer in soils, heat transfer in heterogeneous media, diffusion of thermal neutrons in
inhibitors, simulation of different biological processes, phenomena and etc. [1-3].
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In the present paper, here consider three dimensional in the geometrical middle problem
for 3D Bianchi integro-differential equation with non-smooth coefficients. The coefficients
in this hyperbolic equation are not necessarily differentiable; therefore, there does not
exist a formally adjoint differential equation making a certain sense. For this reason, this
question cannot be investigated by the well-known methods using classical integration
by parts and Riemann functions or classical-type fundamental solutions. The theme of
the present paper, devoted to the investigation in the geometrical middle problem for 3D
integro-differential Bianchi equations of hyperbolic type, according to the above-stated is
very actual for the solution of theoretical and practical problems. From this point of view,
the paper is devoted to the actual problems of applied mathematics and physics.

2. Problem statement

Consider 3D Bianchi integro-differential equation

(V1,1,1u)(x, y, z) ≡ uxyz(x, y, z) +A0,0,0u(x, y, z) +A1,0,0ux(x, y, z)+
A0,1,0uy(x, y, z) +A0,0,1uz(x, y, z) +A1,1,0uxy(x, y, z) +A0,1,1uyz(x, y, z)+

+A1,0,1uxz(x, y, z) +
x∫

√
x0x1

y∫
√
y0y1

z∫
√
z0z1

[K0,0,0(τ, ξ, η;x, y, z)u(τ, ξ, η)+

+K1,0,0(τ, ξ, η;x, y, z)ux(τ, ξ, η) +K0,1,0(τ, ξ, η;x, y, z)uy(τ, ξ, η)+
+K0,0,1(τ, ξ, η;x, y, z)uz(τ, ξ, η) +K1,1,0(τ, ξ, η;x, y, z)uxy(τ, ξ, η)+

+K0,1,1(τ, ξ, η;x, y, z)uyz(τ, ξ, η)+
+K1,0,1(τ, ξ, η;x, y, z)uxz(τ, ξ, η)] dτdξdη = ϕ1,1,1(x, y, z),

(1)

(x, y, z) ∈ G.
Here u(x, y, z) is a desired function determined on G; Ai,j,k = Ai,j,k(x, y, z) are the

given measurable functions on G = G1 × G2 × G3, where G1 = (x0, x1), x0 ≥ 0,
G2 = (y0, y1), y0 ≥ 0, G3 = (z0, z1), z0 ≥ 0,; ϕ1,1,1(x, y, z) is a given measurable func-
tion on G;Ki,j,k(τ, ξ, η;x, y, z) are the given measurable functions on G×G.

Equation (1) is a three dimensional Bianchi integro-differential equation with three
simple real characteristics x = const, y = const, z = const. Therefore, in some sense we
can consider equation (1) as a hyperbolic equation. Equations of the form (1) are used in
the modeling of vibration processes [4].

In the present paper 3D Bianchi integro-differential equation (1) is considered in the
general case when the coefficients Ai,j,k(x, y, z) are non-smooth functions satisfying only
the following conditions:

A0,0,0(x, y, z) ∈ Lp(G),

A1,0,0(x, y, z) ∈ Lx,y,z∞,p,p(G),

A0,1,0(x, y, z) ∈ Lx,y,zp,∞,p(G),

A0,0,1(x, y, z) ∈ Lx,y,zp,p,∞(G),
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A1,1,0(x, y, z) ∈ Lx,y,z∞,∞,p(G),

A0,1,1(x, y, z) ∈ Lx,y,zp,∞,∞(G),

A1,0,1(x, y, z) ∈ Lx,y,z∞,p,∞(G).

In addition, the kernels of integral operators are assumed to satisfy the following condi-
tions: Ki,j,k(τ, ξ, η;x, y, z) ∈ L∞(G×G).

Under these conditions, we’ll look for the solution u(x, y, z)of equation (1) in S.L.Sobolev
isotropic space

W (1,1,1)
p (G) ≡ {u(x, y, z) : Di

xD
j
yD

m
z u(x, y, z) ∈ Lp(G), i, j,m = 0, 1},

where 1 ≤ p ≤ ∞. Di
v = ∂

′
/∂v

′
is a generalized differentiation operator in S.L.Sobolev

sense, D0
v is an identity transformation operator. We’ll define the norm in the space

W
(1,1,1)
p (G) by the equality

‖u‖
W

(1,1,1)
p (G)

=

1∑
i=0

1∑
j=0

1∑
m=0

‖Di
xD

j
yD

m
z u‖Lp(G).

For 3D Bianchi integro-differential equation (1) we can give the classic form in the geo-
metrical middle boundary conditions in the form :

u/x=
√
x0x1 = Φ(y, z),

u/y=
√
y0y1 = Ψ(x, z),

u/z=
√
z0z1 = g(x, y),

(2)

where Φ(y, z), Ψ(x, z), and g(x, y) are the given measurable functions on G . It is obvious
that in the case of conditions (2), in addition to the conditions

Φ ∈W (1,1)
p (G2 ×G3) ≡

{
≈
Φ(y, z) : Dj

yD
m
z

≈
Φ(y, z) ∈ Lp(G2 ×G3), j,m = 0, 1

}

Ψ ∈W (1,1)
p (G1 ×G3) ≡

{
≈
Ψ(x, z) : Di

xD
m
z

≈
Ψ(x, z) ∈ Lp(G1 ×G3), i,m = 0, 1

}
and

g(x, y) ∈W (1,1)
p (G1 ×G2) ≡

{≈
g(x, y) : Di

xD
j
y
≈
g(x, y) ∈ Lp(G1 ×G2), i, j = 0, 1

}
the given functions should also satisfy the following agreement conditions:

Φ
(√
y0y1 , z

)
= Ψ

(√
x0x1, z

)
,

Φ
(
y,
√
z0z1

)
= g

(√
x0x1, y

)
,

Ψ
(
x,
√
z0z1

)
= g

(
x,
√
y0y1

)
,

(3)



76 I.G. Mamedov, A.J. Abdullayeva

Consider the following non-classical in the geometrical middle boundary conditions :



V0,0,0u ≡ u
(√
x0x1,

√
y0y1,

√
z0z1

)
= ϕ0,0,0,

(V1,0,0u)(x) ≡ ux
(
x,
√
y0y1,

√
z0z1

)
= ϕ1,0,0(x),

(V0,1,0u)(y) ≡ uy
(√
x0x1, y,

√
z0z1

)
= ϕ0,1,0(y),

(V0,0,1u)(z) ≡ uz
(√
x0x1,

√
y0y1, z

)
= ϕ0,0,1(z),

(V1,1,0u)(x, y) ≡ uxy
(
x, y,
√
z0z1

)
= ϕ1,1,0(x, y),

(V0,1,1u)(y, z) ≡ uyz
(√
x0x1, y, z

)
= ϕ0,1,1(y, z),

(V1,0,1u)(x, z) ≡ uxz
(
x,
√
y0y1, z

)
= ϕ1,0,1(x, z),

(4)

where ϕ0,0,0 is a given number, and ϕi,j,k the rest are given functions that satisfy the
following conditions:

ϕ1,0,0(x) ∈ Lp(G1),
ϕ0,1,0(y) ∈ Lp(G2),
ϕ0,0,1(z) ∈ Lp(G3),

ϕ1,1,0(x, y) ∈ Lp(G1 ×G2),
ϕ0,1,1(y, z) ∈ Lp(G2 ×G3),
ϕ1,0,1(x, z) ∈ Lp(G1 ×G3).

3. Methodology

Therewith, the important principal moment is that the considered equation possesses
nonsmooth coefficients satisfying only some p -integrability and boundedness conditions i.e.
the considered integro-differential operator V1,1,1 has no traditional conjugated operator.
In other words, the Riemann function for this equation can’t be investigated by the classical
method of characteristics. In the papers [5-7] the Riemann function is determined as the
solution of an integral equation. This is more natural than the classical way for deriving the
Riemann function. The matter is that in the classic variant, for determining the Riemann
function, the rigid smooth conditions on the coefficients of the equation are required.

The Riemanns method does not work for hyperbolic equations with non-smooth coef-
ficients. Especially it should be noted that a variety of boundary-value problems for the
equations of Bianchi studied in [8-13] and etc.

In the present paper, a method that essentially uses modern methods of the theory of
functions and functional analysis is worked out for investigations of such problems. In the
main, this method it requested in conformity to integro-differential equations of third-order
with simple real characteristics. Notice that, in this paper the considered equation is a
generation of many model equations of some processes (for example, 2D and 3D telegraph
equation, 2D Bianchi equation, 2D and 3D wave equations and etc).

If the function u ∈W (1,1,1)
p (G) is a solution of the classical form 3D in the geometrical

middle problem (1), (2), then it is also a solution of problem (1), (4) for ϕi,j,k defined by
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the following equalities:

ϕ0,0,0 = Φ
(√
y0y1,

√
z0z1

)
= Ψ

(√
x0x1,

√
z0z1

)
= g

(√
x0x1,

√
y0y1

)
,

ϕ1,0,0(x) = Ψx

(
x,
√
z0z1

)
= gx

(
x,
√
y0y1

)
,

ϕ0,1,0(y) = gy
(√
x0x1, y

)
= Φy

(
y,
√
z0z1

)
,

ϕ0,0,1(z) = Φz

(√
y0y1, z

)
= Ψz

(√
x0x1,z

)
,

ϕ1,1,0(x, y) = gxy (x, y) ,
ϕ0,1,1(y, z) = Φyz (y, z) ,
ϕ1,0,1(x, z) = Ψxz (x, z) .

The inverse one is easily proved. In other words, if the function u ∈ W (1,1,1)
p (G) is a

solution of problem (1), (4), then it is also a solution of problem (1), (2) for the following
functions:

Φ(y, z) = ϕ0,0,0 +

y∫
√
y0y1

ϕ0,1,0(β)dβ +

z∫
√
z0z1

ϕ0,0,1(γ)dγ +

y∫
√
y0y1

z∫
√
z0z1

ϕ0,1,1(β, γ)dβdγ, (5)

Ψ(x, z) = ϕ0,0,0 +

x∫
√
x0x1

ϕ1,0,0(α)dα+

z∫
√
z0z1

ϕ0,0,1(γ)dγ +

x∫
√
x0x1

z∫
√
z0z1

ϕ1,0,1(α, γ)dαdγ, (6)

g(x, y) = ϕ0,0,0 +

x∫
√
x0x1

ϕ1,0,0(α)dα+

y∫
√
y0y1

ϕ0,1,0(β)dβ +

x∫
√
x0x1

y∫
√
y0y1

ϕ1,1,0(α, β)dαdβ. (7)

Note that the functions (5)-(7) possess one important property, more exactly, for all
ϕi,j,k, the agreement conditions (3) possessing the above-mentioned properties are fulfilled
for them automatically. Therefore, equalities (5)-(7) may be considered as a general kind
of all the functions Φ(y, z),Ψ(x, z) and g(x, y) satisfying the agreement conditions (3).

We have thereby proved the following assertion.

Theorem 1. The 3D in the geometrical middle problem of the form (1), (2) and the
non-classical form (1), (4) are equivalent.

Note that the 3D in the geometrical middle problem in the non-classical treatment (1),
(4) can be studied with the use of integral representations of special form for the functions

u ∈W (1,1,1)
p (G) [14-21]

u(x, y, z) = u (
√
x0x1,

√
y0y1,

√
z0z1) +

x∫
√
x0x1

uξ (ξ,
√
y0y1,

√
z0z1) dξ+
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+

y∫
√
y0y1

uη (
√
x0x1, η,

√
z0z1) dη +

z∫
√
z0z1

uγ (
√
x0x1,

√
y0y1, γ) dγ+

+

x∫
√
x0x1

y∫
√
y0y1

uξη (ξ, η,
√
z0z1) dξdη +

y∫
√
y0y1

z∫
√
z0z1

uηγ (
√
x0x1, η, γ) dηdγ+

+

x∫
√
x0x1

z∫
√
z0z1

uξγ (ξ,
√
y0y1, γ) dξdγ +

x∫
√
x0x1

y∫
√
y0y1

z∫
√
z0z1

uξηγ (ξ, η, γ) dξdηdγ.

4. Result

So, the classical form 3D in the geometrical middle problem (1), (2) and in non-
classical treatment (1), (4) are equivalent in the general case. However, the 3D in the
geometrical middle problem (1), (4) is more natural by statement than problem (1), (2).
This is connected with the fact that in statement of problem (1), (4) the right sides of
boundary conditions don’t require additional conditions of agreement type. Note that
some boundary-value problems in non-classical treatments for hyperbolic and also pseu-
doparabolic equations were investigated in the authors papers [22-31].

5. Discussion and conclusions

In this paper a non-classical type 3D in the geometrical middle problem is substanti-
ated for a 3D Bianchi integro-differential equation with non-smooth coefficients and with
a third-order dominating derivative. Classic 3D in the middle conditions are reduced to
non-classic 3D in the geometrical middle problem by means of integral representations.
Such statement of the problem has several advantages: 1) No additional agreement con-
ditions are required in this statement; 2) One can consider this statement as a 3D in the
geometrical middle problem formulated in terms of traces in the S.L. Sobolev isotropic

space W
(1,1,1)
p (G) ; 3) In this statement the considered 3D Bianchi integro-differential

equation is a generalization of many model differential equations of some processes (e.g.
2D and 3D telegraph equation, 2D Bianchi equation, 2D and 3D wave equations and etc.).
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Influence of Thickness of Reinforced Cylindrical Shell

Filled by Liquid on Free Vibrations

M.A. Rustamova

Abstract. Free oscillations of a reinforced cylindrical shell filled with a liquid are investigated.
Based on the technical theory of cylindrical shells, the equations of motion are written down
using classical equations in displacements. The fluid motion is potentially described by the wave
equation. The liquid moves without detachment from the walls of the cylinders. The fluid pressure
is taken into account in the equations of shell motion, and the fluid and shell velocities are equated
at the boundaries. Representing the solution in a harmonic form, it converted into a system of
transcendental equations. Comparison of the solution of the problem without a liquid with a
solution in the presence of a liquid, we find the dependence of the frequency of the system without
liquid with the frequency of the system with the liquid. In some values of the system parameters
the natural frequencies of the cylinder oscillations are determined.

Key Words and Phrases: cylinder, density of cord filaments, the horizontal movement, the fluid
density, volume fraction of cord.

2010 Mathematics Subject Classifications: 539.3

1. Introduction

Circular cylindrical covers emerge with the elements in designs of flying machines and
engines, underwater and surface means of transportation, tanks and pipelines, vaulted
systems of underwater and underground tunnels and storehouses. Cylindrical covers were
widely adopted in the technique. One of the basic spheres of their application are hydraulic
systems where such covers are applied in the quality of flexible inserts. Mathematical
description of fluctuations of the reinforced covers with fluid is devoted to the set of works
[1-7].

One of the most important points in the investigation of fluctuations of covers emerges
to be determination of frequencies of free fluctuations that allows to avoid a resonance
from external sources of fluctuations or on the contrary to use in need of heat exchange
at hashing of liquid products. It is necessary to cancel that the majority considered works
are devoted to the elementary special case or to the approached methods.

In work [8], free fluctuations of the thin-walled cylindrical cover containing the com-
pressed liquid are investigated. At some values of parameters of system its own frequencies

http://www.cjamee.org 82 c© 2013 CJAMEE All rights reserved.
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of fluctuations are defined and influence of geometrical and physical parameters of system
a cylindrical cover-liquid on free fluctuation of the cylinder is investigated.

In work [9] frequencies and forms of free fluctuations of the spherical and cylindrical
covers contacting to elastic and liquid environments are investigated. Asymptotical meth-
ods receive the approached simple formulas for calculation of frequency and definition of
the form of fluctuations of the considered systems that limits use of the received results
as possibility of carrying out of the qualitative analysis of investigated processes excludes
in a number of important cases.

In work [10] the problem of movement of the firm cylinder keeping vertical position
under the influence of superficial waves in a liquid is considered. Change of a surface of a
liquid is separated to two parts: result of a falling harmonious wave and the indignation
caused by presence of the cylinder which thus moves. The problem is accomplished with
an operational method. For a finding of the original solution, considering that the image
represents a denominator of tabular function, Voltaire’s integrated equation of the first
sort is used.

2. Problem statement

In the given work free fluctuations of the reinforced cylindrical cover filled with a
liquid are investigated. The case of orthotropic covers when cord threads keeps within
symmetrically concerning a cover meridian is being considered. The reinforced cover,
represents multilayered composite consisting of layers filler and a cord. As the finding of
own frequencies of system a cylindrical cover-liquid is connected with the decision of the
transcendental equations, frequency of fluctuations of the cover which are not containing
a liquid, is expressed through frequency of fluctuations of system in an explicit form that
allows both analytically, and graphically to investigate spectra of frequencies of system.

For the description of movement of a cover will use the classical equations in movements
[11]. Fluctuations of the liquid filling a cover, are described by the wave equation in
cylindrical co-ordinates [12]. On border of contact of a cover with a liquid equality of
radial speeds [13] is set.

Thus, fluctuations of considered system is described by the equations:

A11u+A12v +A13w = ρsh
∂2u

∂t2
;

A21u+A22v +A23w = ρsh
∂2v

∂t2
;

A31u+A32v +A33w = −
(

ρsh
∂2w

∂t2
+ ρf

∂Φ

∂t

)

. (1)

Here

A11 = C11

∂2

∂x2
+

C66

R2

∂2

∂ϕ2
;

A12 = A21 =
C12 + C66

R

∂2

∂x∂ϕ
;
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A13 = A31 =
1

R

(

C12

∂

∂x

)

;

A22 =

(

C66 +
4

R2
D66

)

∂2

∂x2
+

1

R2

(

C22 +
1

R2
D22

)

∂2

∂ϕ2
;

A23 = A32 =
1

R

(

C22

R

∂

∂ϕ
−

1

R
(D12 + 4D66)

∂3

∂x2∂ϕ
−

D22

R3

∂3

∂ϕ3

)

;

A33 =
1

R2
C22 +D11

∂4

∂x4
+

2

R2
(D12 + 2D66)

∂4

∂x2∂ϕ2
+

∂4

∂ϕ4
. (2)

Here Cik = hBik Dik = h3

12
Bik.

B11 = B′

11 cos
4 θ + 2

(

B′

12 + 2B′

66

)

sin2 θ cos2 θ +B′

22 sin
4 θB22 =

= B′

11 sin
4 θ + 2

(

B′

12 + 2B′

66

)

sin2 θ cos2 θ +B′

22 cos
4 θB12 =

= B′

12 +
(

B′

11 +B′

22 − 2
(

B′

12 + 2B′

66

))

sin2 θ cos2 θ(3)B66 =

= B′

66 +
(

B′

11 +B′

22 − 2
(

B′

12 + 2B′

66

))

sin2 θ cos2 θ, (3)

where

B′

11 =
E1

1− ν1ν2
; B′

22 =
E2

1− ν1ν2
; B′

66 = G; B′

12 =
ν2E1

1− ν1ν2
=

ν1E2

1− ν1ν2
,

E1, E2, ν1, ν2- composite parameters on the elasticity mainstreams, calculated under
formulas [14]:

E1 = EbVb + Em(1− Vb),
1

E2

=
Vb

Eb

+
(1− Vb)

Em,

, ν1 = vbVb + vm (1− Vb) , v2 = v2
E2

E1

,

1

G
=

Vb

Gb

+
(1− Vb)

Gm
,

where Eb, Gb, vb- the module the Ship’s boy, the module of shift and factor of Puassona,
and Em, Gm, vm- corresponding parameters filler; Vb- a cord volume fraction.

The density is defined from expression

ρs = ρbVb + ρm (1− Vb) ,

where ρb and ρm- density of threads of a cord and filler respectively.
Here following designations are accepted: ρs- cover density, ρf - liquid density, h- a

thickness of a cover, R- radius of a median plane of a cover, Bik- elastic parameters of the
generalized law of Guka in cylindrical system of co-ordinates of a cover.

The potential Φ satisfies to the wave equation:

∂2Φ

∂x2
+

∂2Φ

∂r2
+

1

r

∂Φ

∂r
+

1

r2
∂2Φ

∂ϕ2
+

ω2

a2
Φ = 0. (4)
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On border between a liquid and a cover compatibility of movement answers a condition.

∂w

∂t
= −

∂Φ

∂r

∣

∣

∣

∣

r=R

. (5)

The decision of system (1) is represented in a kind:

u = un cosnϕ sinωt cos
πx

l
,

ϑ = υn sinnϕ sinωt sin
πx

l
,

w = wn cosnϕ sinωt sin
πx

l
, (6)

Φ = Φn(r) cosnϕ cosωt sin
πx

l
. (7)

Here π
l
= k. Let’s substitute (7) in (4), we will receive

Φ′′

n +
1

r
Φ′

n +

(

ω2

a2
− k2 −

n2

r2

)

Φn = 0. (8)

In the cylinder the decision of the equation (8) looks as follows [15]:

Φn(r) = CJn

(
√

ω2

a2
− k2 r

)

. (9)

Considering (9) in (7)

Φ = CJn

(
√

ω2

a2
− k2 r

)

cosnϕ cosωt sin kx. (10)

Here C- it is constant, Jn

(

√

ω2

a2
− k2 r

)

- function of Bessel of an order n. And

applying (6) and (10) in (5), we receive

C = −
wnω

J ′

n

(

√

ω2

a2
− k2R

) . (11)

Having substituted (11) in (10), we will receive

Φ = −
wnωJn

(

√

ω2

a2
− k2R

)

J ′

n

(

√

ω2

a2
− k2R

) cosnϕ cosωt sin kx. (12)

Here a- speed of a sound in a liquid, ω- circular frequency, Jn, J
′

n- functions of Bessel
of an order n. Having substituted (6) and (12) in (1), we have
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−
(

k2C11 +
n2

R2
C66

)

un +
kn

R
(C12 + C66) υn −

k

R
C12wn + ρshω

2un = 0,

kn

R
(C12 + C66)un −

(

k2
(

C66 +
4

R2
D66

)

−
n2

R2

(

C22 +
1

R2
D22

)

+ ρshω
2

)

ϑn+

+
1

R2

(

−nC22 + k2n (D12 + 4D66)−
n3

R
D22

)

wn = 0, (13)

−
k

R
C12un +

1

R2

(

nC22 + k2n (D12 + 4D66) +
n3

R2
D22

)

υn+

+

(

1

R2
C22 + k4D11 +

2k2n2

R2
(D12 + 2D66) +

n4

R4
D22−

−ρshω
2 + ω2 ρf

Jn

(

√

ω2

a2
− k2R

)

J ′

n

(

√

ω2

a2
− k2R

)









wn = 0.

For simplification it is entered (13) following designations:

(

α11 + ρshω
2
)

un + α12ϑn + α13wn = 0,

α21un +
(

α22 + ρshω
2
)

υn + α23wn = 0, (14)

α31un + α32ϑn +









α33 − ρshω
2 + ω2 ρf

Jn

(

√

ω2

a2
− k2R

)

J ′

n

(

√

ω2

a2
− k2R

)









wn = 0.

Here

α11 = −
(

k2C11 +
n2

R2
C66

)

, α23 =
kn

R
(C12 + C66) ,

α12 = α21 =
kn

R
(C12 + C66) , α22 = −

(

k2
(

C66 +
4

R2
D66

)

+
n2

R2

(

C22 +
1

R2
D22

))

,

α13 = α31 = −
k

R
C12, α23 = −

n

R2
C22 +

k2n

R2
(D12 + 4D66)−

n3

R4
D22,

α32 =
n

R2
C22 +

k2n

R2
(D12 + 4D66) +

n3

R4
D22,

α33 =
1

R2
C22 + k4D11 +

2k2n2

R2
(D12 + 2D66) +

n4

R4
D22.
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Let’s write out a condition non-triviality decision of system (14) rather un, vn , wn:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

α11 + ρshω
2 α12 α13

α21 α22 + ρshω
2 α23

α31 α32 α33 − ρshω
2 + ω2 ρf

Jn

(

√

ω
2

a
2
−k2R

)

J ′

n

(

√

ω
2

a
2
−k2R

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0.

From here we will receive:

(

α11 + ρshω
2
) (

α22 + ρshω
2
)









α33 − ρshω
2 + ω2 ρf

Jn

(

√

ω2

a2
− k2R

)

J ′

n

(

√

ω2

a2
− k2R

)









+ α12α23α31+

+α13α21α32 −
(

α22 + ρshω
2
)

α13α31−

−α12α21









α33 − ρshω
2 + ω2 ρf

Jn

(

√

ω2

a2
− k2R

)

J ′

n

(

√

ω2

a2
− k2R

)









−

−α32

(

α11 + ρshω
2
)

α23 = 0, (15)

−ρ3sh
3ω6 + (−α11 − α22 + α33) ρ

2

sh
2ω4+

+(α11α33 + α22α33 − α11α22 − α13α31 − α32α23 + α12α21) ρhω
2 +

+α11α22α33 + ρ2sh
2ω6aρf

Jn

J ′

n

+ α22ρshω
4ρf

Jn

J ′

n

+ α11ρshω
4ρf

Jn

J ′

n

+

+α11α22ω
2ρf

Jn

J ′

n

+ α12α23α31 + α13α21α32−

−α13α31α22 − α11α32α23 − α12α21α33 + α12α21ω
2ρf

Jn

J ′

n

= 0. (16)

The equation (16) represents cubic the equation:

Ω3

1 +A1Ω
2

1 +A2Ω1 +A3 = 0. (17)

Here
Ω1 = ρshω

2, (18)

A1 = α11 + α22 − α33,
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A2 = −α11α33 − α22α33 + α11α22 + α13α31 + α32α23 − α12α21,

A3 = −α11α22α33 − α12α23α31 − α13α21α32 + α13α31α22 + α11α32α23 + α12α21α33−

−ρ2sh
2ω6ρf

Jn

J ′

n

− α22ρshω
4ρf

Jn

J ′

n

− α11ρshω
4ρf

Jn

J ′

n

−

−α11α22ω
2ρf

Jn

J ′

n

+ α12α21ω
2ρf

Jn

J ′

n

.

Let’s define [14] Ω1 of (16)

Ω1 = y −
A1

3
, (19)

y3 + py + q = 0,

y1 = A+B; y2,3 = −
A+B

2
± i

A−B

2

√
3, (20)

A = 3

√

−
q

2
+
√

Q; B = 3

√

−
q

2
−
√

Q; Q =
(p

3

)3

+
(q

3

)2

,

p = −
A2

1

3
+A2; q = 2

(

A1

3

)3

−
A1A2

3
+A3.

In case of absence of a liquid (ρ = 0) the equation (17) will become

(

Ω0

1

)3
+A0

1

(

Ω0

1

)2
+A0

2Ω
0

1 +A3

0 = 0. (21)

Here
Ω0

1 = ρsh (ω0)
2 , (22)

where ω0 - frequency of free fluctuations of a cover without a liquid.

A0

1 = A1; A0

2 = A2;

A0

3 = α11α22α33 + α12α23α31 + α13α21α32 − α12α21α33 − α12α21α32.

The decision of the equation (21) becomes [15]:

Ω0

1 = y01 −
A0

1

3
, (23)

y01 = A0 +B0; y02,3 = −
A0 +B0

2
± i

A0 −B0

2

√
3, (24)

A0 =
3

√

−
q0

2
+
√

Q0; B0 =
3

√

−
q0

2
−
√

Q0; Q0 =
(p0

3

)3

+
(q0

3

)2

,

p0 = p, q0 = 2

(

A0
1

3

)3

−
A0

1
A0

2

3
+A0

3.

Considering (20) in (19):

Ω1 = A+B −
A1

3
, (25)
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and considering (24) in (23), we receive

Ω0

1
= A0 +B0 −

A0

1

3
,

from here:

Ω0
1

Ω1

=
A0 +B0 −

A0

1

3

A+B − A1

3

.

From here

Ω0

1 =
A0 +B0 −

A0

1

3

A+B − A1

3

Ω1.

In other parties from (19) and (22):

ω0 =

√

√

√

√

A0 +B0 −
A0

1

3

A+B − A1

3

ω. (26)

The formula (26) expresses dependence ω0 from ω.

The equation (26) connects free frequency of system with free frequency of a cover
when there is lack of a liquid. The finding of frequencies of free fluctuations of system is
associated with the decision of the transcendental equation (17) at which decision authors
often resort to the approached methods, in particular to asymptotic. However, the decision
of a return problem allows to build schedules of dependence of frequencies of fluctuations
for various fashions of system from frequency of an empty cover that simplifies research,
including definition of frequency of free fluctuations of system.

For some values of the system parameters, the dependence of the vibration frequencies
for different modes of the system on the frequency of the empty shell is plotted. The
influence of the geometric and physical parameters of the system on the free oscillation of
the cylinder is studied.
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Fig.1
The effect of the thickness of a reinforced cylindrical shell filled with a liquid on free

oscillations (h = 0.08; h- shell thickness)

Fig.2
The effect of the thickness of a reinforced cylindrical shell filled with a liquid on free

oscillations (h = 0.5; h- shell thickness)
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SlpW (G), Slp,θB (G) and Slp,θF (G)
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Abstract. In the paper we construct an integral representation of functions from SlpW (G), Slp,θB(G)

and Slp,θF (G), defined in n-dimensional domains and satisfying the flexible ϕ-horn condition.
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1. Introduction

Integral representation of functions from the spaces with dominant mixed derivative
Sobolev - SlpW (G) Besov -Slp,θB (G) Lizorkin-Triebel- Slp,θF (G) in the case when the
domain G ⊂ Rn satisfies the conditions of rectangles, was first studied in the paper of A.J.
Jabrailov [3], and then in the papers of R.A. Mashiev [5], M.K. Aliyev [1] and others, in
the case when the domain G ⊂ Rn satisfies the ”flexible horn condition”, in the papers of
A.M. Najafov [5], [6], [7].

In this paper we construct an integral representation of functions from these spaces,
defined in n-dimensional domains and satisfying the flexible ϕ-horn condition. Let vector
functions ϕ (t) = (ϕ1 (t1) , ..., ϕn (tn)) be differentiable continuous on [0, Tj ] (0 < Tj <∞),
ϕj (tj) > 0 (tj > 0), lim

tj→+0
ϕj (tj) = 0, lim

tj→+∞
ϕj (tj) = Aj ≤ ∞ (j = 1, 2, ..., n). Suppose

that en = {1, 2, ..., n}, e ⊆ en and for each x ∈ G consider the vector-function

ρ (ϕ (t) , x) = (ρ1 (ϕ1 (t1) , x) , ..., ρn (ϕn (tn) , x)) , 0 ≤ tj ≤ Tj , j ∈ en,

where ρj (0, x) = 0 for all j ∈ en, the functions ρj (ϕj (tj) , x) are absolutely continuous
on [0, Tj ] and |ρj (ϕj (tj) , x)| ≤ 1 for almost all tj ∈ [0, Tj ], ρ

′
j (uj , x) = ∂

∂uj
ej (uj , x),

j ∈ en. Given θ [0, 1]n, each of the sets V (x, θ) = ∪
0<tj≤Tj

[ρ (ϕ (t) , x) + ϕ (t) θI] and

x + V (x, θ) ⊂ G, where I = [−1, 1]n, ϕ (t) θI ={(ϕ1 (t1) θ1y1, ..., ϕn (tn) θnyn) : y ∈ I}, is
called a flexible ϕ-horn and the point x is called the vertex of the flexible ϕ-horn x+V (x, θ).
In the case ϕj (tj) = tj the set x+V (x, θ) is called the flexible horn introduced in [6], [7].
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Let 1e = (δe1, ..., δ
e
n), where δej = 1 for j ∈ e and δej = 0 for j∈ en\e = e′. We suppose

that f ∈ Lloc (G) has all needed generalized derivatives on G. Introduce the average of f
as follows:

fϕ(t) (x) =
∏
j∈en

(ϕj (tj))
−1
∫
Rn

f (x+ y) Ω

(
y

ϕ (t)
,
ρ (ϕ (t) , x)

ϕ (t)

)
dy, (1)

where Ω (y, z) = Π
j∈en

ω1 (yj , zj),
y
ϕ(t) =

(
y1

ϕ1(t1)
, ..., yn

ϕn(tn)

)
, in case ϕj (tj) = tλj is the kernel

introduced by O.V. Besov [2]. The average of (1) is constructed from the values of f at
the points x + y ∈ x + V (x, θ) ⊂ G. Let ε = (ε1, ..., εn), 0 < εj < Tj (j ∈ en). Then the
following equality is valid:

fϕ(ε) (x) =
∑
e⊆en

(−1)|1
e|
T e∫
εen

D1e

t fϕ(te+T e′) (x) dte, (2)

where te + T e
′

= tj j = e; te + T e
′

= Tj , j ∈ ei and
be∫
ae
f (x) dxe =

( ∏
j∈en

bj∫
aj

dxj

)
f (x) i.e.,

integration is carried out only with respect to the variables xj whose indices belong to e.

Differentiating with respect to tj (j ∈ e), and using [2], we obtain

D1efϕ(te+T e′) (x) =
∏
j∈e

∂

∂tj
fϕ(te+T e′) = (−1)|1

e|∏
j∈e′

(ϕj (Tj))
−1×

×
∫
Rn

K(ke+1e)
e

 y

ϕ (te + T ε′)
,
ρ
(
ϕ
(
te + T e

′
)
, x
)

ϕ (te + T e′)
, ρ′
(
ϕ
(
te + T e

′
)
, x
)×

× = (−1)|1
e|∏
j∈e′

(ϕj (Tj))
−1 × (ϕj (tj))

−1∏
j∈e

1

ϕj (tj)

∏
j∈e

∂

∂tj
ϕj (tj) dy, (3)

where k = (k1, ..., kn), kj -number in the kernel Ω can be chosen arbitrarily large,

Ke (x, y, z) =
∏
j∈e′

ωj (xj , yj)
∏
j∈e
ρj (xj , y, zj) ∈ C∞0 (Rn ×Rn ×Rn) ,

ρj -is defined in [7] and

K(α)
e (x, y, z) = D(α)

x Ke (x, y, z) ,

∫
Rn

K(α)
e (x, y, z) dx = 0 for all y, z,

and α such that |α| > 0.
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By (2) from (3) we derive

fϕ(ε) (x) =
∑
e⊆en

∏
j∈e′

(ϕj (Tj))
−1

T e∫
εe

∫
Rn

K(ke+1e)
e ×

×

 y

ϕ (te + T ε′)
,
ρ
(
ϕ
(
te + T e

′
)
, x
)

ϕ (te + T e′)
, ρ′
(
ϕ
(
te + T e

′
)
, x
)×

×f (x+ y)
∏
j∈e

(ϕj (tj))
−2∏

j∈e
ϕ′j (tj) dt

edy. (4)

Then, in view of the Remark on Lemma 5.2 of [2], we have the following: if f ∈ Lloc (G)
and 1 ≤ p < ∞, then fϕ(ε) → f (x) as εj → 0 (j ∈ en), moreover, for p > 1 we have
fϕ(ε) (x) → f (x) for almost all x ∈ G by the Remark on Theorem 1.7 of [2]. Then it
follows from (4) that

f (x) =
∑
e⊆en

∏
j∈e′

(ϕj (Tj))
−1×

×
T e∫
εe

∫
Rn

K(ke+1e)
e

 y

ϕ (te + T ε′)
,
ρ
(
ϕ
(
te + T e

′
)
, x
)

ϕ (te + T e′)
, ρ′
(
ϕ
(
te + T e

′
)
, x
)×

×f (x+ y)
∏
j∈e

(ϕj (tj))
−2∏

j∈e
ϕ′j (tj) dt

edy. (5)

Let l = (l1, ..., ln), lj ∈ N , le = (le1, ..., l
e
n), lej = lj for j ∈ e, lej = 0 for j ∈ e′, and let

functions f having on G the generalized mixed derivatives Dlef ∈ Lloc (G) and suppose
that lj ≤ kj for j ∈ e

fϕ(ε) (x) =
∑
e⊆en

(−1)|l
e|∏
j∈e′

(ϕj (Tj))
−1×

×
T e∫
εe

∫
Rn

Me

 y

ϕ (te + T ε′)
,
ρ
(
ϕ
(
te + T e

′
)
, x
)

ϕ (te + T e′)
, ρ′
(
ϕ
(
te + T e

′
)
, x
)×

×Dlef (x+ y)
∏
j∈e

(ϕj (tj))
−2+lj ϕ′e (t) dtedy. (6)

where ϕ′e (t) =
∏
j∈e
εϕ′j (tj), Me (x, y, z) = Dke

x + 1e− leKe (x, y, z). Suppose that we obtain

f
(ν)
ϕ(ε) (x) =

∑
e⊆en

(−1)|ν|+||l
e||∏
j∈e′

(ϕj (Tj))
−1−νj ×
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×
T e∫
εe

∫
Rn

M (ν)
e

 y

ϕ (te + T ε′)
,
ρ
(
ϕ
(
te + T e

′
)
, x
)

ϕ (te + T e′)
, ρ′
(
ϕ
(
te + T e

′
)
, x
)Dlef (x+ y)×

∏
j∈e

(ϕj (tj))
−2+lj−νj ϕ′e (t) dtedy. (7)

Suppose that ϕj (ϕj (tj) , x) and ρ′j (ϕj (tj) , x) as functions of (ϕj (tj) , x) are locally summable
on (0, Tj ]×U (j = 1, ..., n), where U ⊂ G is an open set. Let ν = (ν1, ..., νn) ∈ Nn

0 ; more-
over, lj ≤ νj + kj for j ∈ e, and lj ≤ kj for j ∈ e′. Applying the differentiation Dν

x to
both sides of (4) (and moving the differentiation onto the kernel in the summands on the
right-hand side), we obtain.

Show now that if

µj = lj − νj > 0, j ∈ en (8)

then the generalized mixed derivative Dνf ∈ Lp (G) exists on G. First, establish that

f
(ν)
ϕ(ε) − f

(ν)
ϕ(η) → 0 as 0 < εj < ηj → 0, j ∈ en, (9)

in Lloc (U). Let F ⊂ U be a compact set. Then F + hI ⊂ U for some h > 0. Put

M (ν) (x) = max
e⊆en

max
y1z∈I

∣∣∣M (ν)
e (x, y, z)

∣∣∣ .
By Minkowski’s inequality, for sufficiently small ε and T ≡ η we have∥∥∥f (ν)ϕ(ε) − f

(ν)
ϕ(η)

∥∥∥
1,F+hI

≤ C
∑
e⊆en

∏
j∈e

(ϕj (ηj))
µj−νj

∥∥∥Dλef
∥∥∥
1,F+hI

.

From here and (8) we obtain (9). Suppose that Dνf exists on G, i.e.,

f
(ν)
ϕ(t) (x) = Dνf (x)

for x + Cϕ (t) I ⊂ G with some C = (C1, ..., Cn) > 0. Pass to the limit in (7) as
εj → 0 (j ∈ en), observing that the limit exists in the sense of Lloc (U) by (8) and al-

most everywhere on U by the relation f
(ν)
ϕ(t) → f (x) as ϕj (tj) → 0 (j ∈ en) applied to

Dνf . Then the equality

Dνf =
∑
e⊆en

(−1)|ν|+|l
e|∏
j∈e

(ϕj (Tj))
−1−νj

T e∫
oe

∫
Rn

M (ν)
e (, , )Dlef (x+ y)×

×
∏
j∈e

(ϕj (tj))
−2+lj−νj ϕ′e (t) dtedy (10)
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holds for almost all x ∈ U . Recall that the flexible ϕ- horn x+ V (x, θ) is the support of

the representation (10) for x ∈ U . We can assume that the kernels Me and M
(ν)
e satisfy

the following relations for all α and β∫
Dα
xMe (x, y, z) dx = 0,

∫
Dβ
xMe (x, y, z) dx = 0.

Now we construct an integral representation for studying the properties of functions
from Slp,θB (Gϕ) defined in n-dimensional domains and satisfying the flexible ϕ-horn con-
dition. Introduce the average of f as follows:

fϕ(t) (x) =
(
fϕ(t)

)
ϕ(t)

(x) =
∏
j∈en

(ϕj (tj))
−2
∫ ∫

Ω

(
y

ϕ (t)
,
ρ (ϕ (t) , x)

2ϕ (t)

)
×

×Ω

(
z

ϕ (t)
,
ρ (ϕ (t) , x)

2ϕ (t)

)
f (x+ y + z) dydz. (11)

Obviously, Ω

(
y

ϕ(te+T e′)
,
ρ
(
ϕ
(
te+T e

′)
,x
)

2ϕ(te+T e′)

)
6= 0 is possible only for

∣∣yj − 1
2ρj (ϕj (tj) , x)

∣∣ <
σj
[
1 +mj + 1

2mj

]
ϕj (tj), here σj , mj are integers in formula of ωj determined in [2].

Hence, it follows that double averaging was constructed by contraction of f on x +

ρ
(
ϕ
(
te + T e

′
)
, x
)

+ mϕ
(
σ
(
te + T e

′
))

I and was defined for 0 < σ < η
m0

, m0 =

max (2 + 3mj). Let

f
(ν)
ϕ(t) (x) = (−1)|ν|

∏
j∈en

(ϕj (tj))
−2−νj

∫
Rn

∫
Rn

Ω

(
y

ϕ (t)
,
ρ (ϕ (t) , x)

2ϕ (t)

)
×

×Ω(ν)

(
y

ϕ (t)
,
ρ (ϕ (t) , x)

2ϕ (t)

)
f (x+ y + z) dydz. (12)

Note that if there exists Dνf ∈ Lloc (G), then by G (2) [2] f
(ν)
ϕ(t) (x) = (Dνf)

(x)
ϕ(t) for

x ∈ U , 0 < tj ≤ Tj (j ∈ en). Applying the equality

g (zj) =

∞∫
−∞

ωj

(
y

ϕj (tj)
,
ρj (ϕj (tj) , x)

2ϕj (tj)

)
f (x+ y + z) dyj

we have

D1e

t fϕ(te+T e′) (x) = (−1)|1
e| ∏
j∈en

(ϕj (Tj))
−1∏

j∈e
A−1j

∏
j∈e

(ϕj (tj))
−3∏

j∈e
ϕ′j (tj)×

×
∫
Rn

∞∫
−∞

ψe

 y

ϕ (te + T e′)
,
ρ
(
ϕ
(
te + T e

′
)
, x
)

ϕ (te + T e′)

×



98 N.R. Rustamova, A.M. Gasymova

×
∏
j∈e
Sj

(
uj

ϕj (tj)
− ρj (ϕj (tj) , x)

2ϕj (tj)
,
1

2
ρ′j (ϕj (tj) , x)

)
∆me (ϕ (δu)) f (x+ y + ue) duedy =

= (−1)|1
e|∏
j∈e′

(ϕj (Tj))
−1∏

j∈e
(ϕj (tj))

−3∏
j∈e
ϕ′j (tj)×

×
∫
Rn

∞∫
−∞

ψe

 y

ϕ (te + T e′)
,
ρ
(
ϕ
(
te + T e

′
)
, x
)

ϕ (te + T e′)

×
×Se

(
u

ϕ (t)
− ρ (ϕ (t) , x)

2ϕ (t)

)
∆me (ϕ (δu)) f (x+ y + ue) dydue, (13)

where ∆me(t)f =
∏
j∈e

∆
mj
j (tj)f ,

ψe

 y

ϕ (te + T e′)
,
ρ
(
ϕ
(
te + T e

′
)
, x
)

ϕ (te + T e′)

 =

= 2|1
e|
∏
j∈e′

A−1j
∏
j∈e′

(ϕj (tj))
−1


∫ ∏

j∈e′
ωj

(
yj

ϕj (Tj)
,
ρj (ϕj (Tj) , x)

2ϕj (Tj)

)
×

×ωj
(

z

ϕj (Tj)
,
ρj (ϕj (Tj) , x)

2ϕj (Tj)

)
dze

′
}
×

×
∏
j∈e
ωj

(
yj

ϕj (tj)
,
ρj (ϕj (tj) , x)

2ϕj (tj)

)
∂

∂yj
ωj

(
zj

ϕj (tj)
,
ρj (ϕj (tj) , x)

2ϕj (tj)

)
,

Sj , Aj are defined in [7, p. 88].

The equality (13) is valid in some vicinity of x(0) ∈ U also for the vector function
ρ
(
ϕ (t) , x(0)

)
instead of ρ (ϕ (t) , x). In this case, differentiating it with respect to x in the

vicinity of the point x(0), taking into account possibility of carrying over the differentiation
operation on the kernel, we have

D1e

t f
(ν)
ϕ(te+T ) (x) = (−1)|ν|+|1

e|∏
j∈e′

(ϕj (Tj))
−1−νj

∏
j∈e

(ϕj (tj))
−3−νj

∏
j∈e
ϕ′j (tj)×

×
∫
Rn

∞∫
−∞

ψ(ν)
e

 y

ϕ (te + T e′)
,
ρ
(
ϕ
(
te + T e

′
)
, x
)

ϕ (te + T e′)

×
×Se

(
u

ϕ (t)
− ρ (ϕ (t) , x)

2ϕ (t)
,
1

2
ρ′ (ϕ (t) , x)

)
∆me (ϕ (δu)) f (x+ y + ue) dydue. (14)
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Hence we get

Dνf (x) =
∑
e⊆en

(−1)|ν|
T e∫
0e

D1e
t f

(ν)

ϕ(te+T e′) (x) dte =

=
∑
e⊆en

(−1)|ν|
∏
j∈e′

(ϕj (Tj))
−1−νj ×

×
T e∫
0e

∫
Rn

∞e∫
−∞e

ψ(ν)
e

 y

ϕ (te + T e′)
,
ρ
(
ϕ
(
te + T e

′
)
, x
)

ϕ (te + T e′)

×
×Se

(
u

ϕ (t)
− ρ (ϕ (t) , x)

2ϕ (t)
,
1

2
ρ′ (ϕ (t) , x)

)
∆me (ϕ (δu)) f (x+ y + ue)×

×
∏
j∈e

(ϕj (Tj))
−3−νj

∏
j∈e
ϕ′j (tj) dt

edydue. (15)

Note that ψe (y, z) ∈ C∞ (Rn ×Rn), i.e. is infinitely differentiable with respect to all
variables, and ψe (·, z) is uniformly finite with respect to z from the arbitrary compact.
The equality (15) is valid almost everywhere on V , the set x+V (x, θ) is a support of this
representation.

Show that if the function f satisfies the conditions

∞e∫
0e

∏
j∈en

(ϕj (tj))
−1−θelj

∥∥∆me (ϕ (t) , E) f
∥∥θε
p
dte


1
θe

≤ Ae (E) , e ⊆ en,

where Ae (E) are the constants independent of E and the vector ν = (ν1, ..., νn),νj ≥ 0
are entire (j ∈ en) satisfy the conditions εj = lj − νj > 0 (j ∈ en), then there exists the
derivative Dνf ∈ Llocp (G) and identity (15) is valid.

Let ρj (ϕj (tj) , x) = 0, 0 ≤ tj ≤ Tj (j ∈ en) and the compact F ⊂ G. Then for all
rather small h = (h1, ..., hn), hj > 0 (j ∈ en)F + hI is contained in some compact E ⊂ G.
Based on (15), Minskovsky-Young and Holder generalized inequalities, we successively get∥∥∥f (ν)ϕ(ε) − f

(ν)
ϕ(T )

∥∥∥
p,F
≤

≤
∑
e⊆en

Ce

∥∥∥ψ(ν)
e

∥∥∥
1
‖Se‖θe Ae (E)

∏
j∈e

(ϕj (Tj))
lj−νj

hence it follows that
∥∥∥f (ν)ϕ(ε) − f

(ν)
ϕ(T )

∥∥∥
p,F
→ 0 for 0 < εj < Tj → 0, j ∈ en. Then

fϕ(ε) (x)→ f (x)
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as εj → 0 (j ∈ en) in the sense of convergence Lloc (G). Based on lemma 6.2 [2] we deduce
that there exists Dνf ∈ Lp (G).

Now, for studying the space Slp,θF (G) we construct integral representation of functions
being some modification of the representation (15). Introduce the following averaging that
differ from previous ones:

f̃ϕ(t) (x) =

((
f
(x)
ϕ(t)

)
ϕ(t)

)
ϕ(t)

(x) =

=
∏
j∈en

(ϕj (tj))
−1
∫
Rn

Ω

(
y

ϕ (t)
,
ρ (ϕ (t) , x)

3ϕ (t)

)
f (x+ y) dy, (16)

and assume that mϕ (σt) I ⊂ (mϕ (ηt) I)ϕ(ηt) ⊂ (ϕ (ηt) I)ϕ(σt) σj ,mj are the numbers

contained in the formula of ωj that were determined in [2]. In other words, f̃ϕ(t) (x) was
constructed by contraction of f on Gϕ(σt). Differentiating the equality (16) with respect

to x in the neighborhood of the point x(0) taking into account possibility to transfer the
differential operation on the kernel, we get

f̃
(ν)
ϕ(t) (x) = (−1)|ν|

∏
j∈en

(ϕj (tj))
−1−νj

∫
Rn

Ω(ν)

(
y

ϕ (t)
,
ρ (ϕ (t) , x)

3ϕ (t)

)
f (x+ y) dy, (17)

Differentiating with respect to tj and under the condition 0 < εj < Tj , j ∈ en from
(17) we get

f̃
(ν)
ϕ(ε) (x) =

∑
e⊆en

(−1)|1
ε|
T ε∫
εe

D1e

t fϕ(te+T e′) (x) dte =

=
∑
e⊆en

(−1)|ν|+|1
ε|∏
j∈e′

(ϕj (Tj))
−1−νj ×

×
T ε∫
εe

∫
Rn

M (ν)
e

 y

ϕ (te + T e′)
,
ρ
(
ϕ
(
te + T e

′
)
, x
)

3ϕ (te + T e′)

 fe (x+ y, t)×

×
∏
j∈e

(ϕj (tj))
−2−νj

∏
j∈e
ϕ′j (tj) dt

edy, (18)

where M
(ν)
e (y, a) = D

(ν)
y Me (y, a); y, a ∈ Rn,

M (ν)
e (y, a) = 3

∏
j∈e
A−1j

∏
j∈e′

ωj

(
yj − zj − uj ,

aj
3

)
ωj

(
zj ,

aj
3

)
ωj ,

aj
3

×
×
∏
j∈e

∂

∂yj
ωj

(
yj ,

aj
3

)
,
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fe (x, t) =
∏
j∈e

(ϕj (tj))
−2
∫ ∫ ∏

j∈e
ωj

(
zj

ϕj (tj)
,
ρ (ϕ (te) , x)

3ϕj (tj)

)
×

×ρj
(

uj
ϕj (tj)

− ρj (ϕj (tj) , x)

3ϕj (tj)
,
1

3
ρj (ϕj (tj) , x)

)
×

×∆me
(
ϕ (δu) , Gϕ(ηt)

)
f (x+ ze + ue) duedze,

furthermore, we can show that

|fe (x, t)| ≤ C
1e∫
−1e

δm
e

(ϕ (δt)) f (x+ vϕ (t)) dve.

Note that under the condition lj − νj > 0 (j ∈ n) there exists a generalized derivative

Dνf ∈ Lloc (G). Then f̃
(ν)
ϕ(ε) (x) =

(
Dν f̃

)
ϕ(ε)

(x) and as εj → 0 (j ∈ n) f̃ϕ(ε) → Dνf

almost everywhere on G and b in the sense of Lloc (G). Passing to the limit εj → 0, j ∈ en
for f ∈ Slp,θF (G)

Dνf (x) =
∑
e⊆en

(−1)|ν|
∏
j∈e′

(ϕj (Tj))
−1−νj ×

×
T e∫
0e

∫
Rn

M (ν)
e

 y

ϕ (te + T e′)
,
ρ
(
ϕ
(
te + T e

′
)
, x
)

3ϕ (te + T e′)

 fe (x+ y, t)×

×
∏
j∈e′

(ϕj (tj))
−2−νj

∏
j∈e
ϕ′j (tj) dt

edy, (19)

where the equality is fulfilled almost everywhere on G in the sense Lloc (G) and the set
X + ∪

0<tj≤Tj
[ρ (ϕ (t) , x) +mϕ (σt) I] is the support of the representation (19). It should

be noted that Me ∈ C∞0 (RnxRn) and
∫
M

(ν)
e (y, a) = 0; ty, a ∈ Rn, ν ∈ Nn

0 .
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On Global Bifurcation from Zero and Infinity in Fourth
Order Nonlinear Eigenvalue Problems

N.A. Mustafayeva

Abstract. In this paper we consider nonlinear eigenvalue problems for fourth order ordinary dif-
ferential equations. We study bifurcation problems from zero and infinity simultaneously for these
problems. We prove the existence of two pairs of unbounded continua of solutions corresponding to
the usual nodal properties and bifurcating from intervals of the line of trivial solutions and infinity.
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cation from infinity, bifurcation interval, connected component.
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1. Introduction

We consider the following nonlinear eigenvalue problem

`y ≡ (py′′)′′ − (qy′)′ + r(x)y = λτy + h(x, y, y′, y′′, y′′′, λ), x ∈ (0, l), (1)

y′(0) cosα− (py′′)(0) sinα = 0,
y(0) cosβ + Ty(0) sinβ = 0,
y′(l) cos γ + (py′′)(l) sin γ = 0,
y(l) cos δ − Ty(l) sin δ = 0,

(2)

where λ ∈ R is a spectral parameter, Ty ≡ (py′′)′ − qy′, p is positive, twice continuously
differentiable function on [0, l], q is nonnegative, continuously differentiable function on
[0, l], r is real-valued continuous function on [0, l], τ is positive continuous function on [0, l]
and α, β, γ, δ ∈ [0, π2 ]. The nonlinear term h has the form h = f + g, where f and g are
real-valued continuous functions on [0, l]×R5 and there exit M > 0 and sufficiently large
c0 > 0 such that∣∣∣f(x,y,s,v,w,λ)y

∣∣∣ ≤M, x ∈ [0, l], y, s, v, w ∈ R, |y|+ |s|+ |v|+ |w| ≤ 1
c0
, λ ∈ R, (3)

or ∣∣∣f(x,y,s,v,w,λ)y

∣∣∣ ≤M, x ∈ [0, l], y, s, v, w ∈ R, |y|+ |s|+ |v|+ |w| ≥ c0, λ ∈ R. (4)

http://www.cjamee.org 103 c© 2013 CJAMEE All rights reserved.
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Moreover, for any bounded interval Λ ⊂ R

g(x, y, s, v, w, λ) = o(|y|+ |s|+ |v|+ |w|) as |y|+ |s|+ |v|+ |w| → 0, (5)

or

g(x, y, s, v, w, λ) = o(|y|+ |s|+ |v|+ |w|) as |y|+ |s|+ |v|+ |w| → ∞, (6)

uniformly for x ∈ [0, l] and λ ∈ Λ.

An important role in nonlinear analysis is played bifurcation theory of nonlinear eigen-
value problems. The bifurcation problem in nonlinear eigenvalue problems occurs in all
fields of natural science (see, for example, [4, 5, 9, 10]). Note that, recently have been ob-
tained fundamental results on local and global bifurcation in nonlinear eigenvalue problems
for ordinary differential equations (see for example, [1-5, 7-20] and their references).

Similar problems for Sturm-Liouville equation has been considered before by Stuart
[19], Toland [20], Rabinowitz [15, 16], Berestycki [7], Schmitt and Smith [18], Rynne
[17], Ma and Dai [13], Przybycin [14]. For bifurcation problem from zero in [7, 13-15,
17, 18] the authors prove the existence of two families of global continua of solutions in
R×C1, corresponding to the usual nodal properties and bifurcating from the eigenvalues
and intervals (in R × {0}, which we identify with R) surrounding the eigenvalues of the
corresponding linear problem. For bifurcation problem from infinity in [16, 17] show the
existence of two families of unbounded continua of solutions bifurcating from the points
and intervals in R × {∞} and having the usual nodal properties in the neighborhood of
these points and intervals.

The nonlinear eigenvalue problem (1)-(2) under the conditions (3) and (5) has been
considered by Aliyev [2] (see also [1]), under conditions (4) and (6) has been considered
in our recent paper [3]. In these papers for bifurcation problems from zero and infinity
we are able to obtain similar results as in the case of nonlinear Sturm-Liouville problems
from above.

The purpose of this paper is to study the global bifurcation of nontrivial solutions of
problem (1)-(2) in case when conditions (3), (5) and (4), (6) are satisfied simultaneously
for f and g, respectively.

2. Preliminary

Let E be the Banach space of all continuously three times differentiable functions
on [0, l] which satisfy the conditions (2) and is equipped with its usual norm ||u||3 =
||u||∞ + ||u′||∞ + ||u′′||∞ + ||u′′′||∞, where ||u||∞ = max

x∈[0,l]
|u(x)|.

Let S = S1∪S2, where S1 = {u ∈ E : u(i)(x) 6= 0, Tu(x) 6= 0, x ∈ [0, l], i = 0, 1, 2 } and

S2 = {u ∈ E : there exists i0 ∈ {0, 1, 2} andx0 ∈ (0, 1) such thatu(i0)(x0) = 0, orTu(x0) = 0
and if u(x0)u

′′(x0) = 0, thenu′(x)Tu(x) < 0 in a neighborhood of x0, and if u′(x0)Tu(x0) = 0,
thenu(x)u′′(x) < 0 in a neighborhood of x0}.
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Note that if u ∈ S then the Jacobian J = ρ3 cosψ sinψ of the Prüfer-type transforma-
tion 

y(x) = ρ(x) sinψ(x) cos θ(x),
y′(x) = ρ(x) cosψ(x) sinϕ(x),
(py′′)(x) = ρ(x) cosψ(x) cosϕ(x),
T y(x) = ρ(x) sinψ(x) sin θ(x),

(7)

does not vanish in (0, l) (see [1, 2, 5]).
For each u ∈ S we define ρ(u, x), θ(u, x), ϕ(y, x) and w(u, x) to be the continuous

functions on [0, l] satisfying

ρ(u, x) = u2(x) + u′2(x) + (p(x)u′′(x))2 + (Tu(x))2,

θ(u, x) = arctg
Tu(x)

u(x)
, θ(u, 0) = β − π/2 ,

ϕ(u, x) = arctg
u′(x)

(pu′′)(x)
, ϕ(u, 0) = α ,

w(u, x) = ctgψ(u, x) =
u′(x) cos θ(u, x)

u(x) sinϕ(u, x)
, w(u, 0) =

u′(0) sinβ

u(0) sinα
,

and ψ(u, x) ∈ (0, π/2), x ∈ (0, l), in the cases u(0)u′(0) > 0; u(0) = 0; u′(0) = 0
and u(0)u′′(0) > 0, ψ(u, x) ∈ (π/2, π), x ∈ (0, l), in the cases u(0)u′(0) < 0; u′(0) =
0 and u(0)u′′(0) < 0; u′(0) = u′′(0) = 0, β = π/2 in the case ψ(u, 0) = 0 and α = 0 in the
case ψ(u, 0) = π/2.

It is apparent that ρ, θ, ϕ, w : S × [0, 1]→ R are continuous.

Remark 1. By (7) for each u ∈ S the function w(u, x) can de determined by one of the
following relations

a) w(y, x) = ctgψ(y, x) =
(py′′)(x) cos θ(y, x)

y(x) cosϕ(y, x)
, w(y, 0) =

(py′′)(0) sinβ

y(0) cosα
,

b) w(y, x) = ctgψ(y, x) =
(py′′)(x) sin θ(y, x)

Ty(x) cosϕ(y, x)
, w(y, 0) = −(py′′)(0) cosβ

Ty(0) cosα
,

c) w(y, x) = ctgψ(y, x) =
y′(x) sin θ(y, x)

Ty(x) sinϕ(y, x)
, w(y, 0) = − y′(0) cosβ

Ty(0) sinα
.

For each k ∈ N and each ν ∈ {+ , −} let by Sνk denote the subset of y ∈ S such that
1) θ(y, l) = (2k − 1)π/2− δ, where δ = π/2 in the case ψ(y, l) = 0 ;
2) ϕ(y, l) = (k+1)π−γ or ϕ(u, l) = kπ−γ in the case ψ(y, 0) ∈ [0, π/2); ϕ(y, l) = π−γ

for k = 1, ϕ(y, l) = kπ−γ or ϕ(y, l) = (k−1)π−γ for k ≥ 2 in the case ψ(y, 0) ∈ [π/2, π),
where γ = 0 in the case ψ(y, l) = π/2 ;

3) for fixed y, as x increases from 0 to l, the function θ(y, x) (ϕ(y, x)) strictly increasing
takes values of mπ/2, m ∈ Z (sπ, s ∈ Z) ; as x decreases, the function θ(y, x) (ϕ(y, x)),
strictly decreasing takes values of mπ/2, m ∈ Z (sπ, s ∈ Z) ;
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4) the function νy(x) is positive in a deleted neighborhood of x = 0.

It follows immediately from the definition of the sets S+
k , S

−
k and Sk = S+

k ∪S
−
k , k ∈ N,

that they are disjoint and open in E.
By [2, Theorem 1.2] the eigenvalues of the linear problem

`(y)(x) = λτ(x)y(x), x ∈ (0, l),
y ∈ B.C. , (8)

are real and simple and form an infinitely increasing sequence {λk}∞k=1, where by B.C. we
denote the set of boundary conditions (2). Moreover, for each k ∈ N the eigenfunction
yk(x) corresponding to the eigenvalue λk is lies in Sk (therefore yk(x) has k − 1 simple
nodal zeros in the interval (0, l)).

Lemma 1. [2, Lemma 2.2] If (λ, y) ∈ R × E is a solution of (1)-(2) and y ∈ ∂Sνk , k ∈
N, ν ∈ {+ , −}, then y ≡ 0.

Let C ⊂ R×E denote the set of solutions of problem (1)-(2). We say (λ,∞) is a bifur-
cation point (or asymptotic bifurcation point) for problem (1)-(2) if every neighborhood
of (λ,∞) contains solutions of this problem, i.e. there exists a sequence {(λn, un)}∞n=1 ⊂ C
such that λn → λ and ||un||3 → +∞ as n → ∞ (we add the points {(λ,∞) : λ ∈ R}
to space R × E). Next for any λ ∈ R, we say that a subset D ⊂ C meets (λ,∞) (re-
spectively, (λ, 0)) if there exists a sequence {(λn, un)}∞n=1 ⊂ D such that λn → λ and
||un||3 → +∞ (respectively, ||un||3 → 0) as n→∞. Furthermore, we will say that D ⊂ C
meets (λ,∞) (respectively, (λ, 0)) through R × Sνk , k ∈ N, ν ∈ {+ , −}, if the sequence
{(λn, un)}∞n=1 ⊂ D can be chosen so that un ∈ Sνk for all n ∈ N (in this case we also say
that (λ,∞) (respectively, (λ, 0)) is a bifurcation point of (1)-(2) with respect to the set
R× Sνk ). If I ∈ R is a bounded interval we say that D ⊂ C meets I × {∞} (respectively,
I × {0}) if D meets (λ,∞) (respectively, (λ, 0)) for some λ ∈ I; we define D ⊂ C meets
I × {∞} (respectively, I × {0}) through R× Sνk , k ∈ N, ν ∈ {+ , −}, similarly (see [16]).

When the functions f and g satisfies conditions (3) and (5) in [2] show that problem
(1)-(2) has a nonempty set of bifurcation points, and if (λ, 0) is a bifurcation point of
this problem with respect to the set R × Sνk , then λ ∈ Ik, where Ik = [λk − M

τ0
, λk + M

τ0
],

τ0 = min
x∈[0, l]

τ(x).

For k ∈ N and ν ∈ {+ , −} let C̃νk denote the union of the connected components Cνk, λ
of the solutions set of (1)-(2) under conditions (3) and (5) emanating from bifurcation
points (λ, 0) ∈ Ik × {0} with respect to R× Sνk . Let Cνk = C̃νk ∪ Ik × {0}.

Theorem 1. For each k ∈ N and each ν ∈ {+ , −} the connected component Cνk of C lies
in (R× Sνk ) ∪ (Ik × {0}) and is unbounded in R× E.

The proof of this theorem is similar to that of [2, Theorem 1.3] by using [2, Theorem
1.2].

In [3] it is prove that the set of asymptotic bifurcation points of problem (1)-(2) under
conditions (4) and (6) with respect to the set R× Sνk is nonempty. Moreover, if (λ,∞) is
an asymptotic bifurcation point for (1)-(2) with respect to the set R× Sνk , then λ ∈ Ik.
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For each k ∈ N and each ν ∈ {+ , −} we define the set Dνk ⊂ C to be the union of
all the components of C which meet Ik × {∞} through R × Sνk . The set Dνk may not be
connected in R× E, but the set Dνk ∪ (Ik × {∞}) is connected in R× E.

For any set A ⊂ R×E we let PR(A) denote the natural projection of A onto R×{0}.

Theorem 2. For each k ∈ N and each ν ∈ {+ , −} for the set Dνk at least one of the
followings holds:

(i) Dνk meets Ik′ × {∞} through R× Sν′k′ for some (k′, ν ′) 6= (k, ν);

(ii) Dνk meets R for some λ ∈ R;

(iii) PR(Dνk) is unbounded.

In addition, if the union Dk = D+
k ∪ D

−
k does not satisfy (ii) or (iii) then it must

satisfy (i) with k′ 6= k.

3. Global bifurcation from zero and infinity of solutions of problem
(1)-(2)

If conditions (3), (5) and (4), (6) are satisfied simultaneously for f and g, respectively,
then we can improve Theorems 1 and 2 as follows.

Theorem 3. Let the conditions (3)-(6) both hold. Then for each k ∈ N and each ν ∈
{+ , −} we have Dνk ⊂ R×Sνk and alternative (i) of Theorem 2 cannot hold. Furthermore,
if Dνk meets (λ,∞) for some λ̃ ∈ R, then λ̃ ∈ Ik. Similarly, if Cνk meets (λ̃, 0) for some
λ̃ ∈ R, then λ̃ ∈ Ik.

Proof. It follows from Lemma 1 that if conditions (3)-(4) hold, then C∩(R×∂Sνk ) = ∅.
Hence the sets C ∩ (R × Sνk ) and C\(R × Sνk ) are mutually separated in R × E (see [21,
Definition 26.4]). Thus by [21, Corollary 26.6] it follows that any connected component
of the set C must be a subset of one or another of the sets C ∩ (R× Sνk ) and C\(R× Sνk ).
Since Dνk is a connected component of C which intersect R×Sνk , then Dνk must be a subset
of R× Sνk , i.e. Dνk ⊂ R× Sνk . But this shows that the alternative (i) of Theorem 2 cannot
hold.

Now let Cνk meets (λ̃,∞) for some λ̃ ∈ R. Then there exists a sequence {(λk, n, yk, n)}∞n=1

⊂ Cνk such that λk, n → λ̃ and ||yk, n||3 →∞ as n→∞ and

`yk, n = λk, nτ(x)yk, n + f(x, yk, n, y
′
k, n, λk, n) + g(x, yk, n, y

′
k, n, λk, n).

Let λ /∈ Ik and

δ̃ =
dist{λ̃, Ik}

2
.

Then there exists n0 ∈ N such that

dist {λk, n, Ik} > δ̃.
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Obviously, (λk, n, yk, n) ∈ Cνk solves the nonlinear problem{
`y + ϕk, n(x)y = λτ(x)y + g(x, y, y′, y′′, y′′′, λ),
y ∈ B.C., (9)

where

ϕk, n(x) =

{
− f (x, yk, n(x), y′n(x), y′′k, n(x), y

′′′
k, n(x), λk, n)

yk, n(x)
if yk, n(x) 6= 0,

0 if yk, n(x) = 0.

By virtue of (5) we have |ϕk, n(x)| ≤ M, n ∈ N, x ∈ [0, l]. Since yn(x), n ∈ N, has
k − 1 simple zeros on (0, l) and is bounded on the closed interval [0, l], it follows from [3,
Lemma 5.2 and Remark 5.1] that the k-th eigenvalue λ∗k,n of the linear problem{

`y + ϕk, n(x)y = λτ(x)y, x ∈ (0, l),
y ∈ B.C.

lies in Ik. By [11, Ch. 4, § 3, Theorem 3.1] for each n ∈ N the point (λ∗k,n,∞) is a unique
asymptotic bifurcation point of (9) which corresponds to a continuous branch of solutions
that meets this point through R × Sνk . Hence for each sufficiently large n > n0 we can
assign a small δn > 0 such that δn < δ̃ and |λk, n − λ∗k, n| < δn. Then it follows that

dist {λk, n, Ik} < δ̃, contradicting dist {λk, n, Ik} > δ̃. Thus Cνk can only meet (λ̃,∞) if
λ̃ = λk. Similarly is proved that Dνk can only meet (λ̃, 0) if λ̃ = λk. The proof of this
theorem is complete.

The naturally question arises whether or not Cνk intersects Dνk . The following examples
show that, both cases are possible.

Example 1. Now we consider the boundary problem{
y(4)(x) = λy(x) + 2y(x) + λg̃(x, y(x), y′(x), y′′(x), y′′′(x)) y(x), 0 < x < l,
y(0) = y′′(0) = y(l) = y′′(l) = 0,

(10)

It is obvious that in this case f(x, y, s, v, w, λ) = 2y and g(x, y, s, v, w, λ) = λg̃(x, y, s, v, w) y.
We assume that the function g̃ is satisfied the following conditions:
(i) there exist positive constants K, d and θ such that

|g̃(x, u, s, v, w)| ≤ K(|u|+ |s|+ |v|+ |w|)−θ

for all (x, u, s, v, w) ∈ [0, l]× R4 with |u|+ |s|+ |v|+ |w| ≥ d;
(ii) g̃ is continuous in [0, l]× R4 and f(x, 0, 0, 0, 0) = 0 for x ∈ [0, l].
These two conditions ensures that for the function g(x, u, s, v, w, λ) = λg̃(x, u, s, v, w)

conditions (4) and (6) both hold.
Then it follows from [3, Example 4.1] that if g̃(x, u, s, v, w) ≥ 0 for (x, u, s, v, w) ∈

[0, l]× R4, then Cν1 ∩ Dν1 6= ∅, and if g̃(x, u, s, v, w) ≤ 0 for (x, u, s, v, w) ∈ [0, l]× R4, then
Cν1 ∩ Dν1 = ∅.
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