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Loan Portfolio Risk Value and Expected Loss Analysis

Aydin Huseynov

Abstract. In this article, I am going to about the risk value of the loan portfolio, which is one of
the most important interest-sensitive assets of banks, and the analysis of expected losses. Thus, we
are going to calculate the value at risk of the bank’s credit portfolio (CrVAR) and meanwhile I am
also going to talk about the Expected Loss (EL) and its components, the Probability of Default
(PD) and the calculation of the Loss Given Default (LGD).

Key Words and Phrases: credit risk, portfolio at risk, default equivalent risk, credit value at
risk, expected loss, unexpected loss, probability of default.

1. Portfolio at Risk

The risk portfolio (Portfolio at Risk - PAR) is equal to the ratio of the amount of
overdue credit to the total loan amount (portfolio). This coefficient groups the credits
according to the days of delay (30, 60, 90, 120, 180, 270, 360, etc.). Delay groups should
cover monthly for up to one year and annual for more than a year. The current state of
the loan portfolio and the direction of the trend are determined by the PAR coefficient
relative to the different days of delay. If there is a sharp deterioration in the coefficients
of delay (for example, an increase of 1% per month), then the credits should be analyzed
in more detail by statistical methods to identify the reasons for the delay and take the
indispensable measures.
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Portfolio at Risk (PAR) – example

Overdue
days

7 – 30 31 – 90 91 – 180 181 –270 271 –360 > 360

Overdue
Portfolio 5,723,673 2,196,865 2,692,723 4,281,974 894,405 20,813,491

Total loan
Portfolio 187,766,157

Portfolio at
Risk
(PAR)

3.0% 1.2% 1.4% 2.3% 0.5% 11.1%

Total PAR 19.5%

Total PAR
(AZN) 36,603,130

2. Default Equivalent Risk

Default Equivalent Risk (DER), potential default of the total credit portfolio is forecasted
by giving the probability of default for each group of delays. The possibility of bankruptcy
is determined based on empirical data of the bank. According as the delay period increases,
this possibility also increases and is defined as 100% for overdue credit groups with a delay
period of more than one year. It is possible to use the migration matrix or the transition
matrix to calculate the probability of default.
Default equivalent risk (DER) – example

Overdue days 7 – 30 31 – 90 91 – 180 181 –270 271 –360 > 360

Probability of
default (PD) 1% 5% 20% 50% 80% 100%

Default equiv-
alent
risk (DER)

0.03% 0.1% 0.3% 1.1% 0.4% 11.1%

Total DER 13.0%

Total DER
(AZN)

24,375,626
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3. Expected Loss

Expected Loss (EL) is the average credit loss we expect from a portfolio in a certain
period. Although the losses that a bank will incur in a certain period are not known in
advance, banks are able to forecast the expected loss at an acceptable level. These losses
are called expected losses and are the averages of losses below the area shown by the
dashed lines in the following diagram:

Losses above the dashed line in the picture do not occur every year, but in case of loss,
it might be potentially very large. Banks know that Unexpected Loss (UL) whether will
happen now or then, but they are not aware of the time and severity of losses in advance.
Capital is required in order to compensate such losses. The worst case we can imagine is
that banks lose their entire loan portfolio in a year. Although this is a risky occurrence,
it is impossible and economically inefficient to keep capital against it. Banks want to
reduce risk capital to minimum, as reducing risk capital, increases the amount of money
that can be directed in lucrative investments. On the other hand, the smaller a bank’s
capital, the more likely it is that it will not be able to meet its debt liabilities. That
is to say, failure to cover losses in a certain given year with profits and available capital
will bankrupt the bank. Thus, banks and regulators must carefully balance the risks and
earnings of reserve capital. There are a number of approaches to determining how much
capital a bank will have. The IRB (internal ratings based) approach adopted for Basel II
targeted to bankrupt the bank. With statistical methods, it is possible to estimate the
amount of damage with a predetermined probability. We can show a diagram of expected
and unexpected losses and value at risk as follows:
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As we noted, the expected loss is equal to the amount of the loss over a determined period.
That is to say, it is the amount of loss expected during a certain period. This model is
used to calculate the expected loss of the credit portfolio and the amount of reserves to
be created for the portfolio. In the expected loss model, the loss is a function of three
risk parameters, the probability of default (PD), the equivalent at default (EAD), and the
damage that can be caused by default (LGD).

PD, EAD and LGD can each be calculated at the level of either individual or sector
borrowers. The expected loss is calculated by the following formula:

EL = PD ∗ EAD ∗ LGD

If we show the expected loss as a percentage, the formula will be as follows:

EL% = PD ∗ LGD

Each parameter must be calculated regardless of economic factors, and in this case, the
economic effects are analyzed in a more dynamic way.

EAD is the rest of credit or default value. PD is the probability of default occurring during
in a determined period. PD can be calculated based on historical data for each product
type. LGD is a loss from this credit in case of by the borrower. Another name of LGD is
Loss Rate (LR). LGD is calculated by the following formula:

LGD = 1−RR

Here, RR (recovery rate) is the coefficient of credit recovery, or in other words, the rate
of credit collateral. RR is calculated as follows:

RR = V alue of collateral ∗ k/Credit amount
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The coefficient k can be taken as 80% for precious metals, 60% for real estate, 40% for
automobiles and 20% for moveable estate / equipment. As a simple example, we can
calculate LGD as follows: the residual amount of the credit at risk is 100,000 AZN and
the market value of the collateral is 60,000 AZN. In this case, 40,000 AZN the credit
remains unguaranteed and the LGD coefficient is 40,000 / 100,000 or 40%.

Expected loss calculation (sample)

Imagine that the bank has issued a credit of 2,000,000 AZN, and the current balance of
the credit is 1,700,000 AZN. 1,700,000 AZN is the default value (EAD). According to the
bank’s internal rating model, the customer has a 5% probability of default (PD) over the
next year. If a default occurs, the estimated instantaneous loss ratio (LGD) is 30%. Now
let us calculate the expected loss:

EL = PD ∗EAD ∗ LGD = 5% ∗ 1700000 ∗ 30% = 25500

Therefore, with a probability of 5% default on a credit with a balance of 1,700,000
AZN, our loss at the time of default will be 25,500 AZN.

4. Unexpected Loss

Unexpected Loss (UL) is the standard error for default losses within a year. Unexpected
loss can also be expressed as the volatility of the expected loss. In other words, the
unexpected loss is the average of the loss over the average loss. In the following picture
above the area shown by the dashed lines is the average of the losses.

Unexpected loss is calculated by the following formula:

[UL = EAD ∗ [(PD ∗ σ
2
LGD) + (LGD2

∗ σ
2
PD)]

1/2

Here,
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σ
2
LGD = LGD ∗ (1− LGD)/4

and

σ
2
PD = PD ∗ (1− PD)

σ2
LGD is a variation of the moment of loss at default and σ2

PD is a variation of the prob-
ability of default. Unexpected loss is calculated as the standard deviation from the average
at a certain confidence level and is called Credit VaR (Value at Risk). In accordance with,
σ2
LGD and σ2

PD are both standard deviations of the (LGD) and default probability (PD).

Unexpected loss calculation (sample)
According to the example above, the default probability (PD) and loss rate (LGD)

have standard deviations of 6% and 20%. Now let us calculate the unexpected loss:

UL = EAD ∗ [(PD ∗ σ2
LGD) + (LGD2

∗ σ2
PD)]

1/2 =

= 1700000 ∗ (5% ∗ 20%2 + 30% ∗ 6%2)1/2 = 94346

Therefore, a credit with a balance of 1,700,000 AZN will have a probability of default
of 5%, a loss ratio of 30% and with a standard deviation of 6% and 20%, we will have a
default loss 94,346 AZN.

5. Calculation of the probability of default

By giving the probability of default (PD) for each delay group, it is possible to forecast
the potential default volume of the total portfolio. Probability of bankruptcy (PD) is
determined regarding migration matrices based on the bank’s empirical data. As the delay
period increases, this probability also increases, and the probability of default reaches 100%
for credit groups with a delay period of more than 360 days.

To calculate the probability of default, you should first calculate the Roll rate coeffi-
cient. Roll-rate is the percentage of loans in any delay interval to another delay interval,
in other words, its the coefficient. That is, according to the working and delay days of
credits from the intervals of 0, 1 - 30, 31 - 60, 61 - 90, ..., 330 - 360, respectively, 1 - 30,
31 - 60, 61 - 90, ..., 330 - the transition to intervals of 360, over 360, is the percentage of
migration. To roll-rate analysis, a Migration Matrix of Deferred Loans is prepared and
the transition cells from delay intervals to subsequent delay intervals are considered.

First of all, let’s form Migration matrices. The migration matrix, also known as the
transition matrix, is an analytical report showing the transition of a bank’s credit portfolio
from one delay interval to another delay interval according to the days of delay. This report
is one of the main risk metrics and tools of the loan portfolio. The migration matrix shows
the status of credits available during one period for subsequent periods.

In order to form a migration matrix, first of all we are preparing the distribution on
the credit portfolio to a certain date (must be at least 30 days before the current date)
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according to 0, 1-30, 31-60, 61-90, ..., 301-330 and 331-360 days of delay. It is possible to
enter both the number and amount of credits in the portfolio separately for these intervals.
In this way, we prepare two separate reports on the number and amount. We enter the
distribution of these delay days vertically in the first column of the matrix. Then, 30 days
after the date that we mentioned above, we prepare the distribution of the credit portfolio,
which includes these loans, on days of delay of 1-30, 31-60, 61-90, ..., 301-330, 331-360 and
more than 360 days. We enter the distribution of these delay days horizontally in the first
row of the matrix. In the end we will get a matrix in the following form.

Thus we obtain the migration matrix. Now let us show this migration matrix as a
percentage.

As can be seen from the matrix, this form of analysis shows how much or what per-
centage of credits of the bank’s credit portfolio on overdue days were closed for certain



10 Aydin Huseynov

periods, remained in the current status and migrated to the periods after 30 days. As
mentioned above, Roll-rate is the percentage of loans in any delay interval to another de-
lay interval, in other words, the coefficient. In other words, Roll-rate ratios are the ratios
on the diagonal of the migration matrix. If we look at the example above, our Roll-rate
report will be like this:

As can be seen from the matrix, the Roll-rate shows the diagonal of the Migration
Matrix. According to the report, 1.3% of non-overdue credits are in the range of 1 to 30
days, 1.8% of credits with a delay of 1 to 30 days are in the range of 31 to 60 days, and
13.2% of credits with a delay of 31 to 60 days are 61 - 90-day delay interval, 16.7% of
credits with a delay of 61-90 days - 91-120 days, etc. passed. Our roll-rate report will be
summarized as follows:

Overdue days Roll rate

Due loans 1.3%

1 – 30 1.8%

31 – 60 13.2%

61 – 90 16.7%

91 – 120 51.6%

121 – 150 47.4%

151 – 180 100%

181 – 210 75%

211 – 240 82.1%

241 – 270 89.7%

271 – 300 28.6%

301 – 330 92.6%

331 – 360 93.8%
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Now let us calculate the probability of default. In order to calculate the probability of
default on a delay interval, it is necessary to multiply that delay interval by the roll-rate
ratios of all subsequent delay intervals. According to this method, we can calculate the
probability of default (PD) as shown in the following chart:

Overdue days Roll rate Probability of default
(PD)

Due loans 1.30% 0.00%

1 – 30 1.80% 0.00%

31 – 60 13.20% 0.07%

61 – 90 16.70% 0.56%

91 – 120 51.60% 3.36%

121 – 150 47.40% 6.50%

151 – 180 100% 13.72%

181 – 210 75% 13.72%

211 – 240 82.10% 18.29%

241 – 270 89.70% 22.28%

271 – 300 28.60% 24.84%

301 – 330 92.60% 86.86%

331 – 360 93.80% 93.80%

As a result, we calculated the probability of default of overdue credits for each delay
interval. Now let us calculate the expected losses for each delay interval using the default
probabilities we calculated and the expected loss formula:

Overdue days PD EAD LGD EL = PD x EAD
x LGD

Due loans 0.00% 17,816 40% 0

1 – 30 0.00% 1,234 40% 0

31 – 60 0.07% 53 40% 0

61 – 90 0.56% 36 40% 0

91 – 120 3.36% 31 40% 0

121 – 150 6.50% 19 40% 0

151 – 180 13.72% 21 40% 1

181 – 210 13.72% 20 40% 1

211 – 240 18.29% 28 40% 2

241 – 270 22.28% 29 40% 3

271 – 300 24.84% 35 40% 3

301 – 330 86.86% 27 40% 9

331 – 360 93.80% 16 40% 6

Finally, we calculated the expected losses of overdue credits (numerically) for each delay
interval with a 40% loss coefficient (LGD) and default probabilities (PDs) for each delay
interval.
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6. Credit Value at Risk - CrVaR

The value of the credit portfolio at risk (Credit Value at Risk - CrVaR) represents the
maximum amount of probable loss with a calculated confidence level for a predetermined
period.

As can be seen from the definition, Risk Value at Risk involves two factors such as time
interval and confidence level. When applying any risk model a minimum of 95% or 99%
is taken as the confidence level. The following formula is used to calculate CrVaR:

CrV aR = UL+ EL

7. Economic capital

Economic Capital (EC) is the amount of capital required to cover unforeseen losses
(UL). That is, reserves allocated for unexpected losses constitute economic capital. We
can show economic capital on the graph as follows:

The CrVaR method is used to calculate economic capital. The following formula is
used to calculate economic capital:

EC = CrV aR− EL

or

EC = UL

The Bank creates credit reserves in the face of expected losses and economic capital in the
face of unexpected losses. We can show this with the following graph:
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8. Distribution of losses

Loss distribution is the total distribution of unexpected losses, as well as losses that are
outside the risk value of the credit portfolio. We can show this in the following diagram:

The distribution of losses includes both credit reserves, economic capital, and excep-
tional losses. Exceptional losses are losses due to an extraordinary situation that does not
occur on a regular basis. In our samples and approaches, this covers 5% and 1%, which
are not covered by CrVaR. We can show this with the following diagram:
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Integral Inequalities for Function Spaces with a Finite
Collection of Generalized Smoothness
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Abstract. In this paper the function space
n⋂
k=0

Λ
〈mk;Nk〉
pk,θk

(G,ϕk) is defined. This function spaces

is the generalization of classical Sobolev-Slobodetskii and Nikolskii-Besov spaces. We established
sufficient conditions under which the embedding theorems for these spaces are proved. We reduce
the analog of integral representations of functions given by S.L. Sobolev for functions form the

space
n⋂
k=0

Λ
〈mk;Nk〉
pk,θk

(G,ϕk) .

Key Words and Phrases: Key Words and Phrases: Generalized Hölder space, strong a (h)-
horn condition, integral representation, embedding theorem.
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1. Introduction

The theory of embedding of spaces of differentiable functions of several variables de-
veloped as a new direction of mathematics in the 30s of the 20th century as a result of the
works of S.L. Sobolev, which is presented in detail in monograph [5]. This theory studies
important connections and relations of differential properties of functions in various met-
rics. In addition to its independent interest from the point of view of function theory, it
also has numerous and effective applications in the theory of partial differential equations.
Such applications were given by S.L. Sobolev in [5] (see, also [3]). S.L. Sobolev studied

isotropic spaces W
(l)
p (G) of functions f defined on a domain G ⊂ Rn with the norm

‖f‖
W

(l)
p (G)

=
∑
|α|≤l

‖Dαf‖Lp(G) ,

where l is a non-negative integer and p ≥ 1. S.L. Sobolev proved embedding theorems for

function space W
(l)
p (G) in domains of n-dimensional Euclidean spaces. Namely, theorems

on the summability in power q of derivatives Dβf with respect to a domain G or manifolds
of lower dimension belonging to G .

http://www.cjamee.org 16 © 2013 CJAMEE All rights reserved.



In subsequent years, the theory of embedding developed intensively in various direc-
tions and received new interesting and important applications. Among these works, one
can note the works of S.M. Nikolskii, O.V. Besov, V.P. Ilin, N. Aronszajn, V.M. Babich,
L.N. Slobodetskii, A.S. Jafarov, G. Freud, D. Kralik, V.I. Burenkov, A.J. Jabrailov and
others. For more details we refer the readers to [1] and [4].

S.L. Sobolev established embedding theorems using integral representations of func-
tions in terms of their weak derivatives. This method of integral representations was
developed in the works of V.P. Ilin and, in particular, was carried over to cases of repre-
sentation through differences. One of the significant advantages of the method of integral
representations is that the representation of a function at a given point is constructed
from the values of this function at the points of a bounded cone with vertex at this point.
This creates an opportunity to study function spaces of functions defined on an open set
of a sufficiently general form.

The remainder of the paper is structured as follows. Section 2 contains some prelimi-
naries along with the standard ingredients used in the proofs. In Section 3 we reduce the
class of domains satisfying special horn conditions. Our principal assertions, concerning
the embedding of Hölder spaces with generalized smoothness to Lebesgue spaces are for-
mulated and proved in Section 4. We establish sufficient conditions on a domain G ⊂ Rn
for the validity of embedding theorem.

2. Preliminaries

Let Rn be the n− dimensional Euclidean space of points x = (x1, ..., xn) , and let G be
a Lebesgue measurable set of Rn. Suppose f : G→ Rn is a Lebesgue measurable function
and let 1 ≤ p <∞. Throughout this paper we will assume that all sets and functions are
Lebesgue measurable.

Definition 1. The Lebesgue space Lp (G) is the class of all measurable functions f defined
on G such that

‖f‖Lp(G)
= ‖f‖p,G =

(∫
G
|f (x)|p dx

) 1
p

. (1)

In the case p =∞, the space L∞ (G) will be defined as all measurable functions such that

‖f‖∞,G = vrai sup
x∈G

|f(x)| . (2)

Let
m = (m1, ..,mn)
N = (N1, .., Nn)

}
(3)

be the vectors with integer non-negative components.

The mixed derivative of order |m| = m1 + ...mn is defined by

Dmf (x) = Dl1
m1 ...Dn

mnf (x1, .., xn) =
∂|m|

∂x1
m1 ...∂xnmn

. (4)
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We denote by

∆N (t) f (x) = ∆1
N1 (t1) ...∆n

Nn (tn) f (x1, .., xn) (5)

the |N | = N1 + ...Nn-order finite mixed difference of a function f = f (x), corresponding
to mixed step of a vector t = (t1, ..tn). Here

∆k
Nk (tk) f (...xk...) = ∆k

1 (tk)
{

∆k
Nk−1 (tk) f (...xk...)

}
∆k

0 (tk) f (..., xk, ...) = f (..., xk, ...)
∆k

1 (tk) f (..., xk, ...) = f (..., xk + tk, ...)− f (..., xk, ...)
(6)

Therefore

∆k
Nk (tk) f (..., xk, ...) (7)

Is the finite difference of a function f = f (x) of order Nk in the direction of variable xk
with step tk.We observe that in the domain G ⊂ En the expression

∆N (t, G) f (x) = ∆N (t) f (x) ∆N (t, G) f (x) = ∆N (t) f (x) , (8)

is the mixed difference of a function f = f (x). In this case we suppose that the mixed
difference is constructed from the vertices of a polyhedron that lies entirely in the domain
G ⊂ En. Otherwise, we assume that

∆N (t, G) f (x) = 0. (9)

Let ϕ = ϕ (t) = (ϕ1 (t1) , ..., ϕn (tk)) be a vector-function such that

ϕj = ϕj (tj) > 0, if tj 6= 0 and ϕj (tj) ↓ 0 for t→ 0 and for all j = 1, 2, .., n.

Let 1 ≤ θ <∞ and let dt
t =

∏
j∈En

dtj
tj
. We consider the following semi-norm

‖f‖
Λ
〈m,n〉
p,θ

(G,ϕ) =


∫
E|En|

∥∥∥∥∥∆N
(
t
N ;G

)
Dmf∏

j∈En ϕj (tj)

∥∥∥∥∥
θ

p,G

dt

t


1
θ

. (10)

For θ =∞, we suppose that

‖f‖
Λ
〈m,n〉
p,∞ (G,ϕ)

= vrai sup
t∈EN

∥∥∥∥∥ DN
(
t
N , G

)∏
j∈En ϕj (tj)

∥∥∥∥∥
P,G

. (11)

Here En = sup p N is a support of a vector N = (N1, ...Nn) . In other words En is a set of
nonzero indices of the coordinates of vector N. Thus, En ⊂ {1, 2, ...n} = en.

Let us t
N =

(
t1
N1
, ... tnNn

)
and we use the convention 0

0 = 0.

Therefore E|EN | =
{
t ∈ EN ; tj = 0

(
j ∈ en/En

)}
.

Let
mk =

(
mk

1, ..m
k
n

)
Nk =

(
Nk

1 , ..., N
k
n

) } (k = 0, 1, ..., n) (12)

be the vectors with integer non-negative components. Thus,
mk
j ≥ 0

Nk
j ≥ 0

}
for all

(
j = 1, n

)
and k = 0, n.
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Suppose that any vector-function from collection of (n+ 1) vector function ϕk = ϕk (t) =(
ϕk

1

(
t1, ..., ϕ

k
n (tn)

))
satisfy following conditions:

ϕj = ϕj (tj) > 0 for tj 6= 0
ϕj (tj ↓ 0) for t→ 0.

Definition 2. Let 1 ≤ pk ≤ θk ≤ ∞, and k = 0, ..., n . The space

n⋂
k=0

Λ
〈mk;Nk〉
pk,θk

(G,ϕk) (13)

is defined as the closure of sufficiently smooth functions f = f (x) with compact support
on Rn by the norm

‖f‖ n⋂
k=0

Λ
〈mk;Nk〉
pkθk

(G;ϕk)
=

n∑
k=0

‖f‖
Λ
〈mk,Nk〉
pkθk

(G,ϕk)
<∞. (14)

Remark 1. We observe that the space given by (2.13) in the case 1 ≤ pk ≤ θk ≤ ∞ (
k = 0, n ) is a generalization of the classical Sobolev-Slobodetskii space W r

p (G) . Also, in

the case 1 ≤ pk ≤ θk ≤ ∞ and sup pmk ⊆ sup pNk = ENk the space
n⋂
k=0

Λ
〈mk;Nk〉
pk,θk

(G,ϕk)

is a generalization of Nikolskii-Besov space Br
p,θ (G) (see, [2]).

3. The class of domains G ⊂ En

Let
a (υ) = (a1 (υ) , ..., an (υ)) a (υ) = (a1 (υ) , ..., an (υ)) (15)

be a differentiable vector-function in [0;h] such that

aj = aj (ν) > 0 , v ∈ (0;h]
lim
υ→0+

aj (υ) = 0

d
dυ
aj (υ) > 0 , v ∈ (0;h]

 (16)

for all j = 1, n.
Let δ = (δ1, ..., δn) be a vector such that δj = ±1. We put

Rδ (a (h)) =
⋃

0<v≤h

{
y ∈ En; cj ≤ yj−δj

aj(υ) ≤ A
∗
j

}(
j = 1, n

)
for all υ ∈ (0;h] . (??)

The set X +Rδ (a (h)) is called ≤ a (h) ≥-horn with vertices in x ∈ Rn.
Note that at each point x ∈ Rn, you can give2n-number of ”a (h) ”-horns with vertex

in x ∈ Rn.
If a vector δ = (δ1, ..., δn) be fixed, then at each point x ∈ Rn there is only single

≤ a (h) ≥-horn (for the same vector function (15) - (3.2) the vertex at this point x ∈ Rn).
A subdomain Ω ⊂ G is considered to be a subdomain satisfying the a (h)-horn condi-

tion, if there is a vector δ = (δ1, ..., δn) with δj = ±1 for which X +Rδ (a (h)) ⊂ G for all
x ∈ Ω .
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Definition 3. A subdomain G ⊂ En is called a domain satisfying ”a (h)- horn” condition,
if there exists a finite collection of subdomains

Ω1,Ω2, ...,Ωm ⊂ G,

with a (h)-horn condition such that
M⋃
k=1

Ωk = G.

By C (a (h)) we denote the class of domains G ⊂ En satisfying the a (h)-horn condition.

Definition 4. Let k = 1,M and let Ωk,ε = {y ∈ Ωk; ρ (y;G\Ωk) > ε} is a set of points
y ∈ Ωk spaced from G\Ωk at a distance greater than ε > 0. A set G ∈ C (a(h)) is called

a domain satisfying strong a (h)-horn condition, if in addition to condition
M⋃
k=1

Ωk = C,

there is also a covering
M⋃
k=1

Ωk,ε ⊇ G for some ε > 0.

By Cε (a (h)) we denote the class of domains G ⊂ Rn satisfying strong ”a (h) -horn”.
We observe that the notions of a domain G ⊂ Rn satisfying the a (h)-horn condition

and strong a (h)-horn conditions are introduced in [3] by O.V. Besov, respectively.

4. Main results

In this section of our paper we state and prove our principal assertions.

Theorem 1. Let 1 ≤ pk ≤ θk ≤ ∞ and let f ∈
n⋂
k=0

Λ
〈mk;Nk〉
pk,θk

(
G,ϕk

) (
k = 0, n

)
. Suppose

that
mk =

(
mk

1, ...,m
k
n

)
Nk =

(
Nk

1 , ..., N
k
n

) } is the vectors with integer non-negative components such

that {k} ⊂ sup p
(
mk +Nk

)
(k = 1, n).

Let ϕk (t) =
(
ϕk

1 (t1) , ..., ϕkn (tn)
)

be a vector-function satisfying condition ϕj (t) =
ϕj (tj) > 0 for tj 6= 0, and ϕj (tj) ↓ 0 for t→ 0. Suppose that a domain G ⊂ En is satisfy
”a (h) -horn” condition, i.e. G ∈ C (a (h)) and a vector-function a (υ) = (a1 (υ) , ..., an (υ))
satisfy condition (3.2) for all υ ∈ [0, n)

Let υ = (υ1, ..., υn) be a vector with integer-nonnegative components satisfy matching

condition with respect to the vectors
mk =

(
mk

1, ...,m
k
n

)
Nk =

(
Nk

1 , ..., N
k
n

) } mk
j ≥ 0, Nk

j ≥ 0, as the

form:
νj ≥ m0

j +N0
j (j = 1, 0)

νj ≥ mk
j +Nk

j (j 6= k)

νk < mk
k +Nk

k (j = k)

 , (k = 1, n) .

Here Hk (h) ≤ const <∞, 1 ≤ pk ≤ q <∞
(
k = 1, n

)
and

Hk =

∫ h

0

n∏
j=1

(aj (υ))
m k
j
−υ
j
− 1
pk
− 1
q


∏

j∈ENk

ϕk
j (aj (υ))

 dak (υ)

ak (υ)
(17)
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for all k ∈ en = {1, 2, ..., n}.
Then

Dυf ∈ Lq (G) , (18)

and the integral inequality holds

‖Dυf‖Lq(G) ≤ C
n∑
k=0

Hk (h) ‖f‖
Λ
〈mk,nk〉
pk,θk

(G;ϕk)
, (19)

where C > 0 is a constant independent of function f = f (x) and h > 0. Also Hk (h)
is defined by (4.1) for k = 1, n, and for k = 0

H0 (h) =

n∏
j=1

(aj (h))
moj −υj−

1
p0

+ 1
q
∏

j∈EN0

ϕ0
j (aj (h)) .

We observe that ENk = sup pNk
(
k = 0, n

)
.

Other formulation of Theorem 3.1 we can give as following form.

Remark 2. Under the conditions of Theorem 3.1 the following embedding holds:

Dν :
n⋂
k=0

Λ
〈mk,Nk〉
pk,θk

(
G;ϕk

)
⊂ Lq (G) (20)

In particular, for υ = 0 we have
⋂n
k=0 Λ

〈mk,Nk〉
pk,θk

(
G;ϕk

)
⊂ Lq (G) .

Thus, the inclusion (4.4) is characterized the differential properties of functions from⋂n
k=0 Λ

〈mk,Nk〉
pk,θk

(
G;ϕk

)
.

Proof. Theorem 3.1 is proved by the method of integral representations of functions
f = f (x), developed by S.L. Sobolev in [1]. The method of the proof of Theorem 3.1 is
the integral identities given by the equality

Dνf = (−1)|ν+m0|C0A0 (h)

∫
E|EN0 |

dz0 ×
∫
En

{
∆N0

(
Z0

N0

)
Dm0

f (x+ y)

}
Mδ,0dy+

+
n∑
k=1

(−1)|ν+mk|Ck

∫ h

0
Ak (υ)

dak (υ)

ak (υ)
×

×
∫
E|ENk |

dzk
∫
En

{
∆Nk

(
zk

Nk
Dmkf (x+ y)

)}
Mδ,kdy. (21)

Here Ck are the constants independent on f = f (x) and h > 0, where∣∣∣ν +mk
∣∣∣ =

n∑
j=0

(
νj +mk

j

)
,
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Ak (υ) =

n∏
j=1

(aj (υ))
m k
j
−νj−1

∏
j∈E

Nk

(aj (υ))−1 (
k = 0, n

)
.

In (4.5), the kernels Mδ,0 and Mδ,k

Mδ,0 = Mδ,0

(
y

a (h)
;
z0

a (h)

)
,

Mδ,k = Mδ,k

(
y

a (h)
;
zk

a (h)

)
, (k = 1, n)

are sufficiently smooth functions with compact support on Rn , respectively. Here

y

a (υ)
=

(
y1

a1 (υ)
, ...,

yn
an (υ)

)
,

zk

a (υ)
=

(
zk,1
a1 (υ)

, ...,
zk,n
an (υ)

)
, k = (1, n)

while the supports of these kernels satisfy condition:

sup pMδ,k

(
y; zk

)
⊂

{
0 < yj − δj ≤ 1

(
j = 1, n

)(
y; zk

)
∈ En × E|Enk | : 0 < zk,jδj ≤ 1

}
, (j ∈ ENk) .

Also, a vector δ = (δ1, ..., δn), with δj = ±1
(
j = 1, n

)
be fixed.

We observe that in (4.6)∫
E|ENk |

(...) dzk =

∫
E1

....

∫
E1

(....)︸ ︷︷ ︸
E
Nk

∏
j∈E

Nk

dzk,j ,

where by |ENk | the number of elements of the set ENk = sup pNk .
Moreover, the construction of auxiliary functions given by equality

fν,δi (x) = (−1)|m
0+ν|C0A0 (h)

∫
|EN0 |

dz0×

×
∫
En

{
∆N0

(
z0

N0 ; Ωi +Rδi
)
Dm0

f (x+ y)
}
Mδi0dy+

+

n∑
k=1

(−1)|m
k+ν|Ck

∫ h

0
Ak (υ)

dak (υ)

ak (υ)

∫
dzk×

∫
En

{
∆Nk

(
zk

Nk
; Ωi +Rδi

)
Dmkf (x+ y)

}
Mδi,kdy = J0,δi (f)+

n∑
k=1

J0,δi (f) (i = 1, n)

(22)
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and proof of inequality

‖Dνf‖q,G ≤ C
M∑
i=1

‖Dνf‖q,Ωi+Rδi ≤ C
M∑
i=1

‖fν,δi‖q1Ek ≤ C
M∑
i=1

n∑
k=0

∥∥Jk,δi∥∥q1En (23)

shows that estimates of integral expressions ‖Dνf‖q,G reduce to estimates of integral

operators Jk,δi
(
k = 0, n

)
in Lebesgue space Lq(G).

Then, using the Hölder inequality and Young inequality for convolution, we have (see, [2])

‖Dνf‖q,G ≤ C
M∑
i=1

n∑
k=0

∥∥Jk,δi (f)
∥∥
q1En

≤ C
n∑
k=0

Qk (h)

(
M∑
i=1

‖f‖ Λ
〈mk,Nk〉
pk,θk

(Ωi +Rδi , ϕk) ≤

≤ C
n∑
k=0

Qk (h) ‖f‖
Λ
〈mk,Nk〉
pk,θk

(G;ϕk)
.

Here

Qk (h) =

∫ h

0

n∏
j=1

(
(aj (υ))

m k
j
−νj−1

) ∏
j∈E

Nk

ϕk
j (aj (υ))

 dak (υ)

ak (υ)
.

This complete the proof of Theorem 3.1.
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