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Abstract: This work is devoted to issues related to the synthesis of fuzzy control on the 

trajectory of a car, using computer and simulation tools to configure it. In many works, fuzzy 

logic is used to implement intuitive ideas about the behavior of an object and existing 

experience in a nonlinear fuzzy control law, the formal analysis of whose properties (such as 

the stability of a closed-loop system) is, as a rule, impossible to carry out. In this study, 

unlike such works, fuzzy logic is used to replace the original nonlinear model with several 

linear ones, and, similarly, obtaining a fuzzy controller TS) based on several linear controls. 

Moreover, such a closed system can be formally studied for global asymptotically stable, 

which makes such an approach promising from the point of view of application in practice. 

To synthesize the controller, the work also uses the tools of the classical LQR optimization 

method. 
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1.INTRODUCTION 

 

In the last century, since the advent of the car, it 

immediately became an important part of human 

daily life. With the development of modern 

industry in the field of mechanical engineering, the 

number of car owners in all countries of the world 

has been characterized by a significant increase, 

and over time, the problem of traffic has become 

impossible to ignore in urban planning. In classic 

models, the ―car-driver-road‖ system is a closed-

loop system with feedback. The increasing volume 

of need to use the capabilities of modern cars, 

growing requirements for comfort and safety, make 

relevant a direction of research focused on how to 

exclude humans from this system. At all stages of 

automation, the task of studying the dynamics of 

vehicle motion is necessary, and the research must 

be based on knowledge of control theory and 

modeling, as well as the capabilities of modern 

computer and information technologies [1-7]. 

 

2. EXPERIMENTAL DETAIL 

 

In this work, we will refer to the linear integral 

quadratic optimization (LQR optimization) method, 

which is popular in research practice, when 

synthesizing the control to ensure the movement 

along the trajectory. A description of this approach 

can be found, for example, in the monograph [1]. 

 

 

 

 

The LQR optimization problem is formulated for 

linear systems with mathematical models in the 

form of LTI systems (linear time-invariant) 

 

                ̇               (1.1) 

Where        is the state vector,       is the 

control vector, and the components of matrices A 

and B are constants that determine the properties of 

the object. Here we assume that the system (1.1) is 

completely controllable. 

For the object of the form (1.1), we construct 

control in the form of linear feedback:  

 

u=Kx     (1.2) 

 

We determine the integral quadratic functional in 

the solutions (1.1), (1.2) of the closed loop system: 

 

   ( )  ∫ [         ]
 

 
              (1.3) 

 

characterizing the behavior of the closed system  

 

 ̇  (    )  

 

Here, Q≥0 is a non-negative definite symmetric 

matrix and R>0 is a positive definite symmetric 

matrix. Matrices Q and R are weight matrix factors. 
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Then the problem of finding the LQR-optimal 

control can be formulated as follows: 

 

K

JJ



K

K min)(    (1.4) 

 

where     is the set of constant K matrices such 

that the roots of the characteristic polynomial 

    (            )  /l of the closed system 

lie in the open left complex half-plane, i.e.  

 

     (    )     
 

To find the matrix  

K


K
K minarg0

 (1.2) in the 

optimal control, you need to perform the following 

steps: 

1. Create the matrix algebra Riccati equation 

 

 
 

 
                       

 

its solution is an S-symmetric positive definite 

matrix: the polynomial     (            ) is 

Hurwitz, all its roots are in the left half-plane. 

2. Based on the state vector      , build a 

matrix of coefficients            of the 

optimal controller. 

8Performing these actions leads to the stabilization 

of the control, which is optimal in terms of 

functional (1.3) for the given Q and R matrices. As 

a rule, such matrices are not specified in the initial 

formulation of the problem, accordingly, the LQR 

optimization method involves the selection of 

elements of these matrices as an additional step in 

solving the problem. The specified matrices should 

be chosen in such a way that they reflect the 

requirements for dynamic processes in a closed 

system. In the general case, such a procedure is not 

formalized, and this allows us to pose the problem 

of choosing the matrices Q and R in such a way 

that the closed system satisfies the given 

requirements. 

Let us now consider another optimization 

approach; its description can be found in the 

monograph [1], in which the requirements for the 

quality of dynamic processes are set by taking into 

account the restrictions directly imposed on the 

controlled variables by specifying the area to which 

they should belong. If the controlled variables 

belong to the specified areas, this means that the 

requirements for process dynamics are met. To 

define such a region, it is necessary to specify two 

time functions so that  

 

   ( )    ( )    [   ]. 
 

Let the right side of the closed-loop system model 

include a number of parameters combined into a 

common vector h, on which its behavior depends. 

 (   )  be some dynamic controlled variable (of 

interest to us), then a dynamic process can be 

considered admissible if the vector of adjustable 

parameters       is chosen so that the 

inequalities are satisfied: 

  ( )   (   )    ( )     [   ] (1.5) 

 

This is illustrated graphically in the following 

figure 2. 

 

 
Fig.2. Allowable region for the characteristic 

x(t,h) of a dynamic process [1]. 

 

It can be seen that the admissible region defined by 

the pair [   ( ) ,   ( ) ],  can limit the dynamic 

process x(t,h). To obtain an admissible dynamic 

process, it is necessary to select the vector h so that 

the simulated process in terms of the variable x(t,h) 

lies inside the domain, that is, to ensure that 

restrictions (1.5) are met. 

An effective way to achieve this result is to 

formulate and solve an optimization problem; let’s 

consider it. Let us fix a certain set of time moments 

from the interval on which we perform the 

simulation    [   ]       ̅̅ ̅̅ ̅. For each point, we 

will define the function    ( ),, which will serve as 

a measure of the exit of the variable x(t,h) beyond 

the permissible region at time    (by penalty), using 

the formula 

 

  ( )  {

        (  )   (     )    (  )            

 (     )    (  )      (     )    (  ) 

  (  )   (     )      (     )    (  ) 

  

 

(1.6) 

 

Then the total penalty for leaving the corridor on 

the entire segment [0,T] will be determined by the 

sum: 

 ( )  ∑   ( ) 
   . 

 

Based on the desire to minimize the total penalty, 

we can move on to the optimization problem 

 

  ̃( )   ( )             (1.7) 

 

This problem is solved numerically, and this means 

that an important feature and advantage of this 
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approach is that when modeling and obtaining the 

value of the minimized function α(h), a nonlinear 

model of a closed-loop system can be used, 

containing any elements necessary for modeling 

[3]. 

For calculations, the work combines the 

capabilities of both described optimization 

approaches (in this and the previous paragraphs). 

For this purpose, the requirements for dynamic 

processes in a closed system are characterized by 

specifying an admissible region on the plane into 

which the controlled dynamic variable must fall, 

and the vector of parameters h is composed of the 

parameters in the matrices Q and R in the 

functional (1.3). For simplicity, only diagonal 

elements will be considered non-zero elements of 

the specified matrices. In this case, these elements 

will set weighting coefficients in front of the 

corresponding state and control variables in the 

functional (1.3), determining the contribution of 

each such variable to the functional. We will 

consider the diagonal values of the matrix R to be 

positive fixed real numbers (the matrix R must be 

positive definite). The varying diagonal elements of 

the matrix Q (part of it may be fixed initially) are 

specified as the squares of some real numbers 

(parameters) that are not initially specified. All 

such parameters are combined into a vector h in the 

functional (1.7), and are selected by solving the 

optimization problem (1.7). 

Fuzzy logic is a multi-valued logic that allows you 

to determine intermediate values for such generally 

accepted estimates as yes or no, true or false, black 

or white, etc. Such expressions, which are 

determined using fuzzy logic, will be represented, 

for example, as follows: a little hot or quite cold. 

This method of description can be formalized 

mathematically. 

One of the basic concepts of fuzzy logic is the 

concept of a fuzzy set. It is known that from 

classical mathematics, defining crisp sets means 

using well-defined values, and defining fuzzy sets 

means using indefinite ones. Let us assume that set 

A contains all numbers from 0 to 5, and subset B of 

set A ranges from 2 to 4. To characterize set B, a 

function  xA  (membership function) can be 

specified that assigns a number from 0 to 1 to each 

element of set B and characterizes the degree of 

membership of a particular element of set A to 

fuzzy set B. Value 1 means that the element 

definitely belongs to fuzzy set B, respectively, 0 – 

definitely does not belong to fuzzy set B. 

Membership functions can be specified in different 

ways. For example, a popular option is triangular 

membership functions, which are given as [4]: 

 

     (       )  (

     
   

   
      

     

 

 

If we set a=20, b=40, c=60, then we get the 

following graph: 

 

 
Fig.3. Membership function example. 

 

Another example: if it’s hot in the room, then we’ll 

turn on the air conditioning. But how do we 

determine that the room is hot and when to turn on 

the air conditioning? Then, using fuzzy logic, the 

values are obtained: if it is a little hot, then we open 

the air conditioner slightly, that is, the degree of 

membership in the interval [0,1] can be obtained, 

for example, 0.3. If it’s hot, then we open the air 

conditioner more, which means that the degree can 

already be 0.5. And if it’s hot enough, then we 

open the air conditioner loudly. This already means 

that the membership level is maximum, that is, the 

value of the membership function is 1. The general 

procedure for using fuzzy sets involves the 

following stages: first, fuzzification or transition to 

fuzzification should be performed, setting rules and 

membership functions for specific variables, and, 

finally, defuzzification or elimination of fuzziness 

to obtain a specific specific value of a variable. 

It is known that in fuzzy logic it is necessary to set 

several rules of this type, such as ―IF...THEN...‖. 

This corresponds, for example, to the Mamdani 

method, that is, after THEN... we pass the value 1 

or 0 (true or false). Let us set as a condition simply 

the equality of the states to some desired values. 

And the idea of the Takagi-Sugeno method 

assumes that in the ―IF...THEN...‖ rule, some 

mathematical expression is explicitly specified in 

the ―...THEN...‖ condition. This means that there is 

no defuzzification step in this case. 

This method can be used to construct a fuzzy TS 

model, which replaces the original nonlinear 

model. 

These sets of ―IF...THEN...‖ represent a 

replacement of a nonlinear system so that each rule 

corresponds to a replacement of a nonlinear system 

by one local linear subsystem, and the entire fuzzy 

system replacing the original nonlinear system is 

represented as a combination of all local 

subsystems: 
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  : IF   ( ) is   
  and … and   ( ) is   

  , 

THEN 

 ̇( )     ( )     ( )           

 

where   
   are fuzzy sets, (Ai, Bi) are a pair of 

matrices corresponding to the set (       ) ,   ( ) 

are dynamic variables that specify a specific 

equilibrium point in the rules. 

Now let’s define the membership functions, which 

in fuzzy logic represent the degree of membership 

of the variable under consideration to a given fuzzy 

set. Let   
 ( ( ))  denote that the variable   ( ) 

corresponds to the membership function  the th 

rule. 

Taking the product, we get: 

 

  ( ( ))   ∏  
 ( ( ))

 

   

 

 

  ( ( )) represents the weight of the i-th rule. 

The weighted average method is widely used in 

industrial control; we use it and obtain the 

equations of the general system (TS-model), which 

we will consider instead of the original nonlinear 

system (2) when synthesizing control: 

 

 ̇   
∑   (   ( )     ( )) 

   

∑   
 
   

                (   ) 

Since the TS-model (1.8) is built on the basis of 

several linear models, its use instead of the original 

nonlinear model when constructing a controller 

means that you can try to reduce this problem to the 

use of a standard mathematical apparatus for 

working with individual linear systems that define 

the model (1.8) . 

 

3.CONCLUSIONS 

 

This paper considers the problem of controlling the 

movement of a car along a desired trajectory; the 

idea of synthesizing a fuzzy controller based on a 

fuzzy TS model in accordance with (1), (2) is used 

to solve it. This idea can be quite successfully 

implemented, and the LQR approach can be used to 

synthesize local controls, which will allow 

changing parameters and influencing control 

results. Accordingly, a simple version of the 

regulator was built and shortcomings were found. 

Then the rules were developed from the simple 

version, so that we managed to improve the result 

on the trajectory. Also, in the experiment, it was 

also possible to improve the results for the rule 

base, without formally checking the global 

asymptotic stability. Thus, this approach can be 

successfully applied in certain situations, however, 

improving the behavior of an object by increasing 

the number of local subsystems used entails a 

significant increase in the amount of computational 

work. There is also no guarantee of the 

applicability of the regulator in question to any 

acceptable conditions. 
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