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Basicity of Linear Phase Exponential System in Grand-
Sobolev Spaces

Seadet A.Nurieva

Abstract. We define a separable MW p)
1(a, b) subspace in grand-Sobolev spaces. Then we show

that this subspace is isomorphic to the direct sum of some subspace of grand-Lebesgue space and
complex plane and so the system 1 ∪

{
ei(n+αsignn)t

}
nϵZ

forms a basis for the spaceMW p)
1 (−π, π),

where α ∈ C is a complex parameter.

Key Words and Phrases: basicity, grand-Lebesgue space, grand-Sobolev space.

2010 Mathematics Subject Classifications: 33B10, 46E30, 54D70

Lately in mathematics, there has been an upsurge of interest in non-standard spaces
(see [17, 18, 19, 20, 21, 22]). The study of differential equations in non-standard Sobolev
spaces requires the knowledge of basicity properties of trigonometric systems in corre-
sponding non-standard function spaces. Basicity properties of some trigonometric systems
in such spaces have been treated in [23, 24, 25, 26, 27, 28, 29].{

ei(n+αsignn)t
}
nϵZ

, (1)

1 ∪
{
ei(n+αsignn)t

}
n̸=0

. (2)

The study of basicity properties of the systems (1) and (2) in Lebesgue function space
probably dates back to Paley-Wiener [6] and N. Levinson [7]. Riesz basicity of (1)-type sys-
tems was studied in L2 by M.I.Kadets [8], and in Lp by A.M.Sedletski [9] and E.I.Moiseyev
[10, 11]. This field was further developed by B.T. Bilalov [12, 13, 14, 15].

Grand-Lebesgue spaces Lp) have been introduced in [17] in the study of Jacobian in
an open set. These are the functional Banach spaces, and they have wide applications in
the theory of partial differential equations, theory of interpolation, etc. The study of some
problems of harmonic analysis in these spaces is of special interest.

As these spaces are not separable, basis and approximation-related problems remained
unsolved in them. In [25], some Mp) subspace was constructed, interesting from the point
of view of the theory of differential equations. In [26, 27], basicity properties of the systems
(1) and (2) have been studied in this subspace.

http://www.cjamee.org 3 © 2013 CJAMEE All rights reserved.
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Grand-Sobolev spaces have been studied in many works, including [17]. In this work,
we explore the basicity of one exponential system for a subspace MW p)

1 (−π, π) of grand-
Sobolev space.

So, let 1 < p < ∞. A space Lp) (a, b) of measurable functions satisfying the condition

∥f∥p) = sup
0<ε<p−1

(
ε

b− a

∫ b

a
|f |p−εdt

) 1
p−ε

< ∞ (3)

in the interval (a, b)⊂R is called a grand-Lebesgue space.

Denote by M̃p)(a, b) the set of all functions satisfying the condition
∥∥∥f̂ (·+ δ)− f̂ (δ)

∥∥∥
p)

→

0 as δ → 0 and belonging to Lp) (a, b), where

f̂ (t) =

{
f (t) , t ∈ (a, b) ,
0, t /∈ (a, b) .

It is clear that the set M̃p)(a, b) is a manifold in Lp) (a, b). Denote by Mp)(a, b) the
closure of M̃p)(a, b) with respect to the norm (3).

Denote by Wp)
1 (a, b) the space of functions which belong to Lp) (a, b) together with

their derivatives equipped with the norm

∥f∥Wp)
= ∥f∥p) + ∥f ′∥p). (4)

We will call this space a grand-Sobolev space:

Wp)
1 (a, b) =

{
f \ f, f ′ ∈ Lp)(a, b), ∥f∥p) + ∥f ′∥p) < ∞

}
.

It is easy to prove that this is a Banach space. As is known, Lp) (a, b) is not separable.

Therefore, Wp)
1 (a, b) is also not a separable space. Denote by M̃W p)

1
(a, b) the set of all

functions which satisfy the condition
∥∥∥f̂ ′

(·+ δ)− f̂
′
(δ)

∥∥∥
p)

→ 0 as δ → 0 and belong to

Wp)
1 (a, b), where

f̂ (t) =

{
f (t) , t ∈ (a, b) ,
0, t /∈ (a, b) .

It is clear that the set M̃W p)
1
(a, b) is a manifold in Wp)

1 (a, b). Denote by MW p)
1(a, b)

the closure of M̃W p)
1
(a, b) with respect to the norm (4).

The following lemma is true.

Lemma 1. The operator A (f, λ) = λ +
∫ t
a f (τ) dτ creates an isomorphism between the

spaces Mp)(a, b)⊕C and MW p)
1(a, b), where C is a complex plane, 1 < p < ∞.

Proof. Let f ∈ Mp)(a, b). Then
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∥∥∥∥λ+

∫ t

a
f (τ) dτ

∥∥∥∥
Wp)

=

∥∥∥∥λ+

∫ t

a
f (τ) dτ

∥∥∥∥
p)

+ ∥f∥p) ≤ ∥λ∥p)+

+

∥∥∥∥∫ t

a
f (τ) dτ

∥∥∥∥
p)

+ ∥f∥p).

Obviously, ∥λ∥p) ≤ K1 |λ| ,
∥∥∥∫ t

a f (τ) dτ
∥∥∥
p)

≤ K2∥f∥L1 ≤ K3∥f∥Lp−ε ≤ K4∥f∥p), because

Lp ⊂ L1 , Lp ⊂ Lp) ⊂ Lp−ε (K1,K2,K3,K4 are constants). Thus, ∥A (f, λ)∥Wp)
≤

K(|λ| + ∥f∥p)), i.e. A is a bounded operator. For v = λ +
∫ t
a f (τ) dτ we have v

′
= f (t).

Then v ∈ MW p)
1(a, b).

Let’s show that kerA = {0}. Assume A (u, λ) = 0, i.e. λ +
∫ t
a f (τ) dτ = 0. Differ-

entiating both sides, we get f(t) = 0 a.e. Consequently, λ = 0. Let ṽ =
(
v
′
, v (a)

)
for

∀v ∈ MW p)
1(a, b). Then ṽ ∈ Mp) (a, b)⊕C andA (ṽ) = v. This meansRA = MW p)

1(a, b),
where RA is a range of the operator A. By Banach inverse operator theorem, the inverse
of the operator A exists and is continuous. The lemma is proved.

We will significantly use the following theorem.

Theorem 1. ([26]) Let −2Reα + 1
p /∈ Z,1 < p < ∞. Then the system (1) forms a basis

for the space Mp)(−π, π),1 < p < ∞, if and only if d =
[
−2Reα+ 1

p

]
= 0 ([α] denotes

the integer part of α). The defect of the system (1) is d =
[
−2Reα+ 1

p

]
. When d < 0,

the system (1) is not complete, but minimal in Mp)(−π, π). When d > 0, the system (1)
is complete , but not minimal in Mp)(−π, π).

So the following theorem is true.

Theorem 2. Let −2Reα+ 1
p /∈ Z, 1 < p < ∞. Then the system

1 ∪
{
ei(n+αsignn)t

}
nϵZ

(5)

forms a basis for the space MW p)
1 (−π, π), 1 < p < ∞, if and only if

[
−2Reα+ 1

p

]
= 0.

Proof. Let
[
−2Reα+ 1

p

]
= 0. Let’s first prove that the system û−1 =

(
0
1

)
, û0 =(

iαeiαt

e−iπα

)
, û±n =

(
i(n+αsignn)ei(n+αsignn)t

e−iπ(n+αsignn)

)
, n = ±1,±2, . . . , forms a basis for the space

Mp) (−π, π) ⊕ C. To do so, it suffices to show that ∀û =
(
u
λ

)
∈ Mp) (−π, π) ⊕ C the

expansion

û = c−1û−1 + c0û0 +
∑
n ̸=0

c±n ûn
±

(6)

exists and is unique. This expansion is equivalent to two following expansions:
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u (t) = c0iαe
iαt +

∑
n̸=0

c±n i(n+αsignn)ei(n+αsignn)t, (7)

λ = −πc−1 + c0e
−iπα +

∑
n̸=0

c±n e
−iπ(n+αsignn). (8)

By Theorem 1 ([26]), the expansion (7) exists and is unique. As ∀ε ∈ (0, p−1), Lp) ⊂ Lp−ε

and
[
−2Reα+ 1

p

]
= 0 , by [16], Hausdorff-Young inequality is true for the system (1) in

grand-Lebesgue space Lp), too. That is, if 1 < p ≤ 2 , then|c0|q +
∑
n ̸=0

∣∣c±nn∣∣q
1/q

≤ M∥u∥p−ε ≤ M∥u∥p),

where p− ε and q are mutually conjugate numbers: 1
p−ε +

1
q = 1.

Using Hölder’s inequality, we obtain

|c0|+
∑
n̸=0

∣∣c±n ∣∣ = |c0|+
∑
n̸=0

1

|n|
∣∣c±nn∣∣ ≤ |c0|+

∑
n̸=0

1

|n|p

 1
p
∑

n ̸=0

∣∣c±nn∣∣q
 1

q

< ∞.

When 2 < p, we can find ε > 0 such that 2 < p− ε. Therefore,

Lp) ⊂ Lp−ε ⊂ L2.

Similarly we have

|c0|+
∑
n ̸=0

∣∣c±n ∣∣ = |c0|+
∑
n̸=0

1

|n|
∣∣c±nn∣∣ ≤ |c0|+

∑
n ̸=0

1

|n|2

 1
2
∑

n̸=0

∣∣c±nn∣∣2
 1

2

< ∞.

So, the series
∑

n̸=0 |c±n | is convergent. Therefore, the expansion (8) also exists and is
unique. This implies the existence and uniqueness of the expansion (6), i.e. the system

û−1 ∪ û0 ∪
{
û±n

}
, n = ±1,±2, . . .

forms a basis for the space Mp) (−π, π) ⊕ C. As the operator A is an isomorphism, the
system

{Aû−1} ∪ {Aû0} ∪
{
Aû±n

}
, n = ±1,±2, . . .

must form a basis for the space MW p)
1 (−π, π) . Simple calculations show that

Aû−1 = 1, Aû0 = eiαt,

Aû±n = ei(n+αsignn)t, n = ±1,±2, . . .
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That is, the system 1 ∪
{
ei(n+αsignn)t

}
nϵZ

forms a basis for the space MW p)
1 (−π, π).

Now let
[
−2Reα+ 1

p

]
> 0. For certainty, we assume

[
−2Reα+ 1

p

]
= 1, i.e. 1 <

−2Reα+ 1
p < 2.

Let’s rewrite the system (5) as 1 ∪
{
einteiαt; e−ikte−iαt

}
n≥0,k≥1

and multiply every

term of it by e−it/2. After making some transformations, we obtain:

e−it/2 ∪
{
eintei(α−

1
2
)t; e−ikte−i(α+ 1

2
)t
}
n≥0,k≥1

≡

≡ e−it/2 ∪
{
eitei(n−1)tei(α−

1
2
)t; e−ikte−i(α+ 1

2
)t
}
n≥0,k≥1

≡

≡ e−it/2 ∪
{
eintei(α+

1
2
)t; e−ikte−i(α+ 1

2
)t
}
n≥−1,k≥1

.

Denoting α
′
= α+ 1

2 , we can rewrite the last system as

e−it/2 ∪
{
einteiα

′
t; e−ikte−iα

′
t
}
n≥−1,k≥1

. (9)

As −2Reα
′
+ 1

p = −2Reα+ 1
p − 1, we have 0 < −2Reα

′
+ 1

p < 1. In this case, due to the
fact we have proved above, the system

1 ∪
{
einteiα

′
t; e−ikte−iα

′
t
}
n≥0,k≥1

, (10)

forms a basis for MW p)
1 (−π, π). It is clear that if we remove {1} from (10) and add the

functions e−it/2 and ei(α
′−1)t, we obtain the system (9). It is known from the theory of

bases that in this case the system (8) cannot be a basis.
Note that the basicity properties of the systems (9) and (5) are absolutely identical.

Because it is easy to verify that the operator of multiplying by e−it/2 is an automorphism

in MW p)
1 (−π, π). So, in case

[
−2Reα+ 1

p

]
= 1 the system (5) does not form a basis for

MW p)
1 (−π, π). The case of

[
−2Reα+ 1

p

]
> 1 can be treated similarly.

Let
[
−2Reα+ 1

p

]
< 0. For certainty, assume

[
−2Reα+ 1

p

]
= −1, i.e.−1 < −2Reα +

1
p < 0.

Let’s rewrite the system (5) as 1 ∪
{
einteiαt; e−ikte−iαt

}
n≥0,k≥1

and multiply every

term of it by eit/2 . Once again, after making some transformations, we obtain:

eit/2 ∪
{
eintei(α+

1
2
)t; e−ikte−i(α− 1

2
)t
}
n≥0,k≥1

≡

≡ eit/2 ∪
{
e−itei(n+1)tei(α+

1
2
)t; e−ikte−i(α− 1

2
)t
}
n≥0,k≥1

≡

≡ eit/2 ∪
{
eintei(α−

1
2
)t; e−ikte−i(α− 1

2
)t
}
n≥1,k≥1

.
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Denoting α
′′
= α− 1

2 , we can rewrite the last system as

eit/2 ∪
{
einteiα

′′
t; e−ikte−iα

′′
t
}
n≥1,k≥1

. (11)

As −2Reα
′′
+ 1

p = −2Reα+ 1
p + 1, we have 0 < −2Reα

′′
+ 1

p < 1. In this case, due to the
fact we have proved above, the system

1 ∪
{
einteiα

′′
t; e−ikte−iα

′′
t
}
n≥0,k≥1

(12)

forms a basis for MW p)
1 (−π, π). It is clear that if we remove {1} and eiα

′′
t from (12) and

add the function eit/2, we obtain the system (11). It is known from the theory of bases
that in this case the system (11) cannot be a basis.

Note that the basicity properties of the systems (11) and (5) are absolutely identical.
Because it is easy to verify that the operator of multiplying by eit/2 is an automorphism

in MW p)
1 (−π, π). So, in case

[
−2Reα+ 1

p

]
= −1 the system (5) does not form a basis

for MW p)
1 (−π, π). The case of

[
−2Reα+ 1

p

]
< −1 can be treated similarly. Thus, if the

condition
[
−2Reα+ 1

p

]
= 0 is not satisfied, then the system (5) cannot form a basis.

The theorem is proved.
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Completeness of the Perturbed Trigonometric System in
Generalized Weighted Lebesgue Spaces

S.I. Jafarova

Abstract. A double exponential system with complex-valued complex coefficients is considered
in generalized weighted Lebesgue spaces. Completeness of this system in Lp(·);ρ spaces is studied.

Key Words and Phrases: exponential system, basicity, variable exponent, generalized Lebesgue
space
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1. Introduction

In the context of applications to some problems of mechanics and mathematical physics,
since recently there arose great interest in the study of different problems in generalized
Lebesgue spaces Lp(·) of variable summability rate p(·). Some fundamental results of
classical harmonic analysis have been extended to the case of Lp(·) (for more details see [9-
12]). Note that the use of Fourier method in solving some problems for partial differential
equations in generalized Sobolev classes requires the study of approximative properties
of perturbed exponential systems in generalized Lebesgue spaces. Some approximation
problems in these spaces have been studied by I.I. Sharapudinov (see, e.g., [11]).

In this work, we consider the completeness of a double exponential system with complex-
valued complex coefficients in the spaces Lp(·);ρ. The completeness is reduced to trivial

solvability of the corresponding homogeneous Riemann problem in the classes H+
q(·);ρ ×−1

H−
q(·);ρ, where q (t) is a conjugate function of p (t). Note that when considering the basicity

of such systems in Lp(·);ρ, unlike in the case of completeness, the solvability of correspond-

ing Riemann problem is studied in the classes H+
p(·);ρ ×−1 H

−
p(·);ρ. That’s why we treat the

completeness separately. The scheme we use is not new. We just follow the works [2;4].

http://www.cjamee.org 11 © 2013 CJAMEE All rights reserved.
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2. Needful Information

Let ω ≡ {z : |z| < 1} be a unit ball in the complex plane and Γ = ∂ω be a unit
circumference. Let p : [−π, π] → [1,+∞) be some Lebesgue measurable function. The
class of all Lebesgue measurable functions on [−π, π] is denoted by L0. Denote

Ip (f)
def
≡

∫ π

−π
|f (t)|p(t) dt.

Let
L ≡ {f ∈ L0 : Ip (f) < +∞} .

For p+ = sup vrai
[−π,π]

p (t) < +∞, L becomes a linear space with the usual linear op-

erations of addition of functions and multiplication by a number. Equipped with the
norm

∥f∥p(·)
def
≡ inf

{
λ > 0 : Ip

(
f

λ

)
≤ 1

}
,

L becomes a Banach space which we denote by Lp(·). Let

WL
def
≡ {p : p(−π) = p(π);∃C > 0, ∀t1, t2 ∈ [−π, π] : |t1 − t2| ≤ 1

2 ⇒
⇒ |p (t1)− p (t2)| ≤ C

− ln|t1−t2|

}
.

Throughout this work, q (·) denotes a conjugate function of p (·): 1
p(t) + 1

q(t) ≡ 1.

Denotep− = inf vrai
[−π,π]

p (t).

The following generalized Hölder inequality is true:∫ π

−π
|f (t) g (t)| dt ≤ c

(
p−; p+

)
∥f∥p(·) ∥g∥q(·) ,

where

c
(
p−; p+

)
= 1 +

1

p−
− 1

p+
.

We will significantly use the following easy-to-prove:

Statement 1. Suppose

p ∈ WL, p (t) > 0, ∀t ∈ [−π, π] ; {αi}m0 ⊂ R.

The weight function

ρ (t) = |t|α0

m∏
i=1

|t− τi|αi (1)

belongs to the space Lp(·) if the following inequalities are true:

αi > − 1

p (τi)
,∀i = 0,m;

where −π = τ1 < τ2 < ... < τm = π, τ0 = 0, τi ̸= 0,∀i = 1,m.
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To obtain our main results, we will also use the following important fact:
Property B. If p (t) : 1 < p− ≤ p+ < +∞, then the class C∞

0 (−π, π) (class of finite,
infinitely differentiable functions on (−π, π)) is everywhere dense in Lp(·).

Define the weighted class hp(·),ρ of functions which are harmonic inside the unit circle
ω with the variable summability rate p (·), where the weight function ρ (·) is defined by
(1).

Denote

hp(·),ρ ≡
{
u : ∆u = 0 in ω and ∥u∥p(·),ρ = sup

0<r<1

∥∥u (reit)∥∥
p(·),ρ < +∞

}
.

We will need the following

Lemma 1. Let p ∈ WL, p− ≥ 1, and the weight ρ (·) satisfy the condition

− 1

p (τk)
< αk <

1

q (τk)
, k = 0,m . (2)

If f ∈ Lp(·),ρ, then ∃p0 ≥ 1 : f ∈ Lp0.

The following lemma is also true:

Lemma 2. Let p ∈ WL,p− ≥ 1, and the weight ρ(·) satisfy the condition (2). If u ∈ hp(·),ρ,
then ∃p0 ∈ [1,+∞] : u ∈ hp0.

Using these lemmas, one can prove the following theorem:

Theorem 1. Let p ∈ WL, p− > 1, and the inequalities (2) be fulfilled. If u ∈ hp(·),ρ, then
∃f ∈ Lp(·),ρ:

u(reiθ) =
1

2π

∫ π

−π
Pr(θ − t)f(t)dt, (3)

where
Pr(α) =

1−r2

1+r2−2r cosα
is a Poisson kernel.

On the contrary, if f ∈ Lp(·),ρ, then the function u defined by (3) belongs to the class
hp(·),ρ.

Similarly we define the weighted Hardy classes H±
p(·),ρ. By H+

p0 we denote the usual

Hardy class, where p0 ∈ [1,+∞) is some number. Let

H±
p(·),ρ ≡

{
f ∈ H+

1 : f+ ∈ Lp(·),ρ(∂ω)
}
,

where f+ are nontangential boundary values of f (·) on ∂ω.
It is absolutely clear that f (·) belongs to the space H+

p(·),ρ only when Ref and Imf
belong to the space hp(·),ρ. Therefore, many properties of the functions from hp(·),ρ are

transferred to the functions from H+
p(·),ρ. Taking into account the relationship between

the Poisson kernel Pr(α) and the Cauchy kernel Kz(t) =
eit

eit−z
, it is easy to derive from

Theorem 2.1 the validity of the following:
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Theorem 2. Let p ∈ WL, p− > 1, and the inequalities (2) be fulfilled. If F ∈ H+
p(·),ρ, then

F+ ∈ Lp(·),ρ:

F (z) =
1

2π

∫ π

−π

F+(t)dt

1− ze−it
=

1

2π

∫ π

−π
Kz(t)F

+(t)dt. (4)

On the contrary, if F+ ∈ Lp(·),ρ, then the function F defined by (4) belongs to the class

H+
p(·),ρ, where F+ (·) are nontangential boundary values of F (·) on ∂ω.

Following the classics, we define the weighted Hardy class mH−
p(·),ρ of analytic functions

on C\ω̄ of order k ≤ m at infinity. Let f (z) be an analytic function on C\ω̄ of finite
order k ≤ m at infinity, i.e.

f(z) = f1(z) + f2(z),

where f1(z) is a polynomial of degree k ≤ m, f2(z) is the principal part of Laurent

decomposition of the function f(z) at infinity. If the function φ(z) ≡ f2
(
1
z̄

)
belongs to

the class H+
p(·),ρ , then we will say that the function f (z) belongs to the class mH−

p(·),ρ.
Absolutely similar to the classical case, one can prove the following:

Theorem 3. Let p ∈ WL, p− > 1, and the inequalities (2) be fulfilled. If f ∈ H+
p(·),ρ,

then ∥∥f(reit)− f+(eit)
∥∥
p(·),ρ → 0, r → 1− 0,∥∥f (

reit
)∥∥

p(·),ρ →
∥∥f+

(
eit

)∥∥
p(·),ρ , r → 1− 0,

where f+ are nontangential boundary values of f on ∂ω.

The similar fact is true also in mH−
p(·),ρ classes.

Theorem 4. Let p ∈ WL, p− > 1, and the inequalities (2) be fulfilled. If f ∈ mH−
p(·),ρ,

then ∥∥f(reit)− f−(eit)
∥∥
p(·),ρ → 0, r → 1 + 0,∥∥f (

reit
)∥∥

p(·),ρ →
∥∥f− (

eit
)∥∥

p(·),ρ , r → 1 + 0,

where f− are nontangential boundary values of θ (t) ≡ argG
(
eit

)
on ∂ω from outside ω.

The following analog of the classical Smirnov theorem is valid:

Theorem 5. Let p ∈ WL, p− > 1, and the inequalities (2) be fulfilled. If u ∈ H+
1 and

Lp(·),ρ , then u ∈ H+
p(·),ρ.

Denote the restrictions of the classes H+
p(·),ρ,mH−

p(·),ρ to ∂ω by L+
p(·),ρ and mL−

p(·),ρ,
respectively, i.e.

L+
p(·),ρ = H+

p(·),ρ/∂ω ; mL−
p(·),ρ = mH−

p(·),ρ/∂ω.

We will need the following result:

Theorem 6. Let p ∈ WL, p− > 1, and the inequalities (2) be fulfilled. Then the system

E
(0)
+ =

{
eint

}
n≥0

( E
(m)
− =

{
e−int

}
n≥m

) forms a basis for L+
p(·),ρ(mL−

p(·),ρ),1 < p < +∞.
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We will also need the following easy-to-prove lemma, which is derived immediately
from the definition of weighted space Lp(·),ρ.

Lemma 3. Let
p ∈ C [−π, π] and p(t) > 0, ∀t ∈ [−π, π] .

Then the function ξ(t) = |t− c|α belongs to Lp(·),ρ, if

α > − 1
p(c) , for c ̸= τk, ∀ k = 1,m ,

and
α+ αk0 > − 1

p(c) , for c = τk0.

3. Main Assumptions and Riemann Problem Statement

Let’s state the Riemann problem in the classesH±
p(·);ρ. Let the complex-valued function

G (t) on [−π, π] satisfy the following conditions:
i ) Function |G (t)| belongs to the space Lr(·) for some r : 0 < r− ≤ r+ < +∞, and

|G (t)|−1 ∈ Lω(·) for ω : 0 < ω− ≤ ω+ < +∞.
ii ) Argument θ (t) ≡ argG (t) has a following decomposition:

θ (t) = θ0 (t) + θ1 (t) ,

where θ0 (t) is a continuous function on [−π, π] and θ1 (t) is a function of bounded variation
on [−π, π].

It is required to find a piecewise analytic function F± (z) on the complex plane with a
cut ∂ω which satisfies the following conditions:

a) F+ (z) ∈ H+
p(·) : 0 < p− ≤ p+ < +∞;

b) F− (z) ∈ mH−
ν(·);0 < ν− ≤ ν+ < +∞;

c) nontangential boundary values on the unit circumference ∂ω satisfy the relation
F+

(
eit

)
−G (t)F− (

eit
)
= g (t) , for a.e. t ∈ (−π, π),

where g ∈ Lρ(·) : 0 < ρ− ≤ ρ+ < +∞ is some given function.
Note that in the case of constant summability rate, the theory of such problems has

been well studied (see [3]).
Consider the following homogeneous Riemann problem in the classes H+

p(·),ρ×mH−
p(·),ρ :

F+(z)−G(z)F−(z) = 0, z ∈ ∂ω. (5)

By the solution of the problem (5) we mean a pair of analytic functions

(F+(z);F−(z)) ∈ H+
p(·),ρ × mH−

p(·),ρ,

whose boundary values satisfy a.e. the equation (5). Introduce the following functions
Xi (z) analytic inside (with the sign ”+”) and outside (with the sign ”-”) the unit circle:

X1 (z) ≡ exp

{
1

4π

∫ π

−π
ln
∣∣G (

eit
)∣∣ eit + z

eit − z
dt

}
,
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X2 (z) ≡ exp

{
i

4π

∫ π

−π
θ (t)

eit + z

eit − z
dt

}
,

where θ (t) ≡ argG
(
eit

)
. Define

Zi (z) ≡
{

Xi (z) , |z| < 1 ,

[Xi (z)]
−1 , |z| > 1 , i = 1, 2 and Z (zi) = Z1(z)× Z2(z)

Let {sk}r1 : −π < s1 < ...sr < π be points of discontinuity of the function θ(t) and

{hk}r1 : hk = θ (sk + 0)− θ (sk − 0) , k = 1, r,

be the corresponding jumps of this function at these points. Denote

h0 = θ (−π)− θ (π) ;h
(0)
0 = θ0 (π)− θ0 (−π) .

Let

u0 (t) ≡
{
sin

∣∣∣∣ t− π

2

∣∣∣∣}−
h
(0)
0
2π

exp

{
− 1

4π

∫ π

−π
θ0 (τ) ctg

t− τ

2
dτ

}
and

u (t) =
∏r

k=0

{
sin

∣∣ t−sk
2

∣∣}hk
2π , where s0 = π.

As is known, (see [3]), the boundary values
∣∣Z−

2 (τ)
∣∣ are defined by the formula

∣∣Z−
2

(
eit

)∣∣ = u0 (t) [u (t)]−1

{
sin

∣∣∣∣ t− π

2

∣∣∣∣}−h0
2π

,

i.e. ∣∣Z−
2

(
eit

)∣∣ = u0 (t)
r∏

k=0

{
sin

∣∣∣∣ t− sk
2

∣∣∣∣}−hk
2π

.

It follows directly from Sokhotskii-Plemelj formula that

sup vrai
(−π,π)

{ ∣∣Z−
1

(
eit

)∣∣±1
}
< +∞.

Thus, for
∣∣Z− (

eit
)∣∣−1

we have the representation

∣∣Z− (
eit

)∣∣−1
=

∣∣Z−
1

(
eit

)∣∣−1 |u0 (t)|−1
r∏

k=0

{
sin

∣∣∣∣ t− sk
2

∣∣∣∣}
hk
2π

. (6)

Represent the product |Z−ρ|−1
as follows:

∣∣Z−ρ
∣∣−1 ≈

∣∣Z−
1

∣∣−1 |u0|−1
l∏

k=0

|t− tk|βk ,
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where
{tk}lk=0 ≡ { τk}mk=1

⋃
{sk}rk=0, and βk’s are defined by

βk = −
m∑
i=1

αiχ{tk} (τi) +
1

2π

r∑
i=0

hiχ{tk} (si) , k = 0, l . (7)

By virtue of Lemma 2.3, we obtain that if the inequalities

βk > − 1

q(tk)
, k = 0, r, (8)

are true, then the product |Z−ρ|−1
belongs to the space Lq(·), i.e. |Z−|−1 ∈ Lq(·),ρ−1 . So,

if the inequalities (8) are true, then the function Φ(z) = F (z)
Z(z) belongs to the classes H±

1 .

Then, according to [3], Φ(z) is a polynomial Pm0(z) of degree m0 ≤ m. Thus,

F−(z) = Pm0(z)Z
−(z).

Let’s find out under which conditions the function F−(z) belongs to the space H−
p(·),ρ. We

have ∣∣Z−ρ
∣∣ ≈ |Z1| |u0|

l∏
k=0

|t− tk|−βk .

Consequently, if the inequalities

βk <
1

p(tk)
, k = 0, r,

are true, then it is clear that F−(τ) ∈ Lp(·),ρ, and hence F− ∈ mH−
p(·),ρ. So, if the

inequalities

− 1

q(tk)
< βk <

1

p (tk)
, k = 0, r, (9)

are true, then the general solution of homogeneous problem

F+
0 (τ) = G1 (τ)F

−
0 (τ) , τ ∈ ∂ω,

in the classes H+
p(·), ρ ×m H−

p(·), ρ can be represented as follows:

F0 (z) = Pm0 (z)Z (z) ,

where Pm0 (z) is an arbitrary polynomial of degree m0 ≤ m.So the following theorem is
valid:

Theorem 7. Let the {βk}r1’s be defined by (7) and the inequalities (9) be true. If

− 1

p (τk)
< αk <

1

q (τk)
, k = 1,m,
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then the general solution of the homogeneous Riemann problem (5) in the classes H+
p(·), ρ×m

H−
p(·), ρ can be represented as

F (z) = Pm0 (z)Z (z) ,

where Z (·) is a canonical solution of homogeneous problem, and Pm0 (·) is a polynomial
of degree m0 ≤ m.

This theorem has the following direct:

Corollary 1. Let all the conditions of Theorem 3.1 be satisfied. Then the homogeneous
Riemann problem (5) is trivially solvable in the Hardy classes H+

p(·),ρ × −1H
−
p(·),ρ.

4. Reducing The Completeness of Exponential System with Complex
Coefficients to Boundary Value Problems

Consider the following exponential system:{
A (t) eint; B (t) e−i(n+1)t

}
n∈Z+

, (10)

where A (t) ≡ |A (t)| eiα(t); B (t) ≡ |B (t)| eiβ(t) are complex-valued functions on [−π, π].
We will consider the completeness of the system (10) in the space Lp(·);ρ . It is known
[6] that the conjugate space of Lp(·);ρ is isometrically isomorphic to the space Lq(·);ρ :
1

p(t) +
1

q(t) ≡ 1. Therefore, the completeness of the system (10) in Lp(·);ρ is equivalent to

the equality to zero of any function f (t) from the space Lq(·);ρ which satisfies the relations∫ π

−π
A (t) eintf (t)dt = 0;

∫ π

−π
B (t) e−i(n+1)tf (t)dt = 0, ∀n ∈ Z+. (11)

Assume that the following main condition is satisfied:

ess sup
[−π,π]

{
|A (t)|±1 ; |B (t)|±1

}
< +∞. (12)

From the first of equalities (11) we have∫ π

−π
A (t) eintf (t) dt =

1

i

∫
∂ω

f+ (τ) τndτ = 0,∀n ∈ Z+, (13)

where f+ (τ) ≡ A (arg τ) f (arg τ) τ̄ , τ ∈ ∂ω.
It is absolutely clear that f+ (τ) ∈ L1 (∂ω). Then it is well known (see [5], p.205) that

the conditions (13) are equivalent to the existence of a function F+ (z) from H+
1 whose

nontangential boundary values on ∂ω coincide with f+ (τ) : F+ (τ) = f+ (τ) a.e. on ∂ω.
Similarly, from the second of equalities (11) we have∫ π

−π
B (t)ei(n+1)tf (t) dt =

1

i

∫
∂ω

f− (τ) τndτ = 0, ∀n ∈ Z+, (14)
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where f− (τ) = B (arg τ) f (arg τ) , τ ∈ ∂ω. For the reason stated above, the equali-
ties (14) are equivalent to the existence of a function Φ+ (z) ∈ H+

1 whose nontangential
boundary values Φ+ (τ) on ∂ω coincide with f− (τ) : Φ+ (τ) = f− (τ) a.e. on∂ω.

It is absolutely clear that F+ (τ) ; Φ+ (τ) ∈ Lq(·);ρ (∂ω). Consequently, if we ad-
ditionally require that p (t) ∈ WL, then from theorem in [7] we obtain the inclusion
F+ (z) ; Φ+ (z) ∈ H+

q(·);ρ. Representing f (t) in terms of F+ (τ) and Φ+ (τ), we obtain the
following conjugation problem:

F+ (τ)− A (arg τ)

B (arg τ)
τ Φ+ (τ) = 0, τ ∈ ∂ω.

Define the function F− (z) analytic outside the unit circle:

F− (z) =
1

z
Φ+

(
1

z̄

)
, |z| > 1.

It is absolutely clear that F− (∞) = 0. Moreover, F− (τ) = τ̄ Φ+ (τ), τ ∈ ∂ω. Then we
arrive at the following Riemann problem:{

F+ (τ)−G (τ)F− (τ) = 0 , τ ∈ ∂ω,
F− (∞) = 0 ,

(15)

where

G (τ) ≡ A (arg τ)

B (arg τ)
, τ ∈ ∂ω.

By definition, we have F− (z) ∈−1 H−
q(·);ρ. Consequently, if the system (10) is in-

complete in Lp(·);ρ, then the Riemann problem (15) is non-trivially solvable in the classes(
H+

q(·);ρ; −1H
−
q(·);ρ

)
.

Now let’s assume that the problem (15) is non-trivially solvable in the classes
(
H+

q(·);ρ; −1H
−
q(·);ρ

)
,

i.e. F+ (z) ∈ H+
q(·);ρ, F

− (z) ∈−1 H
−
q(·);ρ. Define

Φ+
1 (z) ≡ F−

(
1
z̄

)
for |z| < 1.

We have F− (τ) = Φ+
1 (τ), τ ∈ ∂ω and Φ+ (0) = 0. Then it is clear that the function

Φ+ (z) = z−1Φ+
1 (z) will be analytic when |z| < 1, and moreover, Φ+ (z) ∈ H+

q(·);ρ. Thus,

F+ (τ)−G (τ) τ Φ+ (τ) = 0 , τ ∈ ∂ω,

or
F+ (τ)

A (arg τ) τ̄
=

Φ+ (τ)

B (arg τ)
, τ ∈ ω.

Denote f (t) = F+(eit)

A(t)eit
=

Φ+(eit)
B(t) .
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It is absolutely clear that f (t) ∈ Lq(·);ρ. From F+ (z), Φ+ (z) ∈ H+
1 we obtain the

equalities ∫
∂ω

F+ (τ) τndτ = 0;

∫
∂ω

Φ+ (τ) τndτ = 0,∀n ∈ Z+.

Expressing F+ (τ) and Φ+ (τ) in terms of f (arg τ) as τ ∈ ∂ω, we have∫
∂ω

A (t) e−itf (t)eintdeit = i

∫ π

−π
A (t) eintf (t) dt = 0, ∀n ∈ Z+;∫

∂ω
B (t)f (t) eintdeit = i

∫ π

−π
B (t)ei(n+1)tf (t) dt = 0, ∀n ∈ Z+.

Obviously, f (t) ̸= 0 on [−π, π]. Then these relations imply that the system (10) is
incomplete in Lp(·);ρ. So we have the following:

Theorem 8. Let p : 1 < p− ≤ p+ < +∞, p (t) ∈ WL, and complex-valued coeffi-
cients A (t) ; B (t) satisfy the condition (12). Then the exponential system (10) is com-
plete in Lp(·);ρ only if the Riemann problem (15) is only trivially solvable in the classes(
H+

q(·);ρ; −1H
−
q(·);ρ

)
.

5. Completeness of Exponential System with Complex Coefficients in
Lp(·);ρ

In this section, we apply the results of previous sections to obtain the sufficient con-
ditions for the completeness of exponential system with complex coefficients in Lp(·);ρ. So
let’s consider the system {

A (t) eint; B (t) e−i(n+1)t
}

n∈Z+

, (16)

where A (t) ≡ |A (t)| eiα(t); B (t) ≡ |B (t)| eiβ(t) are complex-valued functions on [−π, π].
Assume that the following conditions are satisfied:

1)sup vrai
[−π,π]

{(
|A|±1 ; |B|±1

)}
< +∞,

2) The function θ (t) ≡ α (t) − β (t) is piecewise continuous on [−π, π] with points
of discontinuity {si}r1 : −π < s1 < ... < sr < π. Let {hk}r1 = θ (sk + 0) − θ (sk − 0) ,
k = 1, r, be the jumps of the function θ (t) at these points and h0 = θ (−π)− θ (π).

3) hk
2π + 1

p(sk)
/∈ Z (Z is a set of all integers), wherehkis a jump of the function θ (t) ≡

α (t)− β (t) at the discontinuity point sk , k = 0, r; s0 = π.
Define the integers ni, i = 1, r, from the following inequalities:

− 1
p(sk)

< hk
2π + nk − nk−1 <

1
q(sk)

, k = 1, r ,

n0 = 0 .

(17)
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Let

∆r =
1

2π
[α (−π)− α (π) + β (π)− β (−π)]− nr.

The following theorem is true:

Theorem 9. Let the coefficients A (t) and B (t) of the system (16) satisfy the conditions

1)-3), where G
(
eit

)
≡ A(t)

B(t) , the integer nr is defined by (17), p (t) ∈ WL, 1 < p− ≤ p+ <

+∞. Then, if ∆r /∈ Z and ∆r > − 1
p(π) , then the system (5.1) is complete in the space

Lp(·);ρ.

Proof. Let the conditions 1)-3) be satisfied. We first assume that the inequalities

(17) hold for nk = 0 , k = 1, r. Let G (t) ≡ A(t)
B(t) , t ∈ [−π, π]. As established above, the

completeness of the system (16) in Lp(·);ρ is only equivalent to the trivial solvability of the
Riemann problem 

F+
(
eit

)
−G (t)F− (

eit
)
= 0 , t ∈ [−π, π] ,

F+ ∈ H+
q(·);ρ ; F− ∈−1 H

−1
q(·);ρ .

(18)

It follows from (17) that nr = 0, and hence h0 = 2π∆r. Suppose − 1
p(π) < ∆r < 1

q(π) .

Then, by Corollary 3.1, the problem (18) has only the trivial solution. Consequently, by
Theorem 4.1, the system (10) is complete in Lp(·);ρ in the considered case. Now let ∆r /∈ Z

and ∆r >
1

q(π) , for example, ∆r ∈
[

1
q(π) ,

1
q(π) + 1

)
. Consider the system{

A (t) eint; B (t) e−int
}
n∈N . (19)

Reduce it to the following form:{
Ã (t) eint; B (t) e−i(n+1)t

}
n∈Z+

, (20)

where Ã (t) ≡ A (t) eit ≡ |A (t)| eiα̃(t) and α̃ (t) ≡ t+α (t). Calculate ∆̃r, which corresponds
to the system (20). We have

∆̃r =
1

2π
[α̃ (−π)− α̃ (π)+ β (π)− β (−π)] = ∆r − 1.

Thus, ∆̃r ∈
(
− 1

p(π) ,
1

q(π)

)
. Then it follows from the previous discussion that the system

(20), and hence the system (16), is complete in Lp(·);ρ. Continuing this process, we obtain

the completeness of the system (16) in Lp(·);ρ for ∆r > − 1
p(π) .

Now let’s consider the general case. Let all the conditions of the theorem be satisfied.
Express the unit function e (t) on [−π, π] in the form e (t) ≡ ei arg e(t):

arg e (t) ≡


0, −π < t ≤ s1 ,
2πn , s1 < t ≤ s2 ,

...
2πnr , sr < t ≤ π ,
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where nk , k = 1, r are the integers defined by (17). Replace the coefficient A (t) with the
function A0 (t) which is equal to it: A0 (t) = A (t) · e (t). So, α0 (t) ≡ arg A0 (t) =α (t) +
arg e (t). Consider the system{

A0 (t) e
int; B (t) e−i(n+1)t

}
n∈Z+

. (21)

It is absolutely clear that the basis properties of the systems (16) and (21) in Lp(·);ρ are
the same. We have

θ0 (t) = arg A0 (t)− arg B (t) = α (t) + arg e (t)− β (t) = θ (t) + arg e (t) .

It is clear that the points of discontinuity of the functions θ0 (t) and θ (t) are the same.
We have

h0k = θ0 (sk + 0)− θ0 (sk − 0) = hk + arg e (sk + 0)− arg e (sk − 0) =

= hk + 2π(nk − nk−1) , k = 1, r ,

where n0 = 0. Thus
h00
2π

=
hk
2π

+ nk − nk−1 , k = 1, r.

On the other hand

h00 = θ0 (−π)− θ0 (π) = θ (−π)− θ (π)+

+arg e (−π)− arg e (π) = h0 − 2πnr ⇒
h0
0

2π = ∆r.

Then it follows from the previous discussion that for ∆r > − 1
p(π) the system (21), and

hence the system (16), is complete in Lp(·);ρ.

Theorem is proved.

Let’s apply the obtained theorem to the special case{
ei[n+α signn]t

}
n∈Z

, (22)

where α ∈ C is a complex parameter. Basis properties of the system (22) in the spaces
Lp(·);ρ have been well studied. From Theorem 5.1 we have

Corollary 5.1. Let p (t) ∈ WL , 1 < p− ≤ p+ < +∞ and Reα ∈ Z. If Reα < 1
2p(π) ,

then the system (22) is complete in Lp(·);ρ.
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1. Introduction

The study of boundedness of the fractional integral operator, singular integrals, max-
imal function were studied by lots of researchers in the last decodes. Morrey estimates
of such kind of operators is a more recent problem and is still very popular. Just as an
example we recall the study made in [1,3,7,8,10,11].

In this paper we introduce modified Gegenbauer Morrey space (G- Morrey space) and
prove Adams type theorem on the boundedness of the G- fractional interal. The result
obtained is an analog of the corresponding theorem obtained for Riesz potential in [4].

Let 1 ≤ p <∞ and 0 ≤ λ ≤ n. The classical Morrey spaces is defined by

Mp,λ (Rn) =
{
f ∈ Lploc (Rn) : ‖f‖Lp,λ <∞

}
, (1)

where

‖f‖Lp,λ := sup
θ

(
1

|θ|λ/n

∫
θ
|f (x)|p dx

)1/p

,

the supremum, is taken over all cubes Q ⊂ Rn. It is well known that if 1 ≤ p < ∞ then
Mp,0 (Rn) = Lp (Rn) and Mp,n (Rn) = L∞ (Rn).

Morrey spaces were originally introduced by Morrey in [15] to study the local behavior
of solutions to second-order

Morrey spaces were originally introduced by Morrey in [15] to study the local behavior
of solutions to secon-order elliptic partial differential equations.

http://www.cjamee.org 24 © 2013 CJAMEE All rights reserved.
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In [1], Adams for the Riesz potential

Jαf (x) =

∫
Rn

f (y) dy

|x− y|n−α
, 0 < α < n

on the Morrey space proved the following theorem.

Theorem A. [1] Let 0 < α < n and let 0 ≤ λ ≤ n, 1 ≤ p < (n− λ) /α.

1. If 1 < p < (n− λ) /α then the condition 1/p − 1/q = α/ (n− λ) is necessary and
sufficient for the boundedness of Jα from Mp,λ (Rn) to Mq,λ (Rn).

2. If p = 1, then the condition 1− 1/q = α/ (n− λ) is necessary and sufficient for the
boundedness of Jα from M1,λ (Rn) to Mq,λ (Rn).

In the work [12] is proved analog of this theorem for the Gegenbauer fractional integral
on G- Morrey space.

The structure of the paper is as follows.

Section 1 is for informational purposes. In Section 2 are given some definition, notation
and auxiliary results. In Section 4 is proved the theorem of strong and weak boundedness
for maximal operator and also the Hardy-Littlewood-Sobolev type inequality for the G-
fractional integral in modified G-Morrey spaces.

2. Definition, notation and auxiliary results

The generalized shift operator associated with the Gegenbauer differential operator G

G = Gλ =
(
x2 − 1

) 1
2
−λ d

dx

(
x2 − 1

)λ+ 1
2
d

dx
, x ∈ (1,∞) , λ ∈

(
0,

1

2

)
,

introduced in [7] has the form

Aλch yf (ch x) =
Γ
(
λ+ 1

2

)
Γ (λ) Γ

(
1
2

) ∫ π

0
f (ch xch y − sh xsh y cos ϕ) (sin ϕ)2λ−1 dϕ.

Let Lp (R+, G) ≡ Lp,λ (R+) , 1 ≤ p ≤ ∞, denote the space of µλ (x) = sh2λx measur-
able functions on R+ = (0,∞) with finite norm

‖f‖Lp,λ(R+) =

(∫ ∞
0
|f (ch x)|p sh2λxdx

) 1
p

, 1 ≤ p <∞,

‖f‖L∞,λ(R+) = ‖f‖L∞ = es sup
x∈R+

|f (ch x)| .

For all measurable sets E ⊂ R+ put µE = |E|λ =
∫
E sh

2λxdx.
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Also but WLp,λ (R+) , 1 ≤ p < ∞, denote the weak space Lp,λ (R+) of locally integrable
functions f (ch x) , x ∈ R+ with finite norm

‖f‖WLp,λ(R+) = sup
r∈R+

r |{x ∈ R+ : |f (chx)| > r}|
1
p

λ

= sup
r∈R+

r

(∫
{x∈R+:|f(chx)|>r}

sh2λxdx

) 1
p

λ

.

In what follows, the expression A . B will mean that there exist a constant C such
that 0 < A ≤ CB, where C may depend on some inessential parameters. If A . B and
B . A, the we write A ≈ B and say that A and B are equivalent.

Denote Hr = (0, r) ⊂ R+. Further, we need the following relation (see [14] Lemma 2.3
by x = 0,γ = 2λ)

|Hr|λ =

∫ r

0
sh2λtdt ≈

(
sh
r

2

)γ
, (2)

where

γ = γλ (r) =

{
2λ+ 1, 0 < r < 2,

4λ, 2 ≤ r <∞,

and 0 < λ < 1/2.
In [10] the Gegenbauer maximal function (G-maximal function) is defined as follows:

MGf (ch x) = sup
r>0

1

|Hr|λ

∫
Hr

Aλch y |f (ch x)| sh2λydy.

In what follows we need the following Fefferman-Stein type inequality.
Theorem B ([9, Theorem 1.4]). For every 1 ≤ p < ∞ and every 0 < t < ∞ the

inequality ∫ r

0
Aλch y (MGf (ch x))p sh2λydy ≤

∫ r

0
Aλch y |f (ch x)|p sh2λydy

is true.
Theorem C ([10, Theorem 1.5]). The Chebyshev-type inequality∣∣∣x ∈ (0, r) : Aλch yMGf (ch x) > α

∣∣∣
λ
≤ 1

α

∫ r

0
Aλch yMGf (ch x) sh2λydy

is true for all α > 0 and t > 0.
Theorem D [10] a) If f ∈ L1,λ (R), then for all α > 0 the inequality

|{x ∈ R+ : MGf (ch x) > α}|λ .
1

α
‖f‖L1,λ(R+) .

b) If f ∈ Lp,λ (R+), 1 < p ≤ ∞, then MGf (ch x) ∈ Lp,λ (R+) and

‖MGf‖Lp,λ(R+) . ‖f‖Lp,λ(R+) .
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Corollary E. If f ∈ Lp,λ (R+), 1 ≤ p ≤ ∞, then

lim
r→0

1

|Hr|λ

∫ r

0
Aλch yf (ch x) sh2λydy = f (ch x)

for a.e. x ∈ R+.

3. Some embeddings into the G- Morrey and modified G-Morrey spaces.

We introduce the following nonation analogously in [8].

Definition 1. Let 1 ≤ p < ∞, 0 < λ < 1/2, 0 ≤ ν ≤ γ,
[
sh r2

]
1

= min
{

1, sh r2
}

. We

denote by Lp,λ,ν (R+) the G−Morrey space, and by L̃p,λ,ν (R+) the modified G−Morrey
space, as the set of locally integrable functions f (ch x), x ∈ R+ with the finite norms

‖f‖Lp,λ,ν(R+) = sup
x,r∈R+

((
sh
r

2

)−ν ∫ r

0
Aλch y |f (ch x)|p sh2λydy

) 1
p

,

‖f‖L̃p,λ,ν(R+) = sup
x,r∈R+

([
sh
r

2

]−ν
1

∫ r

0
Aλch y |f (ch x)|p sh2λydy

) 1
p

,

respectively.

Note that
L̃p,λ,0 (R+) = Lp,λ,0 (R+) = Lp,λ (R+) .

L̃p,λ,0 (R+) ⊂ Lp,λ,ν (R+)
⋂
Lp,λ (R+)

and
max

{
‖f‖Lp,λ,ν , ‖f‖Lp,λ

}
≤ ‖f‖L̃p,λ,ν .

Definition 2. Let 1 ≤ p <∞, 0 < λ < 1/2, 0 ≤ ν ≤ γ. We denote by WLp,λ,ν (R+) the
weak G−Morrey space and by WL̃p,λ,ν (R+) the modified weak G−Morrey space as the set
of locally integrable functions f (ch x) , x ∈ R+ with finite norms

‖f‖WLp,λ,ν(R+) = sup
r∈R+

r sup
x,t∈R+

((
sh
t

2

)−ν ∣∣∣{y ∈ (0, t) : Aλch y |f (ch x)| > r
}∣∣∣
λ

) 1
p

= sup
r∈R+

r sup
x,t∈R+

((
sh
t

2

)−ν ∫
{y∈(0,t):Aλch y |f(ch x)|>r}

sh2λydy

) 1
p

,

‖f‖WL̃p,λ,ν(R+) = sup
r∈R+

r sup
x,t∈R+

([
sh
t

2

]−ν
1

∣∣∣{y ∈ (0, t) : Aλch y |f (ch x)| > r
}∣∣∣
λ

) 1
p

= sup
r∈R+

r sup
x,t∈R+

([
sh
t

2

]−ν
1

∫
{y∈(0,t):Aλch y |f(ch x)|>r}

sh2λydy

) 1
p

respectively.
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Note that WLp,λ,0 (R+) = WLp,λ (R+) = WL̃p,λ,0 (R+), Lp,λ,ν (R+) ⊂ WL̃p,λ,ν (R+)
and ‖f‖WLp,λ,ν

≤ ‖f‖Lp,λ,ν , L̃p,λ,ν (R+) ⊂WL̃p,λ,ν (R+) and ‖f‖WL̃p,λ,ν
≤ ‖f‖L̃p,λ,ν .

Lemma 1. Let 1 ≤ p <∞, 0 < λ < 1/2, 0 ≤ ν ≤ γ. Then

Lp,λ,ν (R+) = Lp,λ,ν (R+)
⋂
Lp,λ (R+)

and

‖f‖L̃p,λ,ν = max
{
‖f‖Lp,λ,ν , ‖f‖Lp,λ

}
.

Proof. Let f ∈ L̃p,λ,ν (R+). Then

‖f‖Lp,λ(R+) = sup
x,r∈R+

(∫ r

0
Aλch y |f (ch x)|p sh2λydy

) 1
p

≤ sup
x,r∈R+

([
sh
r

2

]−ν
1

∫ r

0
Aλch y |f (ch x)|p sh2λydy

) 1
p

= ‖f‖L̃p,λ,ν ,

and

‖f‖Lp,λ,ν(R+) = sup
x,r∈R+

((
sh
r

2

)−ν ∫ r

0
Aλch y |f (ch x)|p sh2λydy

) 1
p

≤ sup
x,r∈R+

([
sh
r

2

]−ν
1

∫ r

0
Aλch y |f (ch x)|p sh2λydy

) 1
p

= ‖f‖L̃p,λ,ν .

Therefore, f ∈ Lp,λ,ν (R+)
⋂
Lp,λ (R+) and the embedding

L̃p,λ,ν (R+) ⊂ Lp,λ,ν (R+)
⋂
Lp,λ (R+)

is valid.

Let f ∈ Lp,λ,ν (R+)
⋂
Lp,λ (R+). Then

‖f‖L̃p,λ,ν(R+) = sup
x,r∈R+

([
sh
r

2

]−ν
1

∫ r

0
Aλch y |f (ch x)|p sh2λydy

) 1
p

= max

{
sup

x∈R+,r∈(0,1]

([
sh
r

2

]−ν ∫ r

0
Aλch y |f (ch x)|p sh2λydy

) 1
p

,

sup
x∈R+,r∈(1,∞)

(∫ r

0
Aλch y |f (ch x)|p sh2λydy

) 1
p

}
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≤ max
{
‖f‖Lp,λ,ν , ‖f‖Lp,λ

}
.

Therefore, f ∈ L̃p,λ,ν (R+) and the embedding Lp,λ,ν (R+)
⋂
Lp,λ (R+) ⊂ L̃p,λ,ν is valid.

Thus L̃p,λ,ν (R+) = Lp,λ,ν (R+)
⋂
Lp,λ (R+).

Let now f ∈ L̃p,λ,ν (R+). Then

‖f‖Lp,λ,ν(R+) = sup
x,r∈R+

((
sh
r

2

)−ν ∫ r

0
Aλch y |f (ch x)|p sh2λydy

) 1
p

= sup
x,r∈R+

([
sh r2

]
1

sh r2

) ν
p ([

sh
r

2

]−ν
1

∫ r

0
Ach y |f (ch x)|p sh2λydy

) 1
p

= ‖f‖L̃p,λ,ν ,

since by 0 < r < 2arcsh 1, sh r2 < 1 and
[
sh r2

]
1

= sh r2 . If r ≥ 2arcsh 1, then sh r2 ≥ 1 and
we have [

sh r2
]
1

sh r2
=

1

sh r2
≤ 1.

4. Hardy-Littlewood-Sobolev inequality in modified G−Morrey spaces

In this section we study the L̃p,λ,ν- boundedness of the G−maximal operator MG.

Theorem 1. 1) If f ∈ L̃1,λ,ν (R+), 0 ≤ ν < γ, then MGf ∈WL̃1,λ,ν (R+) and

‖MGf‖WL̃1,λ,ν
. ‖f‖L̃1,λ,ν

.

2) If f ∈ L̃p,λ,ν (R+), 1 < p <∞, then MGf ∈WL̃p,λ,ν (R+) and

‖MGf‖L̃p,λ,ν . ‖f‖L̃p,λ,ν .

Proof. 1) From the definition of weak modified G−Morrey spaces

‖MGf‖WL̃1,λ,ν(R+) = sup
r∈R+

r sup
x,t∈R+

([
sh
t

2

]−ν
1

∣∣∣{y ∈ (0, t) : Aλch yMGf (ch x) > r
}∣∣∣
λ

) 1
p

.

Applying the Theorem B and also Theorem A we get

‖MGf‖WL̃1,λ,ν
. sup

x,t∈R+

([
sh
t

2

]−ν
1

∫ r

0
Aλch y |f (ch x)| sh2λydy

)

= ‖f‖L̃1,λ,ν
.

Assertion 2) follows from Theorem A.
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We consider G−fractional integral introduced in [14].

JαGd (ch x) =

∫ ∞
0
|Hy|

α
γ
−1

λ Aλch yf (ch x) sh2λydy.

The following Hardy-Littlewood-Sobolev inequality in modified G−Morrey spaces is
valid.

Theorem 2. Let 0 ≤ α < γ, 0 ≤ ν < γ − αp and 1 ≤ p < γ−ν
α .

1) If 1 < p < γ−ν
α , then the condition

α

γ
≤ 1

p
− 1

q
≤ α

γ − ν

is necessary and sufficient for the boundedness of the operator JαG from L̃p,λ,ν (R+) to
L̃q,λ,ν (R+).

2) If p = 1 < γ−ν
α , then the condition

α

γ
≤ 1− 1

q
≤ α

γ − ν

is necessary and sufficient for the boundedness of the operator JαG from L̃1,λ,ν (R+)
toL̃q,λ,ν (R+).

Proof.

1) Sufficiency. Let 0 ≤ α < γ, 0 ≤ ν < γ − αp, 1 < p < γ−ν
α and f ∈ L̃p,λ,ν (R+).

From (2), we have

|JαGf (ch x)| .
(∫ r

0
+

∫ ∞
r

)
Aλch y |f (ch x)|(

shy2
)γ−α sh2λtdt

= A1 (x, r) +A2 (x, r) . (3)

We estimate A1 (x, r). Let 0 < r < 2, then by (2) we obtain

|A1 (x, r)| .
∫ r

0

Aλch y |f (ch x)|(
sh y

2

)2λ+1−α sh
2λydy .

∞∑
j=0

∫ r/2j

r/2j+1

Aλch y |f (ch x)|(
shy2

)2λ+1−α sh
2λydy

<
∞∑
j=0

(
sh

r

2j+1

)α (
sh

r

2j+2

)−2λ−1 ∫ r/2j

0
Aλch y |f (ch x)| sh2λydy.

Using the inequality (see [3], Lemma 2.2)

t ≤ sh t ≤ eAt, A > 0 (4)
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and also sh at ≤ a sh t at 0 ≤ a ≤ 1, we have

|A1 (x, r)| .
(
sh
r

2

)α ∞∑
j=0

(
2−jα

) (
sh

r

2j+1

)−2λ−1 ∫ r/2j

0
Aλch y |f (ch x)| sh2λydy

.
(
sh
r

2

)α
MGf (ch x)

∞∑
j=0

2−jα

.
(
sh
r

2

)α
MGf (ch x) . (5)

Let 2 ≤ r <∞. Then

A1 (x, r) .
∫ r

0

Aλch y |f (ch x)|(
shy2

)4λ−α sh2λydy

.
∞∑
j=0

∫ r/2j

r/2j+1

Aλch y |f (ch x)|(
shy2

)4λ−α sh2λydy

.
∞∑
j=0

(
sh

r

2j+1

)α (
sh

r

2j+1

)−4λ ∫ r/2j

0
Aλch y |f (ch x)| sh2λydy

.
(
sh
r

2

)α
MGf (ch x)

∞∑
j=0

2−jα

.
(
sh
r

2

)α
MGf (ch x) . (6)

Combining (5) and (6) we obtain

A1 (x, r) .
(
sh
r

2

)α
MGf (ch x) , 0 < r <∞. (7)

Now consider A2 (x, r). By Holders inequality we get

A2 (x, r) .

(∫ ∞
r

Aλch y |f (ch x)|p (sh y)−β sh2λydy

) 1
p

×
(∫ ∞

r
(sh y)(β/p+α−γ)p

′
sh2λydy

) 1
p′

= A2·1 ·A2·2 (8)

Let ν < β < γ − αp. Using the inequality [7]∥∥∥Aλch yf∥∥∥
L̃p,λ,ν

≤ ‖f‖L̃p,λ,ν ,
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we obtain

A2·1 .

 ∞∑
j=0

∫ 2j+1r

2jr
Aλch y |f (ch x)|p (sh y)−β sh2λydy

 1
p

.
∥∥∥Aλch yf∥∥∥

L̃p,λ.ν

 ∞∑
j=0

[
2j+1sh r2

]ν
1

(sh 2jr)β

 1
p

.
[
2sh

r

2

]ν/p
1

(sh r)−β/p

 ∞∑
j=0

2j(ν−β)

 1
p

‖f‖L̃p,λ,ν

.
[
sh
r

2

] ν
p

1

(
sh
r

2

)−β
p ‖f‖L̃p,λ,ν (9)

since sh ax ≥ ashx at a ≥ 1.
For A2·2 we have

A2·2 =

(∫ ∞
r

(sh y)(β/p+α−γ)p
′
sh2λydy

) 1
p′

. (sh r)β/p+α−γ+γ/p
′
. (sh r)β/p+α−γ+γ(1−1/p)

. (sh r)β/p+α−γ/p .
(
sh

r

2

)β/p+α−γ/p
. (10)

Taking into account (9) and (10) in (8), we obtain

A2 (x, r) .
[
sh
r

2

]ν/p (
sh
r

2

)α−γ/p
‖f‖L̃p,λ,ν . (11)

Thus from (5) and (11), we get

|JαGf (ch x)| .
([
sh
r

2

]ν/p
1

(
sh
r

2

)α−γ/p
‖f‖L̃p,λ,ν +

(
sh
r

2

)α
MGf (chx)

)

. min

{(
sh
r

2

)α+(ν−γ)/p
‖f‖L̃p,λ,ν +

(
sh
r

2

)α
MGf (ch x) ,

(
sh
r

2

)α−γ/p
‖f‖L̃p,λ,ν +

(
sh
r

2

)α
MGf (ch x)

}
, (12)

for all r > 0.
The right-hand side attains its minimum at

sh
r

2
=

(
γ − αp
αp

‖f‖L̃p,λ,ν
MGf (ch x)

)p/γ
, (13)
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and

sh
r

2
=

(
γ − ν − αp

αp

‖f‖L̃p,λ,ν
MGf (ch x)

) p
γ−ν

. (14)

Applying (13) and (14) in (12), we get

|JαGf (ch x)| . min


(
MGf (chx)

‖f‖L̃p,λ,ν

)1−αp
γ

,

(
MGf (chx)

‖f‖L̃p,λ,ν

)1− αp
γ−ν
 ‖f‖L̃p,λ,ν .

Then

|JαGf (ch x)| . (MGf (chx))
p
q ‖f‖

1− p
q

L̃p,λ,ν
.

Hence, by Theorem 1, we have∫ r

0
|JαGf (ch x)|q sh2λxdx . ‖f‖q−p

L̃p,λ,ν

∫ r

0
|MGf (ch x)|p sh2λxdx

.
[
sh
r

2

]ν
1
‖f‖q

L̃p,λ,ν
.

From this it follows that

‖JαGf (ch x)‖Lq,λ,ν . ‖f‖q
L̃p,λ,ν

,

i.e., JαG in bounded from L̃p,λ,ν (R+) to L̃q,λ,ν (R+).

Necessity. Let 1 < p < (γ − ν) /α, f ∈ L̃p,λ,ν (R+) and JαG is bounded from
L̃p,λ,ν (R+) to L̃q,λ,ν (R+). Let the function f (chx) be non-negative and monotonically on
R+. The delates function ft(chx) is defined as follows [6]:

f

(
ch

(
th
t

2

)
x

)
≤ ft (chx) ≤ f

(
ch

(
cth

t

2

)
x

)
, 0 < t < 2

f

(
ch

(
th
t

2

)
x

)
≤ ft (chx) ≤ f

(
ch

(
sh
t

2

)
x

)
, 2 ≤ t <∞ (15)

We suppose
[
sh t2

]
1,+

= max
{

1, sh t2
}

. Let 0 < t < 2. Using the symmetry of the operator

Aλchy (see [7]) Aλchxf (chy) = Aλchyf (chx) we will have

‖ft‖L̃p,λ,ν = sup
x,r∈R+

([
sh
r

2

]−ν
1

∫ r

0
Aλchy |ft (chy)|p sh2λydy

) 1
p

≤ sup
x,r∈R+

([
sh
r

2

]−ν
1

∫ r

0
Aλchx

∣∣∣∣ft(ch(cth t2
)
y

)∣∣∣∣p sh2λydy) 1
p

[(
cth

t

2

)
y = u, dy =

(
th
t

2

)
du

]
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=

(
sh
t

2

) 1
p

sup
x,r∈R+

([
sh
r

2

]−ν
1

∫ rcth t
2

0
Aλchy |f (chu)|p sh2λ

(
th
t

2

)
udu

) 1
p

=

(
th
t

2

) 2λ+1
p

sup
r∈R+

([(
sh r2

)
cth t2

]
1[

sh r2
]
1

) ν
p

× sup
x,r∈R+

([(
sh
r

2

)
cth

t

2

]−ν
1

∫ rcth t
2

0
Aλchx |f (chu)|p sh2λudu

) 1
p

.

≤
(
sh
t

2

) 2λ+1
p
[
cth

t

2

] ν
p

1,+

‖f‖L̃p,λ,ν ≤
(
th
t

2

) 2λ+1−ν
p

‖f‖L̃p,λ,ν

=

(
sh t2
ch t2

) 2λ+1−ν
p

‖f‖L̃p,λ,ν .
1(

ch t2
) 2λ+1−ν

p
−α
‖f‖L̃p,λ,ν

.

(
sh
t

2

)α+ ν−2λ−1
p

‖f‖L̃p,λ,ν

.

(
sh
t

2

)α+ ν−γ
p

‖f‖L̃p,λ,ν , 0 < t < 2. (16)

On the other hand, by 0 < t < 2, we get

‖ft‖L̃p,λ,ν = sup
x,r∈R+

([
sh
r

2

]−ν
1

∫ r

0
Aλchy |ft (chx)|p sh2λydy

) 1
p

≥ sup
x,r∈R+

([
sh
r

2

]−ν
1

∫ r

0
Aλchx

∣∣∣∣ft(ch(th t2
)
y

)∣∣∣∣p sh2λydy) 1
p

[(
th
t

2

)
y = u, y =

(
cth

t

2

)
u, dy =

(
cth

t

2

)
du

]

=

(
cth

t

2

) 1
p

sup
x,r∈R+

([
sh
r

2

]−ν
1

∫ rth t
2

0
Aλchx |f (chu)|p sh2λ

(
cth

t

2

)
udu

) 1
p

≥
(
cth

t

2

) 2λ+1
p

(
sup
r∈R+

[(
sh r2

)
th t2
]
1[

sh r2
]
1

) ν
p

‖f‖L̃p,λ,ν

=

(
cth

t

2

) 2λ+1
p
[
th
t

2

] ν
p

1,+

‖f‖L̃p,λ,ν

≥
(
cth

t

2

) 2λ+1
p
− ν
p
−α
‖f‖L̃p,λ,ν
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=

(
cth

t

2

) 2λ+1−ν
p
−α
‖f‖L̃p,λ,ν

≥
(
sh
t

2

)α+ ν−γ
p

‖f‖L̃p,λ,ν (17)

Combing (16) and (17), we obtain

‖ft‖L̃p,λ,ν ≈
(
sh
t

2

)α+ ν−γ
p

‖f‖L̃p,λ,ν , 0 < t < 2. (18)

Now, let 2 ≤ t <∞, then from (15) we have

‖ft‖L̃p,λ,ν = sup
x,r∈R+

([
sh
r

2

]−ν
1

∫ r

0
Aλch y |ft (ch x)|p sh2λydy

) 1
p

≥ sup
x,r∈R+

([
sh
r

2

]−ν
1

∫ r

0
Aλch x

∣∣∣∣f (ch (th t2
)
y

)∣∣∣∣p sh2λydy) 1
p

[(
th
t

2

)
y = u, y =

(
cth

t

2

)
u, dy =

(
cth

t

2

)
du

]

=

(
cth

t

2

) 1
p

sup
x,r∈R+

([
sh
r

2

]−ν
1

∫ r th t
2

0
Aλch y |f (ch u)|p sh2λ

(
cth

t

2

)
udu

) 1
p

≥
(
cth

t

2

) 2λ+1
p

sup
x,r∈R+

([
sh
r

2

]−ν
1

∫ r th t
2

0
Aλch x |f (ch u)|p sh2λudu

) 1
p

=

(
cth

t

2

) 2λ+1
p

sup
x,r∈R+

([(
sh r2

)
th t2
]
1[

sh r2
]
1

) ν
p

‖f‖L̃p,λ,ν

=

(
cth

t

2

) 2λ+1
p
[
th
t

2

] ν
p

1

‖f‖L̃p,λ,ν ≥
(
cth

t

2

) 4λ−ν
p
−α
‖f‖

L̃p,λ,ν

≥
(
sh
t

2

)α+ ν−4λ
p

‖f‖L̃p,λ,ν =

(
sh
t

2

)α+ ν−γ
p

‖f‖L̃p,λ,ν , 2 ≤ t <∞. (19)

On the other hand, at 2 ≤ t <∞, we get

‖ft‖L̃p,λ,ν = sup
x,r∈R+

([
sh
r

2

]−ν
1

∫ r

0
Aλch y |ft (ch x)|p sh2λydy

) 1
p

≤ sup
x,r∈R+

([
sh
r

2

]−ν
1

∫ r

0
Aλch y

∣∣∣∣f (ch (sh t2
)
y

)∣∣∣∣p sh2λydy) 1
p
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sh
t

2

)
y = 0, dy =

du

sh t2

]

=

(
sh
t

2

)− 1
p

sup
x,r∈R+

([
sh
r

2

]−ν
1

∫ rsh t
2

0
Aλch x |f (ch u)|p sh2λ u

sht
du

) 1
p

≤
(
sh
t

2

)− 2λ+1
p

sup
x,r∈R+

([
sh
r

2

]−ν
1

∫ rsh t
2

0
Aλch x |f (ch u)|p sh2λudu

) 1
p

≤
(
sh
t

2

)− 4λ
p

(
sup
r∈R+

[(
sh r2

)
sh t2

]
1[

sh r2
]
1

) ν
p

‖f‖L̃p,λ,ν

=

(
sh
t

2

)− 4λ
p
[
sh
t

2

] ν
p

1

‖f‖L̃p,λ,ν

≤
(
sh
t

2

)α+ ν−4λ
p

‖f‖L̃p,λ,ν

=

(
sh
t

2

)α+ ν−γ
p

‖f‖L̃p,λ,ν , 2 ≤ t <∞. (20)

Combing (19) and (20), we obtain

‖f‖L̃p,λ,ν ≈
(
sh
t

2

)α+ ν−γ
p

‖f‖L̃p,λ,ν , (21)

Thus from (18) and (21), we have

‖ft‖L̃p,λ,ν ≈
(
sh
t

2

)α+ ν−γ
p

‖f‖L̃p,λ,ν , 0 < t <∞. (22)

From (2) 0 < t < 2, we have

‖JαGft‖L̃q,λ,ν = sup
x,r∈R+

([
sh
r

2

]−ν
1

∫ r

0
|JαGft (ch y)|q sh2λydy

) 1
q

≤ sup
x,r∈R+

([
sh
r

2

]−ν
1

∫ r

0

∣∣∣∣JαGf (ch(cth t2
)
y

)∣∣∣∣q sh2λydy) 1
q

[(
cth

t

2

)
y = z, dy =

(
th
t

2

)
dz

]

=

(
th
t

2

) 1
q

sup
x,r∈R+

([
sh
r

2

]−ν
1

∫ rcth t
2

0
|JαGf (ch z)|q sh2λ

(
th
t

2

)
zdz

) 1
q
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≤
(
th
t

2

) 2λ+1
q

sup
x,r∈R+

([
sh
r

2

]−ν
1

∫ rcth t
2

0
|JαGf (ch z)|q sh2λzdz

) 1
q

=

(
th
t

2

) 2λ+1
q

(
sup
r∈R+

[(
sh r2

)
cth t2

]
1[

sh r2
]
1

) ν
q

‖JαGf‖L̃q,λ,ν

=

(
th
t

2

) 2λ+1
q
[
cth

t

2

] ν
q

1

‖JαGf‖L̃q,λ,ν

≤
(
cth

t

2

)− 2λ+1
q
[
cth

t

2

] ν
q

1,+

‖JαGf‖L̃q,λ,ν

≤
(
cth

t

2

) ν−2λ−1
q

‖JαGf‖L̃q,λ,ν

≤
(
sh
t

2

) ν−2λ−1
q

‖JαG‖L̃q,λ,ν

=

(
sh
t

2

) ν−γ
q

‖JαG‖L̃q,λ,ν , 0 < t < 2. (23)

On the other hand by 0 < t < 2, we get

‖JαGft‖L̃q,λ,ν = sup
x,r∈R+

([
sh
r

2

]−ν
1

∫ r

0
|JαGft (ch y)|q sh2λydy

) 1
q

≥ sup
x,r∈R+

([
sh
r

2

]−ν
1

∫ r

0

∣∣∣∣JαGf (ch(th t2
)
y

)∣∣∣∣q sh2λydy) 1
q

[(
th
t

2

)
y = z, dy =

(
cth

t

2

)
dz

]

=

(
cth

t

2

) 1
q

sup
x,r∈R+

([
sh
r

2

]−ν
1

∫ rth t
2

0
|JαGf (ch z)|q sh2λ

(
cth

t

2

)
dz

) 1
q

≥
(
cth

t

2

) 2λ+1
q

(
sup
r∈R+

[(
sh r2

)
th t2
]
1[

sh r2
]
1

) ν
q

‖JαGf‖L̃q,λ,ν

=

(
cth

t

2

) 2λ+1
q
(
th
t

2

) ν
q

1

‖JαGf‖L̃q,λ,ν

≥
(
ch t2
sh t2

) 2λ+1−ν
q

‖JαGf‖L̃q,λ,ν ≥
(
sh
t

2

) ν−2λ−1
q

‖JαGf‖L̃q,λ,ν
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=

(
sh
t

2

) ν−γ
q

‖JαGf‖L̃q,λ,ν , 0 < t < 2. (24)

Thus from (23) and (24), we obtain

‖JαGf‖L̃q,λ,ν ≈
(
sh
t

2

) ν−γ
q

‖JαGf‖L̃q,λ,ν , 0 < t < 2. (25)

Now we consider the case, then 2 ≤ t <∞. From (15), we have

‖JαGft‖L̃q,λ,ν = sup
x,r∈R+

([
sh
r

2

]−ν
1

∫ r

0
|JαGft (ch y)|q sh2λydy

) 1
q

≥ sup
x,r∈R+

([
sh
r

2

]−ν
1

∫ r

0

∣∣∣∣JαGf (ch(th t2
)
y

)∣∣∣∣q sh2λydy) 1
q

[(
th
t

2

)
y = z, dy =

(
cth

t

2

)
dz

]

=

(
cth

t

2

) 1
q

sup
x,r∈R+

([
sh
r

2

]−ν
1

∫ rth t
2

0
|JαGf (ch z)|q sh2λ

(
cth

t

2

)
zdz

) 1
q

≥
(
cth

t

2

) 2λ+1
q

(
sup
r∈R+

[(
sh r2

)
th t2
]
1[

sh r2
]
1

) ν
q

‖JαGf‖L̃q,λ,ν

=

(
cth

t

2

) 4λ
q
(
th
t

2

) ν
q

1

‖JαGf‖L̃q,λ,ν

≥
(
ch
t

2

) 4λ−ν
q

‖JαGf‖L̃q,λ,ν ≥
(
sh
t

2

) ν−γ
q

‖JαGf‖L̃q,λ,ν , 2 ≤ t <∞. (26)

On the other and by 2 ≤ t <∞, we obtain

‖JαGft‖L̃q,λ,ν ≤ sup
x,r∈R+

([
sh
r

2

]−ν
1

∫ r

0

∣∣∣∣JαGft(ch (sh t2
)
y

)∣∣∣∣q sh2λydy) 1
q

[(
sh
t

2

)
y = z, dz =

dz

sh t2

]

=

(
sh
t

2

)− 1
q

sup
x,r∈R+

([
sh
r

2

]−ν
1

∫ r

0
|JαGf (cht)|q sh2λ

(
z

sh t2

)
dz

) 1
q

=

(
sh
t

2

)− 2λ+1
q

sup
x,r∈R+

([
sh
r

2

]−ν
1

∫ rsh t
2

0
|JαGft (chz)|q sh2λzdz

) 1
q
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=

(
sh
t

2

)−2λ+1
q

(
sup
r∈R+

[
sh r2

(
sh t2

)]
1[

sh r2
]
1

) ν
q

‖JαGf‖L̃q,λ,ν

≤
(
sh
t

2

)− 4λ
q
[
sh
t

2

] ν
q

‖JαGf‖L̃q,λ,ν

≤
(
sh
t

2

) ν−4λ
q

‖JαGf‖L̃q,λ,ν

=

(
sh
t

2

) ν−γ
q

‖JαGf‖L̃q,λ,ν , 2 ≤ t <∞. (27)

Combing (26) and (27), we have

‖JαGf‖L̃q,λ,ν ≈
(
sh
t

2

) ν−γ
q

‖f‖L̃q,λ,ν , 2 < t <∞. (28)

Thus (23) and (28), we obtain

‖JαGft‖L̃q,λ,ν ≈
(
sh
t

2

) ν−γ
q

‖JαGf‖L̃q,λ,ν , 0 < t <∞. (29)

Since JαG is bounded from L̃p,λ,ν (R+) to L̃q,λ,ν (R+), i.e.

‖JαGf‖L̃q,λ,ν . ‖f‖L̃p,λ,ν ,

then taking into account (18) and (29), we obtain

‖JαGft‖L̃q,λ,ν ≈
(
sh
t

2

) ν−γ
q

‖JαGf‖L̃q,λ,ν .

(
sh
t

2

) ν−γ
q

‖ft‖L̃p,λ,ν

.

(
sh
t

2

)α+(ν−γ)
(

1
p
− 1
q

)
‖f‖L̃p,λ,ν

. ‖f‖L̃p,λ,ν


(
sh t2

)α−γ( 1
p
− 1
q

)
, 0 < t < 2(

sh t2
)α+(ν−γ)

(
1
p
− 1
q

)
, 2 ≤ t <∞

.

If 1
p −

1
q <

α
γ , then at t→ 0 we have ‖JαGft‖L̃q,λ,ν = 0, for all f ∈ L̃p,λ,ν (R+)

As well as is 1
p −

1
q >

α
ν−γ , then at t→∞ we get ‖JαGft‖L̃q,λ,ν = 0, for all f ∈ L̃p,λ,ν (R+).

Therefore α
γ ≤

1
p −

1
q ≤

α
γ−ν .

Sufficiency. Let f ∈ L̃1,λ,ν (R+), then

|{x ∈ (0, r) : |JαGf (ch x)| > 2β}|λ
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≤ |{x ∈ (0, r) : A1 (x, r) > β}|λ + |{x ∈ (0, r) : A2 (x, r) > β}|λ .

Also

A2 (x, r) =

∫ ∞
r

Aλch y
f (ch x) sh2λydy(

shy2
)γ−α

≤
∞∑
j=0

∫ 2j+1r

2jr

Aλch y |f (ch x)| sh2λydy(
shy2

)γ−α
≤
∥∥∥Aλch yf∥∥∥

L̃1,λ,γ

∞∑
j=0

[
2j+1sh r2

]ν
1(

2jsh r2
)γ−α .

(
sh
r

2

)α−γ [
sh
r

2

]ν
1
‖f‖L̃1,λ,γ

.
(
sh
r

2

)α−γ [
sh
r

2

]ν
1
‖f‖L̃1,λ,γ

. (30)

. ‖f‖L̃1,λ,γ

{ (
sh r2

)α+ν−γ
, if 0 < r < 2arsh 1,(

sh r2
)α−γ

, if 2arcsh 1 ≤ r <∞.
(31)

According the inequality (7) and Theorem C, we obtain

|{x ∈ (0, r) : A1 (x, r) > β}|λ

.

∣∣∣∣{x ∈ (0, r) : MGf (chx) >
β

Cshα r2

}∣∣∣∣
λ

.

.
1

β

(
shα

r

2

) [
sh
r

2

]ν
1
‖f‖L̃1,λ,γ

, 0 < r <∞. (32)

If
(
sh r2

)α−γ [
sh r2

]ν
1
‖f‖L̃1,λ,γ

= β, then from (30) we obtain |A2 (x, r)| . β and conse-

quently, |{x ∈ (0, r) : A2 (x, r) > β}|λ = 0. Then by 0 < r < 2arcsh 1
(
sh r2

)α+ν−γ ‖f‖L̃1,λ,γ
=

β and from (31), we have

|{x ∈ (0, r) : |JαGf (ch x)| > 2β}|λ .
1

β

(
shα

r

2

) [
sh
r

2

]ν
1
‖f‖L̃1,λ,γ

=
(
sh
r

2

)α−γ [
sh
r

2

]ν
1

=
(
β−1 ‖f‖L̃1,λ,γ

) γ−ν
γ−ν−α

[
sh
r

2

]ν
1
. (33)

And for 2arcsh 1 < r <∞, β =
(
sh r2

)α−γ ‖f‖L̃1,λ,γ
and from (32), we have

|{x ∈ (0, r) : |JαGf (ch x)| > 2β}|λ .
1

β

(
shα

r

2

) [
sh
r

2

]ν
1
‖f‖L̃1,λ,γ

=
(
sh
r

2

)α [
sh
r

2

]ν
1

=
(
β−1 ‖f‖L̃1,λ,γ

) γ
γ−α

[
sh
r

2

]ν
1
. (34)

Finally from (33) and (34), we obtain

|{x ∈ (0, r) : |JαGf (ch x)| > 2β}|λ
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.
[
sh
r

2

]ν
1

min

{(
β−1 ‖f‖L̃1,λ,γ

) γ
γ−α

,
(
β−1 ‖f‖L̃1,λ,γ

) γ−ν
γ−ν−α

}
.
[
sh
r

2

]ν
1

(
β−1 ‖f‖L̃1,λ,γ

)q
,

where by condition of the theorem

γ

γ − α
≤ q ≤ γ − ν

γ − ν − α
⇔ α

γ
≤ 1− 1

q
≤ α

γ − ν
.

Necessity. Preliminarily we established the estimates for ‖JαGft‖WL̃q,λ,ν
. From (15)

for 0 < t < 2, we have

‖JαGft‖WL̃q,λ,ν
= sup

r∈R+

sup
x,u∈R+

([
sh
u

2

]−ν
1

∫
{y∈(0,u):Aλch y|JαGft(ch x)|>r}

sh2λydy

) 1
q

≥ sup
r∈R+

r sup
x,u∈R+

([
sh
u

2

]−ν
1

∫
{y∈(0,u):Aλch x|JαGft(ch (th t2)y)|>r}

sh2λydy

) 1
q

[(
th
t

2

)
y = z, dy =

(
cth

t

2

)
dz

]

=

(
cth

t

2

)1+ 1
q

×

× sup
r∈R+

(
rth

t

2

)
sup

x,u∈R+

([
sh
u

2

]−ν
1

∫
{z∈(0, uth t2):Aλch x|JαGf(ch )|>rth t2}

sh2λ
((

cth
t

2

)
z

)
dz

) 1
q

≥
(
cth

t

2

) 1
q

sup
r∈R+

(
rth

t

2

)
sup
u∈R+

([(
shu2

)
th t2
]
1[

shu2
]
1

) ν
q

× sup
x,u∈R+

([(
sh
u

2

)
th
t

2

]−ν
1

∫
{z∈(0, uth t2):Aλch x|JαGf(czh )|>rth t2}

sh2λ
(
cth

t

2

)
zdz

) 1
q

≥
(
cth

t

2

) 2λ+1
q
[
th
t

2

] ν
q

1

×

× sup
r∈R+

((
sh
r

2

)
th
t

2

)
sup

x,u∈R+

([(
sh
u

2

)
th
t

2

]−ν
1

∫
{z∈(0, uth t2):Aλch x|JαGf(ch )|>rth t2}

sh2λzdz

) 1
q

≥
(
th
t

2

)− 2λ−1
q
[
th
t

2

] ν
q

1

‖JαGft‖WL̃q,λ,ν
.
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≥
(
th
t

2

) ν−γ
q

‖JαGft‖WL̃q,λ,ν
. (35)

On the other hand at 0 < r < 2, we have

‖JαGft‖WL̃q,λ,ν
= sup

r∈R+

sup
x,u∈R+

([
sh
u

2

]−ν
1

∫
{y∈(0,u):Aλch x|JαGft(ch(cth x

t2)y)|>r}
sh2λydy

) 1
q

[(
cth

t

2

)
y = z, dy =

(
th
t

2

)
dz

]

=

(
th
t

2

) 1
q

sup
r∈R+

sup
x,u∈R+

([
sh
u

2

]−ν
1

∫
{z∈(0, ucth t2):Aλch x|JαGf(ch z)|>r}

sh2λ
(
th
t

2

)
zdz

) 1
q

≤
(
th
t

2

) 2λ+1
q

sup
u∈R+

([(
shu2

)
cth t2

]
1[

shu2
]
1

) ν
q

‖JαGf‖WL̃q,λ,ν

.

(
th
t

2

) 2λ+1−q
ν

‖JαGf‖WL̃q,λ,ν
.

(
sh
t

2

) ν−2λ−1
q

‖JαGf‖WL̃q,λ,ν

=

(
sh
t

2

) ν−γ
q

‖JαGf‖WL̃q,λ,ν
. (36)

From (35) and (36) it follows that

‖JαGft‖WL̃q,λ,ν
≈
(
sh
t

2

) γ
q

‖JαGft‖WL̃q,λ,ν
, 0 < r < 2. (37)

Now we consider the case then 2 ≤ t <∞. From (15), we get

‖JαGft‖WL̃q,λ,ν
≥ sup

r∈R+

r sup
x,u∈R+

([
sh
u

2

]−ν
1

∫
{y∈(0,u):|Aλch xJαGft(ch (th t2)y)|>r}

sh2λydy

) 1
q

[(
th
t

2

)
y = z, dy =

(
cth

t

2

)
dz

]

=

(
cth

t

2

) 1
q

sup
r∈R+

sup
x,u∈R+

([
sh
u

2

]−ν
1

∫
{z∈(0, uth t2):|Aλch xJαGf(ch z)|>r}

sh2λ
(
cth

t

2

)
zdz

) 1
q

=

(
cth

t

2

) 2λ+1
q

+1

sup
r∈R+

rth
t

2
sup

x,u∈R+

([
sh
u

2

]−ν
1

∫
{z∈(0, uth t2):|Aλch xJαGf(ch z)|>rth t2}

sh2λzdz

) 1
q
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≥
(
cth

t

2

) 2λ+1
q

sup
r∈R+

([(
shu2

)
th t2
]
1[

shu2
]
1

) ν
q

‖JαGf‖WL̃q,λ,ν

=

(
cth

t

2

) 4λ
q
[
th
t

2

] ν
q

1

‖JαGf‖WL̃q,λ,ν

≥
(
th
t

2

) ν−4λ
q

‖JαGf‖WL̃q,λ,ν
≥
(
sh
t

2

) ν−4λ
q

‖JαGf‖WL̃q,λ,ν

=

(
sh
t

2

) ν−γ
q

‖JαGf‖WL̃q,λ,ν
, 2 ≤ t <∞. (38)

On the other than, we have

‖JαGft‖WL̃q,λ,ν
≤ sup

r∈R+

r sup
x,u∈R+

([
sh
u

2

]−ν
1

∫
{y∈(0,u):|Aλch xJαGft(ch (sh t2)y)|>r}

sh2λydy

) 1
q

[(
sh
t

2

)
y = z, dy =

dz

sh t2

]

=

(
sh
t

2

)− 1
q

sup
r∈R+

r sup
x,u∈R+

([
sh
u

2

]−ν
1

∫
{y∈(0,ush t2):|Aλch xJαGf(chz)|>rsh t2}

sh2λydy

) 1
q

≤
(
sh t2

)− 2λ+1
q

sh t2
sup

(
rsh

t

2

)
sup
u∈R+

r∈R+

([(
shu2

)
sh t2

]
1[

shu2
]
1

) ν
q

‖JαGf‖WL̃q,λ,ν

.

(
sh
t

2

) ν−2λ−1
q

‖JαGft‖WL̃q,λ,ν
.

(
sh
t

2

) ν−4λ
q

‖JαGf‖WL̃q,λ,ν

=

(
sh
t

2

) ν−λ
q

‖JαGft‖WL̃q,λ,ν
, 2 ≤ t <∞. (39)

According to (38) and (39), we obtain

‖JαGft‖WL̃q,λ,ν
≈
(
sh
t

2

) ν−λ
q

‖JαGft‖WL̃q,λ,ν
, 2 ≤ t <∞. (40)

Thus from (37) and (40), we have

‖JαGft‖WL̃q,λ,ν
≈
(
sh
t

2

) ν−γ
q

‖JαGft‖WL̃q,λ,ν
, 0 < t <∞. (41)
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From the boundedness JαG from L̃1,λ,ν (R+) to WL̃q,λ,ν (R+) and from (22) and (41), we
have

‖JαGft‖WL̃q,λ,ν
≤
(
sh
t

2

) γ−ν
q

‖JαGft‖WL̃q,λ,ν

.

(
sh
t

2

) γ−ν
q

‖ft‖

.

(
sh
t

2

) γ−ν
q
(
sh
t

2

)α+ν−γ
‖f‖L̃1,λ,ν

=

(
sh
t

2

)α−(γ−ν)(1− 1
q

)
‖f‖L̃1,λ,ν

. ‖f‖L̃1,λ,γ


(
sh t2

)α−γ(1− 1
q

)
, if 0 < t < 2arcsh 1,(

sh t2
)α−(γ−ν)(1− 1

q

)
, if 2arcsh 1 < t <∞.

If 1− 1
q <

α
γ , then at t→ 0, we have ‖JαGft‖WL̃q,λ,ν

= 0 for all f ∈ L̃1,λ,ν (R+). Similarly,

if 1 − 1
q > α

γ−ν , then at t → ∞ we obtain ‖JαGft‖WL̃q,λ,ν
= 0 for all f ∈ L̃1,λ,ν (R+).

Therefore, α
γ ≤ 1− 1

q ≤
α
γ−ν .
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Mixed problem for systems of semilinear hyperbolic equa-
tions with anisotropic elliptic part nonlinear dissipations
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Abstract. In this paper we investigate the mixed problem for some class of quasi linear hyperbolic
equations with nonlinear dissipation and with anisotropic elliptic part. The theorems of local
solution and global solution are proved.
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1. Introduction

The solution of a series of technical problems is brought to non-stationary equations
with derivatives of a different order by space variables [1, 2]. For these equations, the
problem with initial conditions in time reduces to abstract hyperbolic equations in some
function spaces. Those terms of these equations in which only derivatives with respect to
space variables participate are called the anisotropic elliptic part.

In this paper, we study a mixed problem for systems of hyperbolic equations with an
anisotropic elliptic part in a certain cylinder whose base is a certain three-dimensional
cube. The existence and uniqueness of local and global solutions of this mixed problem
with Dirichlet boundary conditions are proved.

2. Statement of the problem and main results

Let us introduce the following notation: x = (x1, x2, x3) ∈ Π3,

x1(a) = (a, x2, x3), x2(a) = (x1, a, x3), x3(a) = (x1, x2, a).

Let us also introduce the notation:

⟨u, v⟩ =
∫
Π3

u (x) v (x) dx, u, v∈ L2 (Π3) , ∥u∥ =
√

⟨u, u⟩.

http://www.cjamee.org 46 © 2013 CJAMEE All rights reserved.
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Let us consider the mixed problem for systems of semilinear equations

u1tt +
∑3

k=1 (−1)L1kD2Λ1k
xk

u1 + |u1t|r1−1u1t = g1 (u1, u2)

u2tt +
∑3

k=1 (−1)L2kD2Λ2k
xk

u2 + |u2t|r2−1u2t = g2 (u1, u2)

}
(1)

with boundary conditions

Dβk
xk
u
1
(t, xk (0)) = Dβk

xk
u1 (t, xk (1)) = 0, βk = 0, 1, ...,Λik − 1, i = 1, 2, k = 1, 2, 3, (2)

and initial conditions

ui (0, x) = φi (x) , uit (0, x) = ψi (x) , x ∈ Π3, i = 1, 2. (3)

where Λik ∈ N, i = 1, 2, k = 1, 2, 3, g1 and g2 are the following non-linear functions

g1 (u1, u2) = a1|u1 + u2|p1+p2 (u1 + u2) + b1|u1|p1−1|u2|p2+1u1,

g2 (u1, u2) = a2|u1 + u2|p1+p2 (u1 + u2) + b2|u1|p1+1|u2|p2−1u2,

a1, a2, b1, b2, p1, p2 are real constants and

p1 ≥ 0, p2 ≥ 0. (4)

We introduce the notation:
∣∣∣−→Λi

−1
∣∣∣ = ∑3

k=1
1

Λik
, where

−→
Λi=(Λi1,Λi2,Λi3). Let us denote

the anisotropic Sobolev space by W
−→
Λi
2 , i.e.

W
−→
Λi
2 =W

−→
Λi
2 (Π3) =

{
v : v,DΛik

xk
v ∈ L2(Π3)

}
,

∥v∥
W

−→
Λi
2

=

[
∥v∥2L2(Π3)

+

n∑
k=1

∥∥DΛik
xk
v
∥∥2
L2(Π3)

]1/2

.

Denote by Ŵ
−→
Λi
2 the next subspace of W

−→
Λi
2 :

Ŵ
−→
Λi
2 =

{
u : u ∈W

−→
Λi
2 , Dβk

xk
u(t, xk(0)) = Dβk

xk
u(t, xk(1)) = 0, βk = 0, 1, ...,Λik − 1

}
.

Let X be some Banach space and denote by C ([0, T ] ;X) the set of continuous functions
acting from [0, T ] to X: ∥u (t)∥C([0,T ];X) = max

0≤t≤T
∥u (t)∥X .

Denote by Ck ([0, T ] ;X) the set of continuously differentiable functions of order k
acting from [0, T ] to X: ∥u (t)∥Ck([0,T ];X) =

∑k
i=0

∥∥u(i) (t)∥∥
C([0,T ];X)

.

Denote by Cw ([0, T ] ;X) the set of weakly continuous functions acting from [0, T ] to
X.

Let us define the following spaces of functions

H1
T = C

(
[0, T ] ; ŴΛ1

2 × ŴΛ2
2

)
∩ C1 ([0, T ] ;L2 (Π3)× L2 (Π3)) ,
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H1
T,∞ =

{
u : u ∈ L∞

(
0, T ; ŴΛ1

2 × ŴΛ2
2

)
, ut∈ L∞ (0, T ;L2 (Π3)× L2 (Π3))

}
,

H2
T,w = {u : u ∈ Cw

(
[0, T ] ; Ŵ 2Λ1

2 × Ŵ 2Λ2
2

)
, ut ∈ Cw

(
[0, T ] ; ŴΛ1

2 × ŴΛ2
2

)
,

utt ∈ Cw ([0, T ] ;L2 (Π3)× L2 (Π3))} ,

H2
T,∞ =

{
u : u ∈ L∞

(
0, T ; Ŵ 2Λ1

2 × Ŵ 2Λ2
2

)
, ut ∈ L∞

(
0, T ; ŴΛ1

2 × ŴΛ2
2

)
utT ∈ L∞ (0, T ;L2 (Π3)× L2 (Π3))} .

It is clear from the expression of the functions gi(u1, u2), that

|gi (u1, u2)| ≤ c
[
|u1|p1+p2+1 + |u2|p1+p2+1

]
, i = 1, 2, c > 0. (5)

A strong solution of problem (1) - (3) is a pair of function s (u1 (·) , u2 (·)) ∈ H2
T,∞,

such that for all (η1(·), η2(·)) ∈ ŴΛ1
2 × ŴΛ2

2 the following equalities hold

a)
d

dt
⟨u1t (t, ·) , η1 (·)⟩+

3∑
k=1

〈
DΛ1k

xk
u1 (t, ·) , DΛ1k

xk
η1 (·)

〉
+

+
〈
|u1t (t, ·)|r1−1u1t (t, ·) , η1 (·)

〉
= ⟨g1(u1 (t, ·) , u2 (t, ·) , η1 (·)⟩ , (6)

d

dt
⟨u2t (t, ·) , η2 (·)⟩+

3∑
k=1

〈
DΛ2k

xk
u2 (t, ·) , DΛ1k

xk
η2 (·)

〉
+

+
〈
|u2t (t, ·)|r1−1u2t (t, ·) , η2 (·)

〉
= ⟨g2(u1 (t, ·) , u2 (t, ·) , η2 (·)⟩ ,

almost all t ∈ (0, T ), (7)

b) lim
t→+0

∥∥∥∥∥
3∑

k=1

DΛik
xk

[ui (t, ·)− φi (·)]

∥∥∥∥∥
L2(Π3)

= 0, i = 1, 2, (8)

c) lim
t→+0

∫
Π3

3∑
k=1

DΛik
xk

[uit (t, x)− ψi (x)]D
Λik
xk
η
i
(x) dx = 0, i = 1, 2. (9)

By a weak solution to problem (1) - (3) we mean the functions (u1 (·) , u2 (·)) ∈ H1
T,∞

such that for all (η1 (·) , η2 (·)) ∈ H1
T,∞, ηi (x, T ) = 0, i = 1, 2 the following equalities hold

a)

∫ T

0

[
⟨uit (t, ·) , ηit (t, ·)⟩+

3∑
k=1

〈
DΛ1k

xk
ui (t, ·) , DΛ1k

xk
ηi (·)

〉]
dt+

+

∫ T

0

〈
|uit (t, ·)|ri−1uit (t, ·) , ηi (t, ·)

〉
dt =
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=

∫ T

0
⟨gi (u1 (t, ·) , u2 (t, ·)) , ηi (t, ·)⟩ dt+ ⟨ψi (·) , ηi (0, ·)⟩ ,i = 1, 2, (10)

b) lim
t→0

⟨ui (·, t)− ϕi (·) , η1 (t, ·)⟩
Ŵ

Λi
2

= 0, i = 1, 2. (11)

It is known that under the condition

min
{∣∣∣Λ−1

1

∣∣∣ , ∣∣∣Λ−1
2

∣∣∣} > 2, (12)

the embedding

ŴΛi
2 ⊂ C(Π3), i = 1, 2, (see [3]) (13)

is valid. The following theorems on the existence of a local solution of the problem (1) -
(3) are true.

Theorem 1. Suppose that the conditions (4), (5) and (12) are satisfied. Then for any

initial data (ϕ1, ϕ2) ∈ Ŵ 2Λ1
2 × Ŵ 2Λ2

2 , (ψ1, ψ2) ∈ ŴΛ1
2 × ŴΛ2

2 there exists T ′ > 0 such that
the problem (1) - (4) has a unique solution (u1, u2) ∈ H2

T ′ ,w
.

In addition, if Tmax = maxT ′ is the length of the maximum interval of the existence
of this solution, then one of the following statements is true:

lim
t→Tmax

2∑
i=1

[
∥uit(t, ·)∥2 + ∥u1(t, ·)∥

2

Ŵ
Λi
2

]
= +∞; (14)

or
Tmax = +∞. (15)

Theorem 2. Suppose that the conditions (4), (5) and (12) are satisfied. Then for any

initial data (ϕ1, ϕ2) ∈ ŴΛ1
2 × ŴΛ2

2 , (ψ1, ψ2) ∈ L2(Π3) × L2(Π3) there exists T ′ > 0 such
that the problem (1) - (3) has a unique solution (u1, u2) ∈ H1

T ′ ,w
.

In addition, if Tmax = maxT ′ is the length of the maximum interval of the existence
of this solution, then one of the relations (14) and (15) is true.

In some cases, for any T > 0, the local solutions defined by Theorem 1 can be dis-
tributed over the entire [0, T ]×Π3 region. According to Theorem 1, this is possible if the
following a priori estimate is true for local solutions

2∑
i=1

∥uit(t, x)∥2 +
∥∥∥∥∥

3∑
k=1

DΛik
xk
ui(t, x)

∥∥∥∥∥
2
 ≤ c, 0 ≤ t ≤ T (16)

We get this estimate if

λ =
a1 (p1 + 1)

b1
=
a2 (p2 + 1)

b2
, (17)

ai ≤ 0, bi ≤ 0, i = 1, 2. (18)

When these conditions are met, the following theorem on the global solvability of the
problem (1) - (3) is proved.
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Theorem 3. Suppose that the conditions (4) , (5), (17) and (18) are satisfied, then for any

T > 0, (ϕ1, ϕ2) ∈ ŴΛ1
2 ×ŴΛ2

2 and (ψ1, ψ2) ∈ L2 (Π3)×L2 (Π3) the problem (1) - (3) has a

unique solution (u1 (·) , u2 (·)) ∈ C
(
[0, T ] ; ŴΛ1

2 × ŴΛ2
2

)
∩ C1 ([0, T ] ;L2 (Π3)× L2 (Π3)) .

3. Proof of Theorem 1

We will prove the theorem using Galyorkin’s method. Let ej (x) , j = 1, 2, ...-denote
the solutions of the following problem:

3∑
k=1

(−1)ΛikD2Λik
xk

eij (x) = λijeji (x) , x ∈ Π3,

Dβk
xk
e
j
(xk(0)) = Dβk

xk
ej(xk(1)) = 0, βk = 0, 1, ...,Λik − 1, k = 1, ..., n, i = 1, 2.

In other words, eij (x) , x ∈ Π3, j = 1, 2, i = 1, 2, ... are eigenfunctions of the operator
−→
L =

∑3
k=1 (−1)ΛikD2Λik

xk
with the Dirichlet boundary condition (see [4, 5]).

We approximate the functions φi (x) and ψi (x) and the functions φim (x) and ψim (x),
i = 1, 2, m = 1, 2, ... respectively. So that,

ϕim =

m∑
r=1

airmeir (x) → ϕi, in Ŵ
2Λi
2 as m→ ∞, i = 1, 2, (19)

ψim =
m∑
r=1

birmeir (x) → ψi, in Ŵ
Λi
2 as m→ ∞, i = 1, 2. (20)

We are looking for approximate solutions of problem (1) - (3) as follows

uim (t, x) =

m∑
r=1

Cirm (t) eir (x), i = 1, 2,

so that the functions Cirm (t) , i = 1, 2, r = 1, ...,m are the solutions of the following
Cauchy problem for the system of ordinary differential equations

⟨uimtt (t, x) , eir (x)⟩+
3∑

k=1

〈
DΛik

xk
uim(t, x), DΛik

xk
eir (x)

〉
+

+

∫
Π3

|uimt (t, x)|
r1−1uimt (t, x) eir (x) dx = ⟨g1 (u1m (t, x) , u2m (t, x)) , eir (x)⟩ ,

r = 1, . . . ,m, i = 1, 2, (21)

uim (0, x) = ϕim (x) , uimt (0, x) = ψim (x) , x ∈ Πn, i = 1, 2. (22)

According to Cauchy-Picard theorem [6], on the existence of a solution of the Cauchy
problem for a system of ordinary differential equations, problem (21) - (22) has a solution
in some half-interval [0, tm).
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Multiplying both side of each equation (21) by the function C
′
ir (t), and summing up

the resulting equalities, we obtain

⟨uimtt (t, x) , uimt (t, x)⟩+
3∑

k=1

〈
DΛik

xk
uim(t, x), DΛik

xk
uimt(t, x)

〉

+

∫
Π3

|uimt (t, x)|
r1+1dx =

= ⟨gi (u1m (t, x) , u2m (t, x)) , uimt (t, x)⟩ , i = 1, 2. (23)

It is obvious that

⟨uimtt (t, x) , uimt (t, x)⟩ =
1

2

d

dt
∥uimt (t, ·)∥

2, i = 1, 2, (24)

3∑
k=1

〈
DΛik

xk
u1m(t, x), DΛik

xk
u1mt(t, x)

〉
=

1

2

d

dt

3∑
k=0

∥∥DΛik
xk
uim (t, ·)

∥∥2, i = 1, 2. (25)

Summing equalities (23) and taking into account (24) and (25) , we obtain:

d

dt

2∑
i=1

[
∥uimt (t, ·)∥

2 +
3∑

k=1

∥∥DΛik
xk
uim (t, ·)

∥∥2]+
2∑

i=1

∫
Πn

|uimt (t, x)|
ri+1dx =

=
2∑

i=1

∫
Π3

gi (u1m (t, x) , u2m (t, x)) , uimt (t, x)dx. (26)

Using the Hölder’s and Young’s inequalities, we obtain the following:∣∣∣∣∫
Π3

gi (u1m (t, x) , u2m (t, x)) , uimt (t, x)dx

∣∣∣∣ ≤
≤

(
1

(ri + 1) ε

) 1
ri
∫
Π3

|gi (u1m (t, x) , u2m (t, x))|
ri+1

ri dx+ ε

∫
Π3

|uimt (t, x)|
ri+1dx.

Using (5) we have ∫
Π3

|gi (u1m (t, x) , u2m (t, x))|
ri+1

ri dx ≤

≤ C

[∫
Π3

|u1|
(p1+p2+1)

ri+1

ri dx+

∫
Π3

|u2|
(p1+p2+1)

ri+1

ri dx

]
≤

≤ C

[
∥u1∥

(p1+p2+1)
ri+1

ri

C(Π3)
+ ∥u2∥

(p1+p2+1)
ri+1

ri

C(Π3)

]
≤ C

2∑
i=1

∥ui∥
(p1+p2+1)

ri+1

ri

Ŵ
Λi
2

. (27)
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It follows from (26) and (27) that

d

dt

2∑
i=1

[
∥uimt (t, ·)∥

2 +
3∑

k=1

∥∥DΛik
xk
uim (t, ·)

∥∥2]+ (1− ε)
2∑

i=1

∫
Π3

|uimt (t, x)|
ri+1dx ≤

≤ C

2∑
i=1

∥ui∥
(p1+p2+1)

ri+1

ri

Ŵ
Λi
2

. (28)

Hence, for

y = y (t) =

2∑
i=1

[
∥uimt (t, ·)∥

2 +

3∑
k=1

∥∥DΛik
xk
uim (t, ·)

∥∥2]
we obtain the following inequality

y
′ ≤ C

2∑
i=1

y
(p1+p2+1)

ri+1

ri .

From here we obtain the following inequality

z′ ≤ C1z
p, z (0) = z0 = y0 + 1, (29)

where z = z (t) = y (t) + 1, p = (p1 + p2 + 1) ,max
{

r1+1
r1

, r2+1
r2

}
.

From inequality (29) we obtain that

y ≤ y0 + 1[
1− c1 (p− 1) (y0 + 1)p−1 t

] 1
p−1

− 1.

It follows that
y (t) ≤ 2 (y0 + 1) , 0 ≤ t ≤ T ′, (30)

where T ′ = 1
2c1(p−1)(y0+1)p−1 .

From (30) we obtain the following a priori estimate:

2∑
i=1

[
∥uimt (t, ·)∥

2 +

3∑
k=1

∥∥DΛik
xk
uim (t, ·)

∥∥2] ≤

≤ c1

2∑
i=1

[
∥ψim∥2 +

n∑
k=0

∥∥DΛik
xk
ϕim

∥∥2], 0 ≤ t ≤ T
′
. (31)

According to (19), (20), we get

2∑
i=1

[
∥ψim∥2 +

3∑
k=0

∥∥DΛik
xk
ϕim

∥∥2] ≤ c2. (32)
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From (31) and (32) it follows that

2∑
i=1

[
∥uimt (t, ·)∥

2 +
3∑

k=1

∥∥DΛik
xk
uim (t, ·)

∥∥2] ≤ c3, (33)

where c3 > 0 is a constant independent of m.
It follows from (28) and (33) that

2∑
i=1

∫ t

0

∫
Π3

|uims (s, x)|
ri+1dxds ≤ c4, 0 ≤ t ≤ T, (34)

where ci > 0, i = 1, 2, 3 are constants that do not depend on m.
Multiplying both sides of (21) by the function C

′′
ik (t), summing over k = 1 to m, we get

that:
∥uimtt (t, ·)∥

2 ≤ ∥uim (t, ·)∥
Ŵ 2

−→
Λ

2

· ∥uimtt(t, x)∥+

+

(∫
Π3

|uimt (t, x)|
2r1dx

) 1
2

∥uimtt(t, x)∥+

+

(∫
Π3

|gi (u1m (t, x) , u2m (t, x))|2dx
) 1

2

∥uimtt(t, x)∥ ≤

≤ ∥uim (t, ·)∥
Ŵ 2

−→
Λ

2

· ∥uimtt(t, x)∥+

+

(
max
x∈Π3

⌈uimt (t, x)⌉
)r1

∥uimtt(t, x)∥+

+max
x∈Π3

⌈gi (u1m (t, x) , u2m (t, x))⌉ ∥uimtt(t, x)∥ ≤

≤ δ ∥uimtt(t, x)∥+ cδ ∥uim (t, ·)∥
Ŵ 2

−→
Λ

2

.

From this relation it follows that

∥uimtt (0, ·)∥ ≤ C∥ϕim∥
Ŵ 2

−→
Λ

2

, i = 1, 2. (35)

We differentiate both parts (21) - by t. Then we multiply each of the obtained equations
by cikmtt (t) and add them. Then we will get the following equality

⟨uimttt (t, ·) , u1mtt (t, ·)⟩+
3∑

k=1

〈
DΛik

xk
u1mt(t, x), D

Λik
xk
u1mtt(t, x)

〉
+

+

∫
Π3

∂

∂t

(
|uim (t, x)|ri−1uim (t, x)

)
uimtt (t, x) dx =

=

2∑
j=1

〈
giuj (u1m (t, x) , u2m (t, x))ujmt (t, x) , ujmtt (t, x)

〉
. (36)
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Since β (s) = |s|γ−1 s is a monotonically increasing function, therefore∫
Π3

∂

∂t

(
|uim (t, x)|ri−1uim (t, x)

)
uimtt (t, x) dx ≥ 0. (37)

If we evaluate the right side of the equality (36) from above, we get that:

|Jj | =
∣∣〈giuj (u1m (t, x) , u2m (t, x))ujmt (t, x) , ujmtt (t, x)

〉∣∣ ≤
≤

(∫
Π3

∣∣giuj (u1m (t, x) , u2m (t, x))
∣∣2|ujmt (t, x)|

2dx

) 1
2
(∫

Π3

|ujmtt (t, x)|
2dx

) 1
2

. (38)

In view of the embedding theorems, using (12) , we obtain that giuj (u1m (t, x) , u2m (t, x))

∈ C
(
Π3

)
. That is why

|Jj | = sup
x∈Π3

∣∣giuj (u1m (t, x) , u2m (t, x))
∣∣ (∫

Π3

|ujmt (t, x)|
2dx

) 1
2
(∫

Π3

|uimtt (t, x)|
2dx

) 1
2

≤

≤ c

 sup

x∈Π̂3

|u1m (t, x)|p1+p2 + sup

x∈Π̂3

|u2m (t, x)|p1+p2

 ∥uimt (t, ·)∥ · ∥uimtt (t, ·)∥ ≤

≤ C
2∑

i=1

∥uim (t, ·)∥
Ŵ

Λi
2

∥uimt (t, ·)∥ ∥uimtt (t, ·)∥ . (39)

Taking into account (37) and (39) in (36), we obtain the inequality

∂

∂t

2∑
i=1

[
∥uimtt (t, ·)∥

2 + ∥uimt (t, ·)∥
Ŵ

Λi
2

]
≤ c

2∑
i=1

∥uimtt (t, ·)∥
2. (40)

From here we get
2∑

i=1

{∥uimtt (t, ·)∥
2 + ∥uimt (t, ·)∥

Ŵ
Λi
2

} ≤ c. (41)

If we multiply both side (21) by λjcjkm (t, ·) and sum over j = 1, ...,m and k = 1, 2, 3, we
get the following equality〈

uimtt (t, x) ,
3∑

k=1

D2Λik
xk

u1m(t, x)

〉
+

〈
3∑

k=1

D2Λik
xk

uim(t, x),
3∑

k=1

D2Λik
xk

uim(t, x)

〉
+

+

∫
Π3

|uimt (t, x)|
ri−1uimt (t, x) ,

3∑
k=1

D2Λik
xk

uim(t, x)dx =

=

〈
gi (u1m (t, x) , u2m (t, x)) ,

3∑
k=1

D2Λik
xk

uim(t, x)

〉
. (42)
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From here, using the Hölder inequality, we obtain that∥∥∥∥∥
3∑

k=1

D2Λik
xk

uim(t, x)

∥∥∥∥∥
2

≤ ∥uimtt (t, ·)∥

∥∥∥∥∥
3∑

k=1

D2Λik
xk

uim(t, x)

∥∥∥∥∥+
+

∥∥∥∥∥
3∑

k=1

D2Λik
xk

uim(t, x)

∥∥∥∥∥
(∫

Π3

|u1mt (t, x)|
2r1dx

)1/2

+

+

∥∥∥∥∥
3∑

k=1

D2Λik
xk

u1m(t, x)

∥∥∥∥∥
(∫

Π3

|g1 (u1m (t, x) , u2m (t, x))|2dx
)1/2

.

Taking into account a priori estimates (41) from here we get∥∥∥∥∥
3∑

k=1

D2Λik
xk

u1m(t, ·)

∥∥∥∥∥ ≤ c. (43)

By virtue of (41) - (43) there is a subsequence of {u1mk
, u2mk

} which we will denote by
{u1m, u2m}, where

uim → ui *-weak in L∞

(
0, T ; Ŵ 2Λi

2

)
, i = 1, 2, (44)

uimt → uit *-weak in L∞

(
0, T ; ŴΛi

2

)
, i = 1, 2. (45)

uimt → uit *-weak in Lri+1 ((0, T )×Π3) , i = 1, 2, (46)

uimtt → uitt *-weak in L∞ (0, T ;L2 (Π3)) , i = 1, 2. (47)

It follows from (44) and (45) that

ui ∈ C
(
[0, T ] ; ŴΛi

2

)
, i = 1, 2. (48)

On the other hand, it is known that if u1, u2 ∈ C
(
[0, T ] ; ŴΛi

2

)
∩L∞

(
0, T ; Ŵ 2Λi

2

)
, where

( u1(·), u2(·)) is a solution of the problem (1)-(3) then u1, u2 ∈ Cw

(
[0, T ] ; Ŵ 2Λi

2

)
(see

[4, 7]). Similarly, we can show that

u1t ∈ Cw

(
[0, T ] ; ŴΛi

2

)
and uitt ∈ Cw ([0, T ] ;L2 (Π3)) . (49)

If in (19) we pass to the limit as m→ ∞, then we obtain that the functions (u1, u2) satisfy
the systems (1).

According to (48), (49), these functions also satisfy the initial conditions (2), (3).
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4. Proof of Theorem 2

We choose such functions ϕik ∈ Ŵ 2Λi
2 , ψik ∈ ŴΛi

2 , i = 1, 2, k = 1, 2, ... that

ϕik → ϕi in ŴΛi
2

ψik → ψi in L2 (Π3)

}
(50)

as k → ∞.

Then, according to Theorem 1, there exist functions (u1r, u2r) ∈ H2
Tr
, r = 1, 2, ... such

that

u1rtt +
∑n

k=1 (−1)Λ1kD2Λ1k
xk

u1r + |u1rt|r1−1u1rt = g1 (u1r, u2r)

u2rtt +
∑n

k=1 (−1)Λ2kD2L2k
xk

u2r + |u2rt|r2−1u2rt = g2 (u1r, u2r)

}
, (51)

Dβk
xk
u
1r
(t, xk (0)) = Dβk

xk
u1r (t, xk (1)) = 0, βk = 0, 1, . . . ,Λik − 1, i = 1, 2,

k = 1, ..., n, r = 1, 2, ..., (52)

uir (0, x) = ϕir (x) , uirt (0, x) = ψir (x) , x ∈ Π3, i = 1, 2, r = 1, 2, ... (53)

are satisfied. In addition, the following a priori estimate is true

2∑
i=1

∥uirt (t, ·)∥2 +
∥∥∥∥∥

3∑
k=1

DLik
xk
uir(t, x)

∥∥∥∥∥
2
 ≤ cr, 0 ≤ t ≤ Tr, (54)

∫ t

0

∫
Π3

|uirs |
ri+1dxds ≤ cr, (55)

where cr = c

(∑2
i=1

[∥∥∥∑3
k=1D

Λik
xk
ϕir

∥∥∥2 + ∥ψir∥2
])

,

Tr =
1

2 (p− 1)

(∑2
i=1

[∥∥∥∑3
k=1D

Λik
xk ϕir

∥∥∥2 + ∥ψir∥2
]
+ 1

) . (56)

By virtue of (50)

cr ≤ c, r = 1, 2, ..., (57)

where cr depends only on the expression
∑2

i=1

[∥∥∥∑3
k=1D

ik
xk
ϕir

∥∥∥2 + ∥ψir∥2
]
.

By virtue of (56) and (57) there exists N0 ∈ {1, 2, ...} such that for r ≥ N0 the following
inequalities hold

Tr ≥ T =
1

4 (p− 1)

(∑2
i=1

[∑2
i=1

[∥∥∥∑3
k=1D

Λik
xk ϕi

∥∥∥2 + ∥ψi∥2
]
+ 1

]
+ 1

) .
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Hence the sequence {uir (t, ·) , uirt (t, ·)} is bounded in the space

L∞

(
0, T ; ŴΛi

2

)
×L∞ (0, T ;L2 (Π3)) .

Then from this sequence, we can choose subsequence which we will again denote by
{u1r (t, ·) , u2r (t, ·)}, such that as k → ∞

uir → ui *-weakly in L∞

(
0, T ; ŴΛi

2

)
, i = 1, 2; (58)

uirt → uit *-weakly in L∞ (0, T ;L2 (Π3)) , i = 1, 2; (59)

uikt → uit *-weakly in Lri+1 ([0, T ]×Π3) , i = 1, 2. (60)

From (58) and (59) it follows that

uik → ui in C ([0, T ] ;L2 (Π3)) , i = 1, 2. (61)

Let us investigate whether the function gi (u1r, u2r) is converted to the function gi (u1, u2) ,
i = 1, 2.

Using Lagrange’s Mean Value Theorem, we obtain that

Jk = ∥g1 (u1r, u2r)− g1 (u1, u2)∥2 =

=

∫
Π3

∣∣∣∣∫ 1

0
(g1u1 (u1 + τ (u1r − u1) , u2 + τ (u2r − u2)) (u1r − u1)+

+g2u2 (u1 + τ (u1r − u1) , u2 + τ (u2r − u2)) (u2r − u2)) dτ |2dx.

According to the embedding theorem, the following relations are true.

0 ≤ Jk ≤ sup
x∈Π3

|g1u1 (u1 + τ (u1r − u1) , u2 + τ (u2r − u2))|2∥u1r − u1∥2+

+ sup
x∈Π3

|g1u2 (u1 + τ (u1r − u1) , u2 + τ (u2r − u2))|2∥u2r − u2∥2 ≤

≤ c
(
∥u1∥C(Πn), ∥u2∥C(Πn)

) [
∥u1r − u1∥2 + ∥u2r − u2∥2

]
≤

≤ c

(
∥u1∥

Ŵ
Λ1
2

, ∥u2∥
Ŵ

Λ2
2

)[
∥u1r − u1∥2 + ∥u2r − u2∥2

]
.

Then it follows from (61) that
lim
k→∞

Jk = 0. (62)

Thus, according to the relations (58) - (62), if we pass to the limit in the equation (51),
we will get that , (u1, u2) satisfies the problem (1) - (3), so that

ui (·) ∈ L∞

(
0, T ; ŴLi

2

)
, uit (·) ∈ L∞ (0, T ;L2 (Π3)) ∩ Lri+1 ((0, T )×Π3) , i = 1, 2,
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It follows that hi(t, x) = g1 (u1, u2)− |u1t|r1−1u1t ∈ L2 ((0, T )×Π3) , i = 1, 2.
It is obvious that the functions u1, u2 are a solution of the mixed problem

uitt +

3∑
k=1

(−1)ΛikD2Λik
xk

ui = hi(t, x),

Dβk
xk
u
1
(t, xk (0)) = Dβk

xk
u1 (t, xk (1)) = 0, βk = 0, 1, ...,Λik − 1, i = 1, 2, k = 1, ..., n,

ui (0, x) = ϕi (x) , uit (0, x) = ψi (x) , x ∈ Π3, i = 1, 2.

It is known that if the solutions of the problem (1) - (3) satisfy the condition

ui (·) ∈ L∞

(
0, T ; ŴΛi

2

)
, uit (·) ∈ L∞ (0, T ;L2 (Π3)) , i = 1, 2,

then

ui (·) ∈ C
(
[0, T ]; ŴΛi

2

)
, uit (·) ∈ C1 ([0, T ];L2 (Π3)) , i = 1, 2.

(see [4, 7]).

5. The existence of a global solution

In some cases, for any T > 0, the local solutions defined by Theorem 1 can be dis-
tributed over the entire [0, T ]×Π3 region. According to Theorem 1, this is possible if the
following a priori estimate is true for local solutions.

2∑
i=1

∥uit(t, x)∥2 +
∥∥∥∥∥

3∑
k=1

DΛik
xk
ui(t, x)

∥∥∥∥∥
2
 ≤ c, 0 ≤ t ≤ T. (63)

We get this estimate if

λ =
a1 (p1 + 1)

b1
=
a2 (p2 + 1)

b2
, (64)

ai ≤ 0, bi ≤ 0, i = 1, 2. (65)

Theorem 4. Suppose that conditions (4), (12), (64) and (65) are satisfied, then for any

T > 0, (ϕ1, ϕ2) ∈ ŴΛ1
2 ×ŴΛ2

2 and (ψ1, ψ2) ∈ L2 (Π3)×L2 (Π3) the problem (1) - (3) has a

unique solution (u1 (·) , u2 (·)) ∈ C
(
[0, T ] ; ŴΛ1

2 × ŴΛ2
2

)
∩ C1 ([0, T ] ;L2 (Π3)× L2 (Π3)) .

Proof of the Theorem 4. Assume that (u1 (·) , u2 (·)) is a local solution of the
problem (1)-(3) in the domain [0, Tmax] × Π3 defined by Theorem 2. Denote b′i = −bi,
i = 1, 2, and multiply both sides of equation (1) by the function pi+1

b′i
uit (t, x).

Integrating the resulting equality over the area [0, T ]×Π3, we obtain

pi + 1

b′i

∫ t

0

∫
Π3

uiss (s, x)uis (s, x) dxds+
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+
pi + 1

b′i

∫ t

0

∫
Π3

3∑
k=1

(−1)ΛikD
2Λik

xk
ui (s, x)uis (s, x) dxds+

+
ai (pi + 1)

b′i

∫ t

0

∫
Π3

|uis (s, x)|
ri+1dxds =

=
pi + 1

b′i

∫ t

0

∫
Π3

gi (u1 (s, x) , u2 (s, x))uis (s, x) dxds,

if we use integration by parts and sum the resulting equalities, we get the following:

2∑
i=1

pi + 1

2b′i

[∫
Π3

|uit (t, x)|
2dx+

∫
Π3

∣∣DΛik
xk
ui (s, x)

∣∣2dx+
+ 2

∫ t

0

∫
Π3

|uis (s, x)|
ri+1dxds

]
+

+

2∑
i=1

pi + 1

bi

∫ t

0

∫
Π3

gi (u1 (s, x) , u2 (s, x))uis (s, x) dxds =

=

2∑
i=1

pi + 1

2b′i

[∫
Π3

|ψi (x)|2dx+

n∑
k=1

∫
Π

∣∣DΛik
xk
ϕi (x)

∣∣2dt]. (66)

On the other hand, if we use the expression of the functions g1 (u1, u2) ,g2 (u1, u2) and the
condition (64) , we get that

2∑
i=1

pi + 1

bi

∫ t

0

∫
Π3

gi (u1 (s, x) , u2 (s, x))uis (s, x) dxds =

=
λ

p1 + p2 + 2

∫
Π3

|u1 + u2|p1+p2+2dx+

∫
Π3

|u1|p1+1|u2|p2+1dx−

− λ

p1 + p2 + 2

∫
Π3

|ϕ1 + ϕ2|p1+p2+2dx−
∫
Π3

|ϕ1|p1+1|ϕ2|p2+1dx. (67)

Considering (65) and (67) in (66), we obtain the following:

2∑
i=1

pi + 1

2b′i

[∫
Π3

|uit (t, x)|
2dx+

∫
Π3

∣∣DΛik
xk
ui (s, x)

∣∣2dx+
+ 2

∫ t

0

∫
Π3

|uis (s, x)|
ri+1dxds+

λ

p1 + p2 + 2

∫
Π3

|u1 + u2|p1+p2+2dx+

∫
Π3

|u1|p1+1|u2|p2+1dx

]
=

=
2∑

i=1

pi + 1

2b′i

[∫
Π3

|ψi (x)|2dx+
n∑

k=1

∫
Π3

∣∣DΛik
xk
ϕi (x)

∣∣2dt]+
+

λ

p1 + p2 + 2

∫
Πn

|ϕ1(x) + ϕ2(x)|p1+p2+2dx+

∫
Π3

|ϕ1(x)|p1+1|ϕ2(x)|p2+1dx.

From this we obtain the a prior estimate (1).
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On the Completeness and Minimality of Eigenfunctions
of a Non-self-adjoint Spectral Problem With Spectral Pa-
rameter in the Boundary Condition

Tehran Gasimov

Abstract. The article considers the following spectral problem:

−y′′ + q (x) y = λy, x ∈ (0, 1) ,

y(0) = 0,

y′(0) = (aλ+ b)y(1),


where q(x) is a complex-valued summable function, λ is a spectral parameter, a and b are arbitrary
complex numbers (a 6= 0.) The theorems on completeness and minimality of eigenunctions of a
spectral problem in Lp(0, 1)⊕ C and Lp(0, 1) are proved.
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1. Introduction

Consider the following spectral problem:

−y′′ + q (x) y = λy, x ∈ (0, 1) , (1)

y(0) = 0,

y′(0) = (aλ+ b)y(1),

 (2)

where q(x) is a complex-valued function, λ is a spectral parameter, a and b are arbitrary
complex numbers (a 6= 0.) The purpose of this article is to prove the corresponding the-
orems on the completeness and minimality of a system of eigenfunctions of the spectral
problem (1), (2) in the spaces Lp(0, 1) ⊕ C and Lp(0, 1). There are numerous articles
and monographs on the study of the spectral properties of problems posed for ordinary
differential operators and including spectral parameters in the boundary conditions (see,

http://www.cjamee.org 61 © 2013 CJAMEE All rights reserved.
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e.g., [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]). One can cite articles from recent works
[15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26]. Special mention should be made of the works
[8, 9, 14, 25, 26] directly related to our paper. So, the case q (x) ≡ 0, b = 0 is considered
in [8, 9], and in [14] under the additional condition q (x) = q (1− x) , it is considered the
case b = 0. Other generalizations of the boundary conditions (2) are also found in [25, 26],
where questions of the uniform convergence of spectral expansions and also, under an
additional condition q (x) = q (1− x), the basis properties of eigenfunctions in the spaces
Lp (0, 1) are studied.

2. Auxiliary facts and initial results

In order to obtain the main results, we need some abstract results on complete and
minimal systems in the direct sum of a Banach space with a finite-dimensional one. A
system {un}n∈N of a Banach space X is called complete in X if the closure of the linear
span of this system coincides with the entire space X, and is called minimal if no element
of this system is included in the closed linear span of other elements of this system. Recall
also that a system is complete in X if and only if there is no nonzero linear continuous
functional that annihilates all elements of this system. A system is minimal in X if and
only if it has a biorthogonal system.

Let X1 = X⊕Cm and {ûn}n∈N ⊂ X1 be some minimal system, and
{
ϑ̂n

}
n∈N

⊂ X∗1 =

X∗ ⊕ Cm is its biorthogonal system :

ûn = (un;αn1, ..., αnm) ; ϑ̂n = (ϑn;βn1, ..., βnm) .

Let J = {n1, ..., nm} be some set of m distinct natural numbers and NJ = N\J . Assume

δ = det ‖βnij‖ i,j=1,m.

The following theorem is true.

Theorem 1. [27, 28] Let {ûn}n∈N be minimal in X1 with conjugated system
{
ϑ̂n

}
n∈N

⊂
X∗1 . If δ 6= 0, then the system {un}n∈NJ

is minimal in X. In this case, the orthogonally
conjugate system has the form

ϑ∗n =
1

δ

∣∣∣∣∣∣∣∣
ϑn ϑn1 ... ϑnm
βn1 βn11 ... βnm1

...... . . . . . . . . . . . . . . . .
βnm βn1m . . . βnmm

∣∣∣∣∣∣∣∣ .
If {ûn}n∈N is complete and minimal in X1 and δ 6= 0, then {un}n∈N0

is complete and
minimal in X. If the system {ûn}n∈N is complete and minimal in X1 and δ = 0, then the
system {un}n∈N0

is not complete in X.
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Accept λ = −ρ2. Let us denote the forms included in the boundary conditions (2) as
follows:

U1 (y) = y (0) ,

U2 (y) = y′(0)−
(
aρ2 + b

)
y (1) .

 (3)

After these notation, the problem (1), (2) can be written as follows:

−y′′ + q (x) y + ρ2y = 0, x ∈ (0, 1) , (4)

U1(y) = 0,

U2(y) = 0.

 (5)

It is known that there is a system of fundamental solutions y1(x) and y2(x) of the equation
(4) in the interval (0, 1) and these solutions are regular functions of ρ and at large values
of |ρ| with respect to the variable x ∈ [0, 1] uniformly satisfy the following asymptotic
relationships:

y
(j)
1 (x) = (ρω1)

je
ρω1x

[
1 +O

(
1
ρ

)]
,

y
(j)
2 (x) = (ρω2)

jeρω2x
[
1 +O

(
1
ρ

)]
,

 (6)

here j = 0, 1; ρ belongs to one of the four S -sectors [29, p. 62], and ω1, ω2 are different
square roots of −1, numbered so that for ρ ∈ S the inequality Re(ρω1) ≤ Re(ρω2) holds.
For example, for the sector S0 =

{
ρ : 0 ≤ arg ρ ≤ π

2

}
we have ω1 = i, ω2 = −i.

The solution of the equation (1) (or (4)) should be in the form of

y(x) = c1y1(x) + c2y2(x).

Let us choose the constants c1 and c2 so that the function y(x) satisfies the boundary
conditions (5). Then to find the constants c1, c2 we get the following system of algebraic
equations:

c1U1(y1) + c2U1(y2) = 0,

c1U2(y1) + c2U2(y2) = 0.


It is known that there is a non-trivial solution of this system of algebraic equations when
its main determinant (characteristic determinant) ∆(ρ) equals zero. Thus, the number
λ = ρ2 is a eigen value of the spectral problem (1) - (2) if and only if it is a solution of
the following equation:

∆ (ρ) =

∣∣∣∣∣∣
U1 (y1) U1 (y2)

U2 (y1) U2 (y2)

∣∣∣∣∣∣ = U1 (y1)U2 (y2)− U2 (y1)U1 (y2) = 0. (7)
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Considering the asymptotic formulas (6) in the expressions of U1 and U2 in (3), we obtain
the following asymptotic relations:

U1 (y1) = 1 +O(
1

ρ
), U1 (y2) = 1 +O(

1

ρ
),

U2 (y1) = iρ

[
1 +O(

1

ρ
)

]
− (aρ2 + b)eiρ

[
1 +O(

1

ρ
)

]
,

U2 (y2) = −iρ
[
1 +O(

1

ρ
)

]
− (aρ2 + b)e−iρ

[
1 +O(

1

ρ
)

]
.

By substituting these asymptotic relations in the expression of ∆(ρ) in (7) and using

Birkhof’s sign [A] = A+O
(
1
ρ

)
we obtain:

∆(ρ) =

∣∣∣∣∣∣
[1] [1]

iρ [1]− (aρ2 + b)eiρ [1] −iρ [1]− (aρ2 + b)e−iρ [1]

∣∣∣∣∣∣
Calculating the determinant ∆(ρ) and consider that when the complex number ρ enters
the sector Reρ ≥ 0, Imρ ≥ 0 , the inequality Re(iρ) ≤ 0 ≤ Re(−iρ) satisfies, then we
get the following asymptotic relation:

∆ (ρ) =
(
aρ2 + b

)
e−iρ

[
e2iρ − 1 +O

(
1

ρ

)]
− 2iρ [1] =

=
(
aρ2 + b

)
e−iρ

[
e2iρ − 1− 2iρ

aρ2 + b
eiρ +O(

1

ρ
)

]
. (8)

So, the eigen values of the problem (1),(2) are the root of the equation

∆0(ρ) = e2iρ − 1− 2iρ

aρ2 + b
eiρ +O(

1

ρ
) = 0. (9)

Note that the number λ = − b
a (i.e. ρ = ±

√
a
b i ) cannot be an eigen value, because in

this case the function y(x) satisfies the initial conditions y (0) = 0, y
′
(0) = 0, from

which y (x) ≡ 0 is obtained . The roots of the equation f (ρ) = e2iρ − 1 = 0 are the
numbers ρ̃k = πk, k = 0,±1,..... Since ∆(ρ) is an even function, we will consider only
the roots of this function in the right hemisphere. Draw a circle γk with the same radius
δ (0 < δ < π

2 ) around each point ρ̃k. If we denote the region outside these circles by
Qδ, then the function f(ρ) = e2iρ − 1 in this region is bounded by a definite positive
constant from below. Indeed, since the function f(ρ) is a periodic function with a period
π, it suffices to investigate this function in a vertical stripe bounded by the straight lines
Rez = ±π

2 . While in this stripe the following relations

lim
Imρ→−∞

|f(ρ)| = +∞,

lim
Imρ→+∞

|f(ρ)| = 1,
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are true. Since the function f(ρ) does not vanish outside the circle γ0 in this band, it
is bounded from below by an absolute value positive number α outside the circle γ0. At

large values of |ρ| the inequality
∣∣∣O(1ρ)

∣∣∣ < α is also satisfied. Therefore, according to

Rouché’s theorem, at sufficiently large values of k, equation (9) has only one root inside
the circle γk, and if we denote it by ρk, then from equation (9) we get the asymptotic
formula

ρk = πk +O

(
1

k

)
. (10)

In addition, since the function f (ρ) = e2iρ − 1 is bounded below by a certain positive
number in the domain Qδ it follows that for sufficiently large |ρ| the function ∆0(ρ) =
e2iρ − 1− 2iρ

aρ2+b
eiρ +O(1ρ) is also bounded below by a certain positive number in domain

S0 ∩Qδ .
Taken into account the asymptotic formula (6) for sufficiently large |ρ| we get the

inequality

|∆(ρ)| ≥Mδ|ρ|2eτ , (11)

where the constant Mδ independent of ρ, only depends on the number δ > 0.

Thus, the following theorem is proved.

Theorem 2. The characteristic determinant ∆(ρ) of the spectral problem (1),(2) has the
following properties:

1. there exists a positive number Mδ such that, in domain S0 ∩Qδ for the sufficiently
large |ρ| the inequality |∆(ρ)| ≥Mδ|ρ|2eτ holds;

2. The zeros of the function ∆ (ρ)are asymptotically simple and have asymptotics as
follows:

ρk = πk +O

(
1

k

)
, k = 0, 1, 2, ....

3. Construction of the Green function of the spectral problem (1), (2)

To construct the Green function of the problem (1), (2), it is necessary to obtain an
integral representation for the solution of the corresponding non-homogeneous equation.
Let us write the non-homogeneous equation as follows

−y′′
+ q(x)y = λy + f(x), x ∈ (0, 1) . (12)

When the number λ is not an eigenvalue, if we apply the method of variation of the
constant to find the solution of equation (12) that satisfies the boundary conditions (2),
we obtain the following formula for the solution y(x) of this equation:

y(x) = c1y1(x) + c2y2(x) +

∫ 1

0
g(x, ξ)f(ξ)dξ, x ∈ (0, 1), (13)
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where

g(x, ξ) =


1
2

1
W (ξ) (y1 (ξ) y2 (x)− y2 (ξ) y1 (x)) , x > ξ,

−1
2

1
W (ξ) (y1 (ξ) y2 (x)− y2 (ξ) y1 (x)) , x < ξ,

W (x) is the Wronskan of the functions y1(x), y2(x) , i.e.

W (ξ) =

∣∣∣∣ y1(ξ) y2(ξ)

y
′
1(ξ) y

′
2(ξ)

∣∣∣∣ .
Let us claim that the general solution (13) of equation (12) satisfies the boundary condi-
tions (2), i.e. is the solution of the boundary value problem (12), (2). This means that the
constants c1, c2 must be solutions of the following non-homogeneous system of algebraic
equations: 

c1U1(y1) + c2U1(y2) +
∫ 1
0 U1(g)f(ξ)dξ = 0.

c1U2(y1) + c2U(y2) +
∫ 1
0 U2(g)f(ξ)dξ = 0.

Since λ is not an eigenvalue, the main determinant of this system is differ from zero, and
therefore there exists only one solution. Solving this system and substituting the found
values of the constants c1 and c2 in equation (13), we obtain the following formula:

y (x) =

∫ 1

0
G (x, ξ, ρ) f (ξ) dξ. (14)

In formula (14) G(x, ξ, ρ) is a Green’s function and defined as follows:

G (x, ξ, ρ) =
1

∆ (ρ)

∣∣∣∣∣∣
y1 (x) y2 (x) g (x, ξ)
U1 (y1) U1 (y2) U1 (g)
U2 (y1) U (y2) U2 (g)

∣∣∣∣∣∣ , x, ξ ∈ [0, 1], (15)

where

g(x, ξ) =


1
2 (z1 (ξ) y2 (x) + z2 (ξ) y1 (x)) , x ≥ ξ,

−1
2(z1(ξ)y2(x) + z2(ξ)y1(x), x < ξ,

z1 (ξ) =
y2(ξ)

W (ξ)
, z2 (ξ) = − y1(ξ)

W (ξ)
,

U1 (g) = −1

2
(U1 (y2) z1 (ξ) + U1 (y1) z2 (ξ)) ,

U2 (g) = −1

2

(
z1 (ξ) y

′
2 (0) + z2 (ξ) y

′
1 (0)

)
−
(
aρ2 + b

) 1

2
(z1 (ξ) y2 (1) + z2 (ξ) y1 (1)) .

So, the following lemma is proved.

Lemma 1. The Green function of the spectral problem (1),(2) is defined by the formula
(15).
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4. Evaluation of the linearized operator’s resolvent. Theorems on the
completeness

Let us now reduce the study of the spectral problem (1), (2) to the study of the spectral
problem Lŷ = λŷ for an operator L acting in the space Lp(0, 1) ⊕ C. The operator L is
defined as follows:

D(L) =
{
ŷ ∈ Lp ⊕ C : ŷ = (y(x), ay(1)), y ∈W 2

p (0, 1), l(y) ∈ Lp(0, 1), y(0) = 0
}
,

for ŷ ∈ D(L) it is true Lŷ = (l(y); y
′
(0)− by(1)).

Lemma 2. Operator L is a closed operator with a compact resolvent and is dense every-
where in the domain Lp(0, 1) ⊕ C . The eigenvalues of the operator L coincide with the
eigenvalues of problem (1), (2). Each eigen or associated function y(x) of the problem
(1), (2) corresponds to an eigen or associated vector ŷ = (y(x), ay(1)) of the operator L.

Proof. Let’s define the function F ŷ = y(0) for the vector ŷ = (y (x) , ay (1)) , y (x) ∈
W 2
p (0, 1). It can be easily checked that the functional F is bounded in space W 2

p (0, 1) ⊕
C and unbounded in space Lp(0, 1) ⊕ C. Then the considered operator L is a finite-
dimensional contraction of the maximum operator L̃, defined as follows:

L̃ : Lp ⊕ C → Lp ⊕ C,

D
(
L̃
)

=
{
ŷ ∈ Lp ⊕ C : ŷ = (y (x) , ay (1)) , y ∈W 2

p (0, 1) , l (y) ∈ Lp (0, 1)
}
,

L̃ŷ =
(
l (y) , y

′
(0)− by (1)

)
, ∀ ŷ ∈ D(L̃).

Then (see [30, 31]) we obtain that the operator L is a closed operator with a compact
resolvent and its domain is dense everywhere. The second part of the lemma is examined
directly.

Note that since the operator L is closed and dense defined everywhere, it has an adjoint,
and the adjoint operator L∗ will be the linear operator generated by the spectral problem

−z′′
+ q(x)z = λz, (16)

z(1) = 0,

z
′
(1) = −(aλ+ b)z(0),

 (17)

in the space Lq(0, 1)⊕ C, where q = p
p−1 .

To construct the resolvent operator R (λ) = (L − λI)−1 take an arbitrary element
f̃ = (f(x), β) ∈ Lp(0, 1)⊕ C and consider the operator equation (L− λI)ŷ = f̂ . To solve
this equation, it is necessary to find a solution to equation (12) that satisfies condition

y(0) = 0,

y′(0)− (aλ+ b)y(1) = β.

 . (18)
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It is obvious that, for each regular number λ the element ŷ = (y(x, λ), ay(1, λ)) ∈ D(L)
will be the solution of the equation Lŷ − λŷ = f̃ if and only if the function y(x) will be a
solution of the non-homogeneous equation (12), (18). We can present the solution y(x, λ)
of equations (12), (18) in the form of the sum of two functions:

y(x, λ) = φ(x, λ) + h(x, λ)

thus, φ(x, λ) is the solution of the problem (12), (18), and h(x, λ) is the solution of the
problem (1), (18). The representation (14) for the function φ(x, λ) has already been
obtained. Now let’s take a representation for the function h(x, λ) Let’s denote it briefly
by h(x). Then let us seek it in the form

h(x) = a1y1(x) + a2y2(x), x ∈ (0, 1), (19)

where the constants a1, a2 must be the solution of the following system of algebraic equa-
tions: 

U1(h) = 0,

U2 (h) = β,

or 
a1U1(y1) + a2U1(y2) = 0,

a1U2(y1) + a2U2(y2) = β.

By solving this system of equations, we have

a1 = − β

∆ (ρ)
U1 (y2) , a2 =

β

∆(ρ)
U1(y1).

If we substitute them in (18), we obtain

h(x) =
β

∆(ρ)
(−U1(y2)y1(x) + U1(y1)y2(x)). (20)

Thus, if the number λ is a regular point of the operator L, then we obtain the following
representation for the solution y(x, λ) of the problem (12), (18):

y(x, λ) =

∫ 1

0
G(x, ξ, f)f(ξ)dξ +

β

∆ (λ)
(−U1(y2)y1(x) + U1(y1)y2(x)) (21)

where G(x, ξ, λ) is a Green function and is determined by equation (15) .
Now we can proceed to a direct estimate of the resolvent R (λ) = (L− λI)−1 . Let Ωδ

be the image of the domain Qδ in the complex λ -plane under the mapping λ = ρ2.

Theorem 3. For the resolvent of the operator L, which linearizes the spectral problem
(1),(2), in the domain Ωδ for large values of |λ| the following estimate is valid

‖R (λ)‖ ≤ Mδ

|λ|
1
2

. (22)
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Proof. Let f̂ = (f(x), β ∈ Lp ⊕ C be an arbitrary fixed element. To estimate the
resolvent it is necessary to estimate the vector (y (x) , ay (1)) ∈ Lp ⊕ C. Let us show that
if ρ ∈ Qδ, Imρ ≥ 0, then for sufficiently large |ρ|, for the solution y(x, ρ) of the problem
(12), (18) uniformly with respect to the variable x ∈ [0, 1] the following inequality

|(y(x, ρ)| ≤ C

|ρ|

is true; where the constant C is independent of ρ, but depend only on element f̂ ∈
Lp(0, 1)⊕ C and δ. Let us accept λ = −ρ2, ρ = s+ iτ, τ ≥ 0. Then according to (21) the
following representation

y(x, ρ) =

∫ 1

0
G (x, ξ, ρ) f (ξ) dξ +

β

∆ (ρ)
(−U1(y2)y1(x) + U1(y1)y2(x)) =

=

∫ 1

0
G(x, ξ, ρ)f(ξ)dξ + h(x, ρ))

is true, where

h(x, ρ) = β
−U1(y2)y1(x) + U2(y1)y2(x)

∆(ρ)
. (23)

Using asymptotic formulas (3), we can write the following:

U1(y2)y1(x) = eiρx[1] · [1] = eiρx[1] = O(1), (Rei ρ ≤ 0),

U2(y1)y2(x) = e−iρx[1](iρ [1]−
(
aρ2 + b

)
eiρ[1] = aρ2e−iρ(1−x) [1] = O (eτ ) .

Note that these asymptotic formulas uniformly satisfy with respect to the variable x ∈
[0, 1]. Considering these asymptotic formulas in (23), we obtain that as |ρ| → ∞, the
increase in the numerator of the fraction in (23) is like O(eτ ). On the other hand, taking
into account the inequality (11) and the above estimate of the increase in the numerator
of the fraction in (23), for sufficiently large |ρ| in the domain Qδ the following estimate

|h(x, ρ)| ≤M ′
δe
−τ ≤

M
′
δ

|ρ|2
(24)

is obtained, here the constant M
′
δ is independent of ρ.

Now, let us estimate the function φ(x, ρ). Taking into account the asymptotic formulas
(3) in the following expressions

z1(ξ) =
y1(ξ)

W (ξ)
, z2(ξ) = − y2(ξ)

W (ξ)
,

we have:

z1(ξ) =
y2(ξ)∣∣∣∣ y1(ξ) y2(ξ)

y
′
2(ξ) y

′
2(ξ)

∣∣∣∣ =
e−iρξ[1]∣∣∣∣∣∣

eiρξ[1] e−iρξ[1]

iρeiρξ[1] −iρe−iρξ[1]

∣∣∣∣∣∣
=

e−iρξ [1]

iρ

∣∣∣∣ [1] [1]
[1] [1]

∣∣∣∣ =
e−iρξ

−2iρ
[1] =

i

2ρ
e−iρξ[1]

(25)
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z2(ξ) = − y1(ξ)∣∣∣∣∣∣
y1(ξ) y2(ξ)

y
′
1(ξ) y

′
2(ξ)

∣∣∣∣∣∣
= − eiρξ[1]∣∣∣∣ eiρξ[1] e−iρξ[1]

iρeiρξ[1] −iρe−iρξ[1]

∣∣∣∣ = − e−iρξ [1]

iρ

∣∣∣∣ [1] [1]
[1] [1]

∣∣∣∣ = − i

2ρ
eiρξ[1]

(26)
Consider the function G(x, ξ, ρ) in the case of x ≥ ξ (the case of x < ξ is considered
similarly).

The determinant (12), which determines the function G (x, ξ, ρ), can be transformed as
follows: multiply the first column of the determinant by 1

2z2(ξ), and the second column
by −1

2z1(ξ) and add to last column. Using asymptotic formulas (3), (25), (26), we obtain
the following formulas for the elements of the last column of the determinant in (15)

P1 = g (x, ξ) +
1

2
y1 (x) z2 (ξ)− 1

2
y2 (x) z1 (ξ) =

=
1

2
z1(ξ)y2(x) +

1

2
z2(ξ)y1(x) +

1

2
y1(x)z2(ξ)−

1

2
y2 (x) z1 (ξ) =

= y1 (x) z2 (ξ) = eiρx [1]

(
−i
2ρ
e−iρξ

)
[1] = − i

2ρ
eiρ(x−ξ) [1] , (27)

P2 = U1 (g) +
1

2
z2 (ξ)U1 (y1)−

1

2
z1 (ξ)U1 (y2) =

= −1

2
z1(ξ)U1(y2)−

1

2
z2(ξ)U1(y1) +

1

2
z2(ξ)U1(y1)−

−1

2
z1 (ξ)U1 (y2) = −z1 (ξ)U1 (y2) = − i

2ρ
e−iρξ [1] · [1] = − i

2ρ
eiρξ [1] , (28)

P3 = −1

2
z1 (ξ) y

′
2(0)− 1

2
z2 (ξ) y

′
1(0)− 1

2

(
aρ2 + b

)
z1 (ξ) y2 (1)

−1

2
(aρ2 + b)z2(ξ)y1(1) +

1

2
z2 (ξ) y

′
1 (0)

−1

2
z2(ξ)(aρ

2 + b)y1(1)− 1

2
z1(ξ)y

′
2(0) +

1

2
(aρ2 + b)z1(ξ)y2(1) =

= −z1 (ξ) y
′
2(0)−

(
aρ2 + b

)
z2 (ξ) y1 (1) = iρ [1]

i

2ρ
eiρξ [1]−

(aρ2 + b)eiρ[1](− i

2ρ
e−iρξ[1]) = −1

2
eiρξ[1] +

(aρ2 + b)i

2ρ
eiρ(1−ξ) (29)

Substituting formulas (27), (28), (29) into the formula (15) of the Green function, we
obtain:

G(x, ξ, ρ) =
1

∆(ρ)

∣∣∣∣∣∣
y1(x) y2(x) P1

U1(y1) U1(y2) P2

U2(y1) U2(y2) P3

∣∣∣∣∣∣ =
eiρ

(aρ2 + b)∆0(ρ)
×
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×

∣∣∣∣∣ eiρx[1] e−iρx[1] − i
2ρe

iρ(x−ξ)[1]

iρ[1]− (aρ2 + b)eiρ[1] −iρ[1]− (aρ2 + b)e−iρ[1] aρ2+b
2ρ ieiρ(1−ξ) [1]− 1

2e
iρξ[1]

∣∣∣∣∣ .
Since the last formula contains 0 ≤ x ≤ 1, 0 ≤ ξ ≤ 1, x ≥ ξ and Re( iρ) ≤ 0 the powers
of the exponents included in the determinant are complex numbers, the real part of which
is not positive. We have shown that the function ∆0(ρ) is bounded below by some positive
number. Thus, the function G(x, ξ, ρ) for large values of ρ ∈ S0 ∩Qδ, 0 ≤ ξ ≤ x ≤ 1, and
|ρ| satisfies the following inequality

|G(x, ξ, ρ)| ≤ C

|ρ|
; (30)

this inequality is satisfied uniformly with respect to the variables x and ξ. Now, taking into
account the inequalities (20) and (30), we obtain the following estimate for the solution
y(x, ρ) of equations (12), (18) for the fixed element f̂ ∈ Lp(0, 1)⊕ C:

|y(x, ρ| =
∣∣∣∣∫ 1

0
G (x, ξ, ρ) f (ξ) dξ + h (x, ρ)

∣∣∣∣ ≤
≤
∫ 1

0
|G (x, ξ, ρ)| |f (ξ)| dξ + |h(x, ρ| ≤

≤ C

|ρ|
(

∫ 1

0
|f (ξ)| dξ + |β|) ≤

≤ C

|ρ|

∥∥∥f̂∥∥∥
Lp⊕C

. (31)

Hence, we have the inequality

‖y‖Lp
≤ C

|ρ|

∥∥∥f̂∥∥∥
Lp⊕C

.

Since the estimate (31) is satisfied uniformly with respect to the variable x ∈ [0, 1], the
estimate for |y (1)| is obtained by writing x = 1 in (31). Thus, the inequality (22) is true
for each λ ∈ Ωδ.

Theorem is proved.

Using the Theorem 3, let’s prove the following theorem, which is the main result of
this section.

Theorem 4. The system of eigen and associated elements of the operator L is a complete
and minimal system in the space Lp (0, 1)⊕ C, 1 < p <∞.

Proof. The minimality of the system of eigenvectors and associated vectors of the
operator L in the space Lp (0, 1) ⊕ C, 1 < p < ∞, is a consequence of the fact that the
resolvent of the operator L is a compact operator in this space [32]. Therefore, we prove
the completeness of this system. According to Theorem 2, the resolvent of the operator
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L satisfies estimate (22) . This estimate means that the resolvent R (λ) = (L− λI)−1

satisfies the inequality ∥∥R (ρ2)∥∥ ≤ Cδ
|ρ|
, ρ ∈ Qδ, |ρ| ≥ r0. (32)

Let us assume that the system of root vectors of the operator L is not complete in space
Lp (0, 1)⊕C. Then there exists a vector ĝ ∈ Lq (0, 1)⊕C orthogonal to all root subspaces
of the operator L, i.e.〈

Qnf̂ , ĝ
〉

= 0, ∀f̂ ∈ Lp (0, 1)⊕ C, n = 0, 1, 2, ...,

and hence Q∗nĝ = 0, n = 0, 1, 2, ...; here Qn denotes the Riesz projectors of the operator
L :

Qn =
1

2πi

∮
|λ−λn|=r

R (λ)dλ.

In this case it is obvious that Q∗n, n ∈ N0, (N0 = N ∪ {0}) , will be the Riesz projectors of
the adjoint operator L∗. It follows that R (λ, L∗) ĝ will be an entire function in the entire
λ - plane. On the other hand, based on estimate (32), the inequality

‖R (λ, L∗)‖ ≤ Cδ

|λ|
1
2

, λ ∈ Ωδ, |λ| ≥ r20, (33)

is true. Then, by the maximum principle, inequality (33) is satisfied in the entire λ-plane
and R (λ, L∗) ĝ → 0 as |λ| → ∞, and by Liouville’s theorem this means that an entire
function R (λ, L∗) ĝ is a constant function. Then differentiating this function and taking
into account that d

dλR (λ, L∗) = R2 (λ, L∗) we obtain that R2 (λ, L∗) ĝ = 0. Since for all
λ ∈ ρ (L∗) the operator R (λ, L∗) is single-valued, we obtain that ĝ = 0, which means
that the root vectors of the operator L form a complete system in the space Lp(0, 1)⊕C.
Theorem is proved.

From Theorem 4 it also follows that the system of eigenfunctions and associated func-
tions of the spectral problem (1),(2) is overflowing in space Lp(0, 1), and in this system
one function is superfluous. Therefore, we clarify the question of which function can be
excluded from this system while maintaining the completeness and minimality properties.
Let the system {ẑn}∞n=0 be biorthogonal system to {ŷn}∞n=0. It is a system of root vectors
of the adjoint operator L∗ moreover ẑn = (zn (x) , azn (0)), where zn (x) is an eigenfunction
or an associated function of the adjoint spectral problem (16),(17).

The following theorem is true.

Theorem 5. The system {yn(x)}∞n=0,n6=n0
, obtained from the system of eigen and as-

sociated functions {yn(x)}∞n=0,n6=n0
, of the spectral problem (1),(2) after removing any

eigenfunction yn0 (x), corresponding to a simple eigenvalue, is complete and minimal in
the space Lp (0, 1) , 1 < p < ∞. In this case, the biorthogonal system has the form
{ϑn(x)}∞n=0,n 6=n0

, where

ϑn (x) = zn (x)− zn (0)

zn0 (0)
zn0 (x) .
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Proof. As follows from Theorem 1, a sufficient condition for the completeness and
minimality of the system {yn(x)}∞n=0,n6=n0

is the condition zn0 (0) 6= 0. For any simple
eigenvalue λn0 this condition is satisfied, because, otherwise, we get that the function
zn0 (x) is a solution to equation (16), satisfying the initial conditions zn0 (1) = 0, z′n0 (1) =
0, so this solution is trivial, i.e. zn0 (x) ≡ 0, which contradicts the fact that it is an
eigenfunction. Thus, the assertion of the theorem follows from Theorem 1.
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