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On the Completeness and Minimality of Eigenfunctions
of the Indefinite Sturm-Liouville Problem with Conjuga-
tion Condition

Gasymov T.B.*, Hashimova U.G.

Abstract. In this work we consider the following spectral problem:

−y′′ = λω (x) y, x ∈ (−1, 0) ∪ (0, 1) ,

y(−1) = y (1) = 0,
y (−0) = ay (+0)
y′(−0) = by′(+0)


where a weight function ω(x) is in the following form:

ω (x) =

{
−α2, x ∈ (−1, 0) ,
1, x ∈ (0, 1) ,

α > 0 is a given number, λ is a spectral parameter, a and b are arbitrary complex numbers. The
theorem on the completeness and minimality of the eigenfunctions and associated functions of the
spectral problem in the spaces Lp(−1, 1) is proved.

Key Words and Phrases: completeness, minimality, eigenfunctions, indefinite Sturm-Liouville
problem.

2010 Mathematics Subject Classifications: 34B24

1. Introduction

Consider the spectral problem for the differential equation

−y′′ = λω (x) y, x ∈ (−1, 0) ∪ (0, 1) , (1)

with boundary conditions

y (−1) = y (1) = 0, (2)
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and with conjugation conditions {
y (−0) = ay (+0) ,
y′ (−0) = by′ (+0) ,

(3)

where ω(x)− is a sign-alternating weight function,

ω (x) =

{
−α2, x ∈ (−1, 0) ,
1, x ∈ (0, 1) ,

α > 0 is a given number, λ is a spectral parameter, a and b are non-zero arbitrary
complex numbers. Our goal in this work is to find asymptotic formulas for eigenvalues,
to prove theorems on the completeness and minimality of eigenfunctions and associated
functions of problem (1)-(3) in the spaces Lp (−1, 1) . Previously, such problems were
studied in the case a = b = 1, i.e. at the discontinuity point of the weight function,
as a conjugation condition the continuity of the solution and its derivative are required.
In works [1, 2, 3, 4, 5, 6], numerous applications of such problems are given, results are
obtained in the case p = 2, α = 1. The results of these works are based on the theory
of self-adjoint operators. Considering the case p ̸= 2, in work [7] the methods of [8] are
used, and also the methods of the theory of functions of a complex variable, in particular,
the results of Paley-Wiener [9] and Levinson [10] on nonharmonic Fourier series are used.
We also note the works [11, 12, 13], where ordinary differential operators of arbitrary
order with a indefinite weight function are studied, asymptotic formulas for eigenvalues
are found, and questions of convergence of expansions in eigenfunctions are investigated.

Recently, interest in spectral problems with a indefinite weight function has increased
in connection with attempts to solve the Dirichlet problems for the Lavrent’ev–Bitsadze
equation by the method of separation of variables. It is known [14, p. 303] that the problem
of transition through the sound barrier of steady two-dimensional irrotational flows of an
ideal gas in nozzles, when supersonic waves adjoin the nozzle walls near the minimum cross
section, is reduced to the Dirichlet problem for equations of mixed type. In [15, 16], the
Dirichlet problem for a mixed-type equation with one internal line of power degeneracy and
degeneracy at the boundary in a rectangular domain was studied, a uniqueness criterion
was established using spectral analysis methods, and the solution was constructed as the
sum of a series over a system of eigenfunctions. In [17], for the first time the Dirichlet
problem was studied for the Lavrent’ev–Bitsadze equation with two type-change internal
lines in a rectangular domain. A uniqueness criterion is established and the solution of
the problem is constructed as the sum of a series in a biorthogonal system of two mutually
conjugate spectral conjugation problems for a second-order ordinary differential operator
with a discontinuous coefficient at the highest derivative. The uniqueness of the solution
of the stated problem is proved based on completeness of the biorthogonal system in the
space L2 (−1, 1).

In [18, 19, 20] the problem for a discontinuous second-order differential operator with
a constant coefficient at the highest derivative and with a spectral parameter under conju-
gation conditions was studied, a system of eigenfunctions was found and investigated for
completeness and basicity in the spaces Lp ⊕ C and Lp.
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2. Asymptotics of eigenvalues

Let λ = ρ2. We also denote the linear forms included in the boundary conditions (2),
(3) as follows:

U11 (y) = y (−1) , U12 (y) ≡ 0
U21 (y) ≡ 0, U22 (y) = y (1)
U31 (y) = y (−0) , U32 (y) = −ay (+0)
U41 (y) = y′ (−0) , U42 (y) = −by′ (+0)

 (4)

After these denotations, problem (1)-(3) can be rewritten in the following form:

y′′ + ρ2ω (x) y = 0, x ∈ (−1, 0) ∪ (0, 1) , (5)

U1(y) = U11 (y) + U12 (y) = 0
U2(y) = U21 (y) + U22 (y) = 0
U3(y) = U31 (y) + U32 (y) = 0
U4(y) = U41 (y) + U42 (y) = 0

 (6)

It is known that equation (4) has a fundamental system of solutions y11 (x) = eαρx,
y12 (x) = e−αρx , on the interval (−1, 0) , and y21 (x) = eiρx , y22 (x) = e−iρx on the
interval (0, 1). Then the general solution of equation (1) (or (4)) has the form

y (x) =


c11y11 (x) + c12y12 (x) , x ∈ (−1, 0)

c21y21 (x) + c22y22 (x) , x ∈ (0, 1)

Let us choose the constants cik so that the function y(x) satisfies the boundary conditions
(5). Then, to find the numbers cik we get the following system of equations:

c11U11 (y11) + c12U11 (y12) + c21U12 (y21) + c22U12 (y22) = 0
c11U21 (y11) + c12U21 (y12) + c21U22 (y21) + c22U22 (y22) = 0
c11U31 (y11) + c12U31 (y12) + c21U32 (y21) + c22U32 (y22) = 0
c11U41 (y11) + c12U41 (y12) + c21U42 (y21) + c22U42 (y22) = 0


This system of equations has a nontrivial solution if and only if the main determinant
(characteristic determinant) ∆ (ρ) = det∥Uνi (yik)∥ν=1,4;i,k=1,2 of this system is zero. Thus,

the number λ = ρ2 is an eigenvalue of the spectral problem (1)-(3) if and only if the number
ρ is a solution of the following equation

∆ (ρ) =

∣∣∣∣∣∣∣∣
e−αρ eαρ 0 0
0 0 eiρ e−iρ

1 1 − a − a
αρ − αρ − biρ biρ

∣∣∣∣∣∣∣∣ = 4i∆0 (ρ) = 0,

where
∆0 (ρ) = αa sinρ chαρ+ b cosρ shαρ.
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Let us divide the complex ρ-plane into the following sectors:

Sk =

{
ρ = reiθ :

(k − 1)π

2
≤ θ ≤ kπ

2

}
, k = 0, 1, 2, 3.

We also denote by Qδ the domain of the ρ-plane, obtained from it by throwing out circles
with the same radius δ > 0 and with centers at zeros ∆ (ρ). The following theorem is true.

Theorem 1. The characteristic determinant ∆(ρ) of the spectral problem (1)-(3) has the
following properties:

1) There exists a positive number Mδ such that in the domain Sk ∩Qδ for sufficiently
large |ρ| the inequality

|∆(ρ)| ≥ Mδ |ρ| e±rsinθe±αrcosθ; (7)

is satisfied, where the constant Mδ is independent of ρ, but depends only on the
number δ > 0; in addition, the signs in the exponents on the right side of this
inequality are chosen depending on the sectors Sk as follows: ”+”, ”+” for ρ ∈ S0;
”+”, ”-” for ρ ∈ S1; ”-”, ”-” for ρ ∈ S2; ”-”, ”+” for ρ ∈ S3.

2) The zeros of the function ∆(ρ) are asymptotically simple and have the following
asymptotics

ρ1n = πn− γ +O
(
e−2πnα

)
, n → ∞,

ρ2n = − i

α

(
πn+ γ +

π

2
+O

(
e−απn

))
, n → ∞.

Proof. 1) Let us estimate the function ∆0 (ρ) in each sector Sk. Let ρ ∈ S0. Then the
inequalities

Re( iρ) ≤ 0 ≤ Re(− iρ), Re( − αρ) ≤ 0 ≤ Re(α ρ),

hold. Let us reduce the function ∆0 (ρ) to the following form:

∆0 (ρ) = e−iρeαρ
(
αa

(
1− e−2iρ

) (
1 + e−2αρ

)
+ b

(
1 + e−2iρ

) (
1− e−2αρ

))
.

All exponents inside the brackets on the right side of this equality have a non-positive
real part in the exponent, therefore they are bounded. Moreover, if ρ ∈ Qδ, then the
expression in brackets is bounded from below by some positive number Mδ in absolute
value. Therefore we have

|∆0 (ρ)| ≥ Mδ

∣∣e−iρeαρ
∣∣ = Mδe

rsinθeαrcosθ.

Hence we obtain the validity of inequality (7) for ρ ∈ S0 ∩Qδ. Other cases are considered
in a similar way.
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2) Define the number γ as follows:

cosγ =
αa√

α2a2 + b2
, sinγ =

b√
α2a2 + b2

, Reγ ∈
(
−π

2
,
π

2

)
.

Then the function ∆0 (ρ) with the help of elementary transformations can be represented
in the following form:

∆0 (ρ) =
1

2

√
α2a2 + b2e

αρ (
sin (ρ+ γ) + e−2αρsin (ρ− γ)

)
. (8)

Based on the Rouché’s theorem, we obtain that the zeros of the function ∆0 (ρ) , situated
in the strip |Imρ| ≤ h are asymptotically situated in a small neighborhood of the zeros
of the function sin (ρ+ γ) , and for large values of |ρ| near each zero of the function
sin (ρ+ γ) there is one zero of the function ∆0 (ρ) . Hence we obtain the asymptotics of
the zeros ∆0 (ρ) , situated in the strip |Imρ| ≤ h :

ρ1n = πn− γ +O
(
e−2απn

)
, n → ∞.

On the other hand, replacing ρ by iρ in formula (8), we obtain

∆0 (iρ) =
i

2

√
α2a2 + b2e

ρ (
cos (αρ− γ)− e−2ρcos (αρ+ γ)

)
. (9)

Applying the Rouché’s theorem again, from formula (9) we obtain that the zeros of the
function ∆0 (ρ) , situated in the strip |Reρ| ≤ h are asymptotically situated in a small
neighborhood of the zeros of the function cos (αρ− γ) , and for large values of |ρ| near
each zero of the function cos (αρ− γ) there is one zero of the function ∆0 (ρ) . Hence we
obtain the asymptotics of the zeros ∆0 (ρ) , situated in the strip |Reρ| ≤ h are:

ρ2n = − i

α

(
πn+ γ +

π

2
+O

(
e−απn

))
, n → ∞.

◀

3. Construction of the Green’s function of the spectral problem

The Green’s function of problem (1)-(3) is defined as the kernel of the integral repre-
sentation of the solution of the nonhomogeneous equation

−y′′(x)− ρ2ω (x) y(x) = f(x), (10)

Satisfying the boundary conditions (2),(3). Let us look for a solution of the problem
(10),(2),(3) in the form

y(x) =


y1(x), x ∈ [−1, 0] ,

y2(x), x ∈ [0, 1] ,
(11)
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where 
y1(x) = c11y11(x) + c12y12(x) +

∫ 0
−1 g1(x, ξ, ρ)f(ξ)dξ,

y2(x) = c21y21(x) + c22y22(x) +
∫ 1
0 g2(x, ξ, ρ)f(ξ)dξ.

(12)

g1(x, ξ, ρ) =


− 1

4αρ(e
αρ(x−ξ) − e−αρ(x−ξ)), −1 ≤ x < ξ ≤ 0,

1
4αρ(e

αρ(x−ξ) − e−αρ(x−ξ)), −1 ≤ ξ < x ≤ 0,

(13)

g2(x, ξ, ρ) =


1
2iρ(e

iρ(x−ξ) − e−iρ(x−ξ)), 0 ≤ x < ξ ≤ 1,

− 1
2iρ(e

iρ(x−ξ) − e−iρ(x−ξ)), 0 ≤ ξ < x ≤ 1.

(14)

We require that the function y(x), defined by formulas (11)-(14), satisfies the boundary
conditions (2) and conjugation conditions (3). Then, to determine the numbers cjk we
obtain the following system of equations:{

Uν (y) =
∑2

j,k=1 cjkUνj(yjk) +
∫ 0
−1 Uν1(g1)f(ξ)dξ +

∫ 1
0 Uν2(g2)f(ξ)dξ = 0,

ν = 1, 4.
(15)

Having determined the numbers cjk from system (15) and substituting their values into
(12), for the solution of equation (10) that satisfies (2), (3), we obtain the following formula:

y(x) =

{
y1(x) =

∫ 0
−1G11(x, ξ, ρ)f(ξ)dξ +

∫ 1
0 G12(x, ξ, ρ)f(ξ)dξ, x ∈ [−1, 0] ,

y2(x) =
∫ 0
−1G21(x, ξ, ρ)f(ξ)dξ +

∫ 1
0 G22(x, ξ, ρ)f(ξ)dξ, x ∈ [0, 1] ,

(16)

Here

Gik(x, ξ, ρ) =
1

∆ (ρ)
Hik(x, ξ, ρ), i, k = 1, 2, (17)

Hik(x, ξ, ρ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

δikgk (x, ξ) δ1ky11 (x) δ1ky12 (x) δ2ky21 (x) δ2ky22 (x)

U1k (gk) (ξ) U11 (y11) U11 (y12) U12 (y21) U12 (y22)

U2k (gk) (ξ) U21 (y11) U21 (y12) U22 (y21) U22 (y22)

U3k (gk) (ξ) U31 (y11) U31 (y12) U32 (y21) U32 (y22)

U4k (gk) (ξ) U41 (y11) U41 (y12) U42 (y21) U42 (y22)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

δik is the Kronecker symbol. Denote I1 = (−1, 0), I2 = (0, 1) and let χ1 (x) , χ2 (x) be the
characteristic functions of these intervals, respectively. The Green’s function of problem
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(1)-(3) is defined as follows:

G(x, ξ, ρ) =
2∑

i,k=1

χi (x)χk (ξ)Gik(x, ξ, ρ). (18)

Then the solution of equation (10) that satisfies conditions (2), (3) can be represented as

y(x) =

∫ 1

−1
G(x, ξ, ρ)f(ξ)dξ. (19)

According to denotation (4) and formulas (13), (14) we have

U11(g1) = − 1
4αρ

(
e−αρ(1+ξ) − eαρ(1+ξ)

)
, U12(g2) = 0,

U21(g1) = 0, U22(g2) = − 1
4iρ

(
eiρ(1−ξ) − e−iρ(1−ξ)

)
,

U31(g1) =
1

4αρ

(
e−αρξ − eαρξ

)
, U32(g2) =

a
4iρ

(
e−iρξ − eiρξ

)
,

U41(g1) =
1
4

(
e−αρξ + eαρξ

)
, U42(g2) = − b

4

(
e−iρξ + eiρξ

)
.

Taking into account these values, as well as the values Uν s (ysk) in formulas Hkj(x, ξ, ρ),
we obtain

H11(x, ξ, ρ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

±1
4αρ

(
eαρ(x−ξ) − e−αρ(x−ξ)

)
eαρx e−αρx 0 0

− 1
4αρ

(
e−αρ(1+ξ) − eαρ(1+ξ)

)
e−αρ eαρ 0 0

0 0 0 eiρ e−iρ

1
4αρ

(
e−αρξ − eαρξ

)
1 1 −a −a

1
4

(
e−αρξ + eαρξ

)
αρ −αρ −biρ biρ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, x, ξ ∈ I1,

here the sign ” + ” is taken in the case of −1 ≤ ξ < x ≤ 0, and the sign ”− ” in the case
of −1 ≤ x < ξ ≤ 0;

H12(x, ξ, ρ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 eαρx e−αρx 0 0

0 e−αρ eαρ 0 0

1
4iρ

(
eiρ(1−ξ) − e−iρ(1−ξ)

)
0 0 eiρ e−iρ

a
4iρ

(
e−iρξ − eiρξ

)
1 1 −a −a

b
4

(
e−iρξ + eiρξ

)
αρ −αρ −biρ biρ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, x ∈ I1, ξ ∈ I2;
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H21(x, ξ, ρ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 eiρx e−iρx

− 1
4αρ

(
e−αρ(1+ξ) − eαρ(1+ξ)

)
e−αρ eαρ 0 0

0 0 0 eiρ e−iρ

1
4αρ

(
e−αρξ − eαρξ

)
1 1 −a −a

1
4

(
e−αρξ + eαρξ

)
αρ −αρ −biρ biρ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, x ∈ I2, ξ ∈ I1;

H22(x, ξ, ρ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

±1
4iρ

(
eiρ(x−ξ) − e−iρ(x−ξ)

)
0 0 eiρ x e−iρ x

0 e−αρ eαρ 0 0

1
4iρ

(
eiρ(1−ξ) − e−iρ(1−ξ)

)
0 0 eiρ e−iρ

a
4iρ

(
e−iρξ − eiρξ

)
1 1 −a −a

b
4

(
e−iρξ + eiρξ

)
αρ −αρ −biρ biρ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, x, ξ ∈ I2,

here the sign ” + ” is taken in the case of −1 ≤ ξ < x ≤ 0, and the sign ”− ” in the case
of −1 ≤ x < ξ ≤ 0;

Theorem 2. For the components Gik(x, ξ, ρ) of the Green’s function of problem (1)-(3)
in the domain Qδ for sufficiently large values |ρ| uniformly in the variables x ∈i, ξ ∈k the
estimate

|Gik(x, ξ, ρ)| ≤
Cδ

|ρ|
, (20)

is true, where the positive number Cδ is independent of ρ, but depends only on the number
δ.

Proof. Let us perform the following transformations on the determinants Hik(x, ξ, ρ):
in the determinant H11(x, ξ, ρ) in the case −1 ≤ ξ < x ≤ 0 multiply the second and third
columns by − 1

4αρe
−αρξ, − 1

4αρe
αρξ respectively and add to the first column, then we get

H11(x, ξ, ρ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

− 1
2αρe

−αρ(x−ξ) eαρx e−αρx 0 0

− 1
2αρe

−αρ(1+ξ) e−αρ eαρ 0 0

0 0 0 eiρ e−iρ

− 1
2αρe

αρξ 1 1 −a −a

1
2e

αρξ αρ −αρ −biρ biρ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
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=
1

2
e−iρeαρ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−e−αρ(x−ξ) eαρx e−αρ(1+x) 0 0

−e−αρ(1+ξ) e−αρ 1 0 0

0 0 0 e2iρ 1

−eαρξ 1 e−αρ −a −a

eαρξ 1 −e−αρ − b
α i

b
α i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(in the case −1 ≤ x < ξ ≤ 0 similar actions are performed by multiplying the second and
third columns by 1

4αρe
−αρξ, 1

4αρe
αρξ respectively); in the determinant H12(x, ξ, ρ) multiply

the fourth and fifth columns by 1
4iρe

−iρξ, 1
4iρe

iρξ respectively and add to the first column,
then we get

H12(x, ξ, ρ) =
1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 eαρx e−αρx 0 0

0 e−αρ eαρ 0 0

eiρ(1−ξ) 0 0 eiρ e−iρ

−eiρξ 1 1 −a −a

eiρξ −αi αi −b b

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

=
1

2
e−iρeαρ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 eαρx e−αρ(1+x) 0 0

0 e−αρ 1 0 0

eiρ(1−ξ) 0 0 eiρ 1

−eiρξ 1 e−αρ −a −aeiρ

eiρξ 1 αie−αρ −b beiρ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

;

in the determinantH21(x, ξ, ρ) multiply the second and third columns by− 1
4αρe

−αρξ, − 1
4αρe

αρξ
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respectively and add to the first column, then we get

H21(x, ξ, ρ) =
1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 eiρx e−iρx

−e−αρ(1+ξ) e−αρ eαρ 0 0

0 0 0 eiρ e−iρ

−eαρξ 1 1 −a −a

eαρξ 1 −1 − b
α i

b
α i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

=
1

2
e−iρeαρ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 eiρx eiρ(1−x)

−e−αρ(1+ξ) e−αρ 1 0 0

0 0 0 eiρ 1

−eαρξ 1 e−αρ −a −aeiρ

eαρξ 1 −e−αρ − b
α i

b
α ie

iρ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

;

in the determinant H22(x, ξ, ρ) in the case of 0 ≤ ξ < x ≤ 1 multiply the fourth and fifth
columns by 1

4iρe
−iρξ, 1

4iρe
iρξ , respectively and add to the first column, then we get

H22(x, ξ, ρ) =

=
1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

eiρ(x−ξ) 0 0 eiρx e−iρx

0 e−αρ eαρ 0 0

eiρ(1−ξ) 0 0 eiρ e−iρ

−eiρξ 1 1 −a −a

eiρξ −αi αi −b b

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
1

2
e−iρeαρ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

eiρ(x−ξ) 0 0 eiρx eiρ(1−x)

0 e−2αρ 1 0 0

eiρ(1−ξ) 0 0 eiρ 1

−eiρξ 1 1 −a −aeiρ

eiρξ −αi αi −b beiρ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

( in the case 0 ≤ x < ξ ≤ 1 similar actions are performed by multiplying the second and
third columns by − 1

4iρe
−iρξ, − 1

4iρe
iρξ , respectively)

Thus, in the formulas obtained for Hik(x, ξ, ρ) in all determinants on the right side
of the last equalities, all exponents have a non-positive real part in the exponent, these
determinants for ρ ∈ S0 are uniformly bounded in variables x ∈ Ii, ξ ∈ Ik. A similar
property is established in other sectors Sk. It follows that for functions Hik(x, ξ, ρ) for
sufficiently large values of |ρ| uniformly in the variables x ∈ Ii, ξ ∈ Ik the estimate

|Hik(x, ξ, ρ)| ≤ Ce±r sin θe±αr cos θ, (21)
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holds, the signs here are taken in accordance with the rule specified in Theorem 1. Now,
taking into account inequalities (7) and (21) in formula (17), we obtain the validity of
inequality (20). ◀

4. Completeness and minimality of eigenfunctions in the space Lp

Recall that a system {un}n∈N of a Banach space X is called complete in X, if the
closure of the linear span of this system coincides with the entire space X, and minimal if
no element of this system is included in the closed linear span of the remaining elements of
this system. Recall also that a system is complete in X if and only if there is no nonzero
linear continuous functional that annihilates all elements of this system. A system is
minimal in X if and only if it has a biorthogonal system.

Denote by W 2
p (−1, 0)∪(0, 1) the space of functions from Lp (−1, 1), whose restrictions

to each of the intervals (−1, 0) and (0, 1) belong to the Sobolev spaces W 2
p (−1, 0) and

W 2
p (0, 1) respectively. Let us define an operator L in space Lp (−1, 1) as follows:

D (L) =
{
y ∈ W 2

p (−1, 0) ∪ (0, 1) : y (−1)− y (1) =

y (−0)− ay (+0) = y′ (−0)− by′ (+0) = 0
}

and for y ∈ D (L)

Ly = − 1

ω (x)
y′′.

Obviously, L is a densely defined closed operator in Lp (−1, 1) with a compact resolvent.
The eigenvalues of the operator L are the numbers λin = (ρin)

2 , i = 1, 2;n ∈ N. Denote
by {yin}i=1,2;n∈N the system of corresponding eigenfunctions and associated functions.

Theorem 3. System {yin}i=1,2;n∈N of eigenfunctions and associated functions of the op-
erator L is complete in space Lp (−1, 1) 1 < p < ∞.

Proof. To prove the completeness of the system {yin}i=1,2;n∈N in Lp (−1, 1) , 1 < p <
∞, let us estimate the norms of the resolvent of the operator L for sufficiently large values
of |ρ| .

Let ρ ∈ Qδ, |ρ| ≥ r0. Then, taking into account inequalities (20) in formula (18), we
obtain that the Green’s function uniformly in variables x, ξ ∈ [−1, 1] satisfies the inequality

|G (x, ξ, ρ)| ≤ Cδ

|ρ|
, ρ ∈ Qδ, |ρ| ≥ r0.

Taking into account this estimate in formula (19) for the function y (x), we obtain the
following estimate:

|y (x)| ≤ Cδ

|ρ|
∥f∥Lp

, ρ ∈ Qδ, |ρ| ≥ r0.
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Moreover, this inequality is satisfied uniformly in x ∈ [−1, 1]. As a consequence, hence we
get

∥y∥Lp
≤ Cδ

|ρ|
∥f∥Lp

, ρ ∈ Qδ, |ρ| ≥ r0.

The last inequality means that the for the resolvent R (λ) = (L− λI)−1 of the operator L
the following estimate ∥∥R (

ρ2
)∥∥ ≤ Cδ

|ρ|
, ρ ∈ Qδ, |ρ| ≥ r0, (22)

holds. Now suppose that the system of root functions of the operator L is not complete
in Lp (−1, 1). Then there exists a function g ∈ Lq (−1, 1) , q = p/ (p− 1) , orthogonal to
all root subspaces of the operator L, i.e.

⟨Qinf, g⟩ = 0, ∀f ∈ Lp (−1, 1) , i = 1, 2;n ∈ N.

Hence it follows that Q∗
ing = 0, i = 1, 2;n ∈ N ; here Qin denotes the Riesz projectors of

the operator L, i.e.

Qin =
1

2πi

∮
γin(δ)

R (λ) dλ,

where γin (δ) are the images of the circles γin (δ) = {ρ : |ρ− ρin| = δ} under the mapping
λ = ρ2. In this case it is obvious that Q∗

in, i = 1, 2;n ∈ N, are the Riesz projectors of
the adjoint operator L∗. This implies that R (λ, L∗) g is an entire function in the λ-plane.
On the other hand, according to estimate (22), the inequality

∥R (λ, L∗)∥ ≤ Cδ

|λ|
1
2

, λ ∈ Ωδ, |λ| ≥ R0, (23)

is true, where Ωδ denotes the image of the set Qδ under the mapping λ = ρ2. Then,
according to the maximum principle, inequality (23) is satisfied in the entire λ-plane and
in turn, we obtain R (λ, L∗) g → 0, |λ| → ∞. The latter, by Liouville’s theorem, the
entire function R (λ, L∗) g is constant. Then, differentiating this function and taking into
account the formula d

dλR (λ, L∗) = R (λ, L∗)2 we obtain that R (λ, L∗)2 g = 0. But, since
for λ ∈ ρ (L∗) the operator R (λ, L∗) is unique, then we obtain that g = 0. And this means
that the system {yin}i=1,2;n∈N of eigenfunctions and associated functions of the operator
L is complete in Lp(−1, 1).

Theorem is proved. ◀

Denote by {zin}i=1,2;n∈N the system of eigenfunctions and associated functions of the
adjoint operator L∗. The operator L∗ is the operator generated by the adjoint spectral
problem

z′′ + λω (x) z = 0, x ∈ (−1, 0) ∪ (0, 1)

z (−1) = z (1) = 0,

z (−0) = −α2

b
z (+0) ,

z′ (−0) = −α2

a z′ (+0) .


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Then the system {zin}i=1,2;n∈N (after appropriate normalization) is biorthogonal to the
system {yin}i=1,2;n∈N . Taking this fact into account, we obtain the following corollaries
from Theorem 3.

Corollary 1. System {yin}i=1,2;n∈N of eigenfunctions and associated functions of the
operator L is complete and minimal in Lp(−1, 1), 1 < p < ∞.

Corollary 2. System {zin}i=1,2;n∈N of eigenfunctions and associated functions of the
operator L∗ is complete and minimal in Lp(−1, 1), 1 < p < ∞.
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theorems, Hölder condition.
2010 Mathematics Subject Classifications: 26A33, 46E30, 4GE35

1. Introduction

The fact some mixed derivatives of f entering the definition of the norm of W l
p, H

l
p

and Bl
p,θ leads to the necessity of consideration of the function spaces of another type in

which the key role is played by mixed derivatives.
In this paper introduced and studied the Besov-Morrey spaces with dominant mixed

derivatives.

Slp,θ,φ,βB(Gφ)

and help of method of integral representation differential and difference-differential prop-
erties of functions from this space.

Here G ⊂ Rn, 1 ≤ p < ∞, 1 ≤ θ ≤ ∞, φ = (φ1(t1), φ2(t2), . . . , φn(tn)), φj(tj) > 0,
φ′
j(tj) > 0, (tj > 0) be continuously differentiable functions, lim

tj→+0
φj(tj) = 0, lim

tj→+∞
φj(tj) =

Kj ≤ ∞, j ∈ en = {1, 2, ..., n}. We denote the set of such vector-functions φ by Ψ.
Note that the spaces with parameters constructed and studied in C.B. Morrey’s papers

[6], and after these results were developed and generalized in the papers of V.P. Il’in [4],
Y.V.Netrusov [12], A. Mazzucato [5], V.S. Guliyev [3], A.M. Najafov [7-11] and other
mathematicians.

For any x ∈ Rn we assume

Gφ(t) (x) = G ∩ Iφ(t) (x) = G ∩
{
y : |yj − xj | <

1

2
φj(tj), j ∈ en

}
,

and let mj > 0, kj ≥ 0 are integers and mj > lj − kj > 0, lj > 0, j ∈ en.

∗Corresponding author.

http://www.cjamee.org 17 © 2013 CJAMEE All rights reserved.
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Definition 1. Denote by Slp,θ,φ,βB(Gφ) the Banach space of locally summable functions
on G with finite norm

∥f∥Slp,θ,φ,βB(Gφ)
=

∑
e⊆en


te0∫

0e

∥△me(φ(t), Gφ(t)))D
kef∥p,φ,β∏

j∈e
(φj(tj))(lj−kj)


θ∏
j∈e

dφj(tj)

φj(tj)


1
θ

, (1)

where
∥f∥p,φ,β;G = ∥f∥Lp,φ,β(G) = sup

x∈G,
tj>0 ,j∈en

(
|φ([t]1)|−β∥f∥p,Gφ(t)(x)

)
, (2)

|φ([t]1)|−β =
∏
j∈en

φj([tj ]1)
−βj , βj ∈ [0, 1], [tj ]1 = min{1, tj}, 1 ≤ θ ≤ ∞, le =

(le1, l
e
2, . . . , l

e
n), l

e
j = lj(j ∈ e), lej = 0 (j ∈ en − e = e′),

△me(φ(t))f(x) =

∏
j∈e

△mj
j (φj(tj))

 f(x),

and t0 = (t01, . . . , t0n) is a fixed positive vector, te0 = (te01, t
e
02, . . . , t

e
0n), t

e
0j = t0j (j ∈ e),

te0j = 0 (j ∈ e′), and

be∫
ae

f(x)dxe =

∏
j∈e

bj∫
aj

dxj

 f(x),

i.e., integration is carried out only with respect to the variables xj whose indices belong to
e.

The spaces Slp,θ,φ,βB (Gφ) in case φj(tj) = t
κj
j ,βj =

aj
p (j ∈ en), coincides with the

space Slp,θ,a,κB (G) introduced and studied in [11], in the case βj = 0 (j ∈ en), coin-

cides with the space Slp,θB (G) introduced and studied by A.J. Dzhabrailov [2], in the
case θ = ∞, coincides with the space Nikolskii-Morrey with dominant mixed derivatives
Slp,φ,βH (Gφ).

In the case for any tj > 0 (j ∈ en), there exists a constant C > 0 it holds the embedding

Lp,φ,β(G) ↪→ Lp(G), Slp,θ,φ,βB (Gφ) ↪→ Slp,θB (Gφ) ,

i.e.,
∥f∥p,G ≤ C∥f∥p,φ,β;G, ∥f∥Slp,θB(Gφ)

≤ C∥f∥Slp,θ,φ,βB(Gφ)
. (3)

Definition 2. [10] An open set G ⊂ Rn is said to satisfy condition of flexible φ-horn type,
if for some ω ∈ (0, 1]n, T ∈ (0,∞)n for any x ∈ G there exists a vector -function

ρ(φ(t), x) = (ρ1(φ1(t1), x), . . . , ρn(φn(tn), x)), 0 ≤ tj ≤ Tj , (j ∈ en)

with the following properties:
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1) for all j ∈ en, ρj(φj(tj), x) is absolutely continuous on [0, Tj ], |ρj(φj(tj), x)| ≤ 1 for
almost all tj ∈ [0, Tj ], j ∈ en,

2) ρj(0, x) = 0;

x+ V (x, ω) = x+
⋃

0≤tj≤Tj ,
j∈en

[ρj(φj(tj), x) + φj(tj)ωjTj ] ⊂ G.

In particular, φj = tj (j ∈ en) is the set V (x, ω) and x+V (x, ω) will be said to be a set
of flexible horn type introduced in [9], if tj = t, (j ∈ en), φ(t) = tλ (tλ = tλ1 , tλ2 , . . . , tλn)
is the set V (x, ω) and x+V (x, ω) will be said to be a set of flexible λ-horn type introduced
in [1].

Theorem 1. Let 1 ≤ p <∞, 1 ≤ θ ≤ ∞, f ∈ Slp,θB(Gφ), φ ∈ Ψ. Then one can construct
the sequence hs = hs(x) (s = 1, 2, . . .) of infinitely differentiable finite functions in Rn such
that

lim
s→∞

∥f − hs∥Slp,θB(G) = 0.

Lemma 1. Let 1 ≤ p ≤ q ≤ r ≤ ∞, 0 < ηj , tj ≤ Tj ≤ 1 (j ∈ en), ν = (ν1, . . . , νn),
νj ≥ 0 (j ∈ en) are integers, △me(φ(t))f ∈ Lp,φ,β(G) and let

µj = lj − νj − (1− βjp)

(
1

p
− 1

q

)
,

Be
η (x) =

∏
j∈e′

(φj(Tj))
−2−νj

ηe∫
0e

Le(x, t)
∏
j∈e

(φj(tj))
−νj−2

∏
j∈e

φ′
j(tj)

φj(tj)
dte (4)

Be
η,T (x) =

∏
j∈e′

(φj(Tj))
−2−νj

T e∫
ηe

Le(x, t)
∏
j∈e

(φj(tj))
−νj−2

∏
j∈e

φ′
j(tj)

φj(tj)
dte, (5)

Le(x, t) =

∫
Rn

+∞e∫
−∞e

Me

(
y

φ(te + T e′)
,
ρ(φ(te + T e), x)

φ(te + T e′)

)
×

×Je
(

U

φ(t)
,
ρ(φ(t), x)

φ(t)
,
1

2
ρ′(φ(t), x)

)
×

×△me (φ(δ)u) f(x+ y + ue)duedy. (6)

Then for any x ∈ U the following inequalities are valid

sup
x∈U

∥∥Be
η

∥∥
q,Uψ(ξ)(x)

≤ C1

∥∥∥∥∥∥
∏
j∈e

(φj(tj))
−lj △me(φ(t))f

∥∥∥∥∥∥
p,φ,β;G

×
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×
∏
j∈e′

(φj (Tj))
−νj−(1−βjp)

(
1
p
− 1
q

)
−1

∏
j∈en

(ψj ([ξj ]1))
βj

p
q

∏
j∈e

(φj (ηj))
µj (µj > 0), (7)

sup
x∈U

∥∥Be
η,T

∥∥
q,Uψ(ξ)(x)

≤ C2

∥∥∥∥∥∥
∏
j∈e

(φj(tj))
−lj △me(φ(t))f

∥∥∥∥∥∥
p,φ,β;G

×
∏
j∈e′

(φj (Tj))
−νj−(1−βjp)

(
1
p
− 1
q

)
−1

∏
j∈en

(ψj ([ξj ]1))
βj

p
q ×

×



∏
j∈e

(φj(Tj))
µj , for µj > 0∏

j∈e
ln

φj(Tj)
φj(ηj)

, for µj = 0,∏
j∈e

(φj (ηj))
µj , for µj < 0,

(8)

here Uψ(ξ) (x) =
{
x : |xj − xj | < 1

2ψj (ξj) , j ∈ en
}
, and ψ ∈ Ψ, C1 and C2 are constants

independent of f , ξ, η and T .

Proof. Applying sequentially the Minkowskii generalized inequality for any x ∈ U

∥∥Be
η

∥∥
q,Uψ(ξ)(x)

≤
∏
j∈e′

(φj(Tj))
−2−νj

ηe∫
0e

∥∥∥Le (·, te + T e
′
)∥∥∥

q,Uψ(ξ)(x)
×

×
∏
j∈e

(φj (tj))
−2−νj

∏
j∈e

φ′
j (tj)

φj (tj)
dte. (9)

From the Hölder inequality (q ≤ r) we have∥∥∥Le (·, te + T e
′
)∥∥∥

q,Uψ(ξ)(x)
≤

∥∥∥Le (·, te + T e
′
)∥∥∥

r,Uψ(ξ)(x)

∏
j∈en

(ψj (ξj))
1
q
− 1
r . (10)

Further, we will assume that there exists a function |Me(x, y)| ≤ C|M1
e (x)|, for all

y ∈ Rn. Let χ be a characteristic function of the set S (Me). Again applying the Hölder
inequality (1r +(1p −

1
r )+ (1s −

1
r ) = 1) for representing function in the form (6) in the case

1 ≤ p ≤ r ≤ ∞, s ≤ r, s ≤ r (1s = 1− 1
p +

1
r ), we get∥∥∥Le (·, te + T e

′
)∥∥∥

r,Uψ(ξ)(x)
≤

≤ sup
x∈Uψ(ξ)(x)

∫
Rn

∣∣∣∣∣∣
+∞e∫

−∞e

|Je||△mef(x+ y + ue)due

∣∣∣∣∣∣
p

χ

(
y

φ (te + T e′)

)
dy


1
p
− 1
r

×
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× sup
y∈V

 ∫
Uψ(ξ)(x)

∣∣∣∣∣∣
+∞e∫

−∞e

|Je||△mef(y + ue)|due
∣∣∣∣∣∣
p

dx


1
r

×

×

∫
Rn

∥M1
e

(
y

φ(te + T e′)

)
∥Sdy

 1
s

. (11)

For any x ∈ U we have

∫
Rn

∣∣∣∣∣∣
+∞e∫

−∞e

|Je||△mef(x+ y + ue)|due
∣∣∣∣∣∣
p

χ

(
y

φ (te + T e′)

)
dy ≤

≤
∫

(U+V )
φ(te+Te

′
)
(x)

∣∣∣∣∣∣
+∞e∫

−∞e

|Je||△mef(y + ue)|due
∣∣∣∣∣∣
p

dy ≤

≤
∫

G
φ(te+Te

′
)
(x)

∣∣∣∣∣∣
+∞e∫

−∞e

|Je||△mef(y + ue)|due
∣∣∣∣∣∣
p

dy ≤

≤
∏
j∈e

(φj (tj))
ljp

∫
G
φ(te+Te

′
)
(x)

∣∣∣∣∣∣
+∞e∫

−∞e

|Je||
∏
j∈e

(
φj (tj)

−lj △mef(y + ue)
∣∣∣ due

∣∣∣∣∣∣
p

dy ≤

≤
∏
j∈e

(φj (tj))
ljp

∥∥∥∥∥∥
+∞e∫

−∞e

|Je||
∏
j∈e

(φj (tj))
−lj △mef(y + ue)|due

∥∥∥∥∥∥
p

p,G
φ(te+Te

′
)
(x)

≤

≤
∏
j∈e

(φj (tj))
ljp

∏
j∈e

(φj (tj))
p ∥

∏
j∈e

(φj (tj))
−lj △mef∥pp,G

φ(te+Te
′
)
(x) ≤

≤ C1

∏
j∈e′

(φj (Tj))
βjp

∏
j∈e

(φj (tj))
p
∏
j∈e

(φj (tj))
ljp

∏
j∈e

(φj (tj))
βjp

×∥
∏
j∈e

(φj (tj))
−lj △me (φ(t)) f∥p,φ,β ·

∏
j∈e

(φj (tj))
βjp . (12)

For y ∈ V (φj (tj) ≤ Ψj (tj) , j ∈ en)

∫
Uψ(ξ)

∣∣∣∣∣∣
+∞e∫

−∞e

|Je||△mef(x+ y + ue)|due
∣∣∣∣∣∣
p

dx ≤



22 N.R. Rustamova

≤
∫

Gφ(ξ)

∣∣∣∣∣∣
+∞e∫

−∞e

|Je||△me(φ(δ)u)f(x+ ue)|due
∣∣∣∣∣∣
p

dx ≤

≤
∏
j∈e

(φj(tj))
ljp

∫
Gφ(ξ)

∣∣∣∣∣∣
+∞e∫

−∞e

|Je||
∏
j∈e

(φj(tj))
−lj△me(φ(δ)u)f(x+ ue)|due

∣∣∣∣∣∣
p

dx ≤

≤
∏
j∈e

(φj(tj))
ljp∥

∏
j∈e

(φj(tj))
−lj△me(φ(t))f∥pp,GΨ(ξ)(x)

≤

≤ C2

∏
j∈e

(φj(tj))
plj

∏
j∈e

(φj(tj))
p
∏
j∈en

(φj([ξj ]1))
βjp∥

∏
j∈e

(φj(tj))
−lj △me(φ(t))f∥pp,GΨ(ξ)(x)

≤

≤ C1

∏
j∈e

(φj(tj))
plj

∏
j∈e

(φj(tj))
p
∏
j∈en

(Ψj([ξj ]1))
βjp∥

∏
j∈e

(φj(tj))
−lj △me(φ(t))f∥pp,GΨ(ξ)(x)

(13)
and ∫

Rn

∣∣∣∣M1
e

(
y

φ (te + T e′)

)∣∣∣∣s dy =
∥∥M1

e

∥∥
s

∏
j∈e

φj (tj)
∏
j∈e′

φj (Tj) . (14)

From inequalities (10)-(14) it follows that

∥Le∥q,Uψ(ξ)(x)
≤ C1

∥∥∥∥∥∥
∏
j∈e

(φj(tj))
−lj△me(φ(t))f

∥∥∥∥∥∥
p,φ,β

×

×
∏
j∈e′

(φj (Tj))
1−(1−βjp)

(
1
p
− 1
q

)∏
j∈e

(φj (tj))
1−(1−βjp)

(
1
p
− 1
q

)
+lj ×

×
∏
j∈en

(ψj ([ξj ]1))

(
1
q
− 1
r

) ∏
j∈en

(ψj ([ξj ]1))
βjp

q . (15)

Substituting inequalities in (9) for (r = q), for µj > 0 (j ∈ e) we obtain (7). Inequality
(8) is proved in the same way.

Corollary 1. From inequality (7) for β1j =
βjp
q , j ∈ en it follows that:

∥∥Be
η

∥∥
q,ψ,β1;U

≤ C2

∥∥∥∥∥∥
∏
j∈e

(φj(tj))
−lj△me(φ(t))f

∥∥∥∥∥∥
p,φ,β;G

, (16)

C2 is the constant independent of f .
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2. Main results

We prove two theorems on the properties of functions from the space Slp,θ,φ,βB (Gφ).

Theorem 2. Let G ⊂ Rn satisfy the condition of flexible φ-horn [10], 1 ≤ p ≤ q ≤ ∞ and
let ν = (ν1, ν2, .., νn), νj ≥ 0 be entire j ∈ en, µj > 0 (j ∈ en), and let f ∈ Slp,θ,φ,βB(Gφ).

Then the following embedding holds

Dν : Slp,θ1,φ,βB(Gφ) ↪→ Lq,ψ,β1(G)

i.e., for f ∈ Slp,θ,φ,βB (Gφ) there exists a generalized derivatives Dνf and the following
inequalities are true

∥Dνf∥q,G ≤

≤ C1

∑
e⊆en

∏
j∈en

(φj(Tj))
se,j


te0∫

0e

∥△me
(
φ(t), Gφ(t)

)
Dkef∥p,α,β∏

j∈e
(φj(tj))

lj−kj


θ∏
j∈e

dφj(tj)

φj(tj)


1
θ

, (17)

∥Dνf∥q,ψ1,β;G ≤ C2 ∥f∥Slp,θ,φ,βB(Gφ)
, p ≤ q <∞. (18)

In particular, if

µj,0 = lj − νj − (1− βjp)
1

p
> 0, (j ∈ en),

then Dνf (x) is continuous in the domain G, and

sup
x∈G

|Dνf(x)| ≤

≤ C2
∑
e⊆en

∏
j∈en

(φj(Tj))
se,j,0


te0∫

0e

∥△me
(
φ(t), Gφ(t)

)
Dkef∥p,α,β∏

j∈e
(φj(tj))

lj−kj


θ∏
j∈e

dφj(tj)

φj(tj)


1
θ

, (19)

where

se,j,0 =

{
µj,0, j ∈ e,

−νj − (1− βjp)
1
p , j ∈ e′

0 ≤ Tj ≤ min {1, toj} (j ∈ en), and C1, C2 are the constants indepent of f , C1 independent
of T = (T1, T2, . . . , Tn).

Proof. Under the conditions of our theorem, there exist generalized derivatives Dνf .
Indeed, if µj > 0, {j ∈ en}, then for f ∈ Slp,θ,φ,βB(Gφ) → Slp,θB(Gφ) there exist general-
ized derivatives Dνf ∈ Lp(G), and for almost each point x ∈ G the integral representation
[13]

Dνf(x) =
∑
e⊆en

∏
j∈e′

(φj(Tj))
νj−2

T e∫
0e

+∞e∫
−∞e

∫
Rn

∏
j∈e′

(φj(Tj))
−νj−2
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×M (ν)
e

 y

φ (te + T e′)
,
ρ
(
φ
(
te + T e

′
, x

))
φ (te + T e′)

 Je

(
u

φ(t)
,
ρ(φ(t), x)

φ(t)
,
1

2
ρ′(φ(t), x)

)
×

×△me(φ(δ)u)f(x+ y + ue)duedydt (20)

with the kernels is valid and 0 ≤ Tj ≤ min {1, tj,0} , j ∈ en,Me(·, y) ∈ C∞
0 (Rn), ξe(·, y, z) ∈

C∞
0 (R|e|), where R|e| = Re1 ×Re2 ×Ren, where R

e
j = R = (−∞,+∞), j ∈ e; Rej = 1 j ∈ e′.

Based on Minkowski inequality we have

∥Dνf∥q,G ≤
∑
e⊆en

∥Be
T ∥q,G . (21)

By means of inequalities (7) for U = G, ηj = Tj , (j ∈ e), p ≤ θ we get inequality (17).
By means are inequalities (8) for ηj = Tj , (j ∈ e), and (6), p ≤ θ we get inequality

(18).
Now let conditions µj,0 = µj(q = ∞) > 0, (j ∈ en), then based around identity (20),

for q = ∞, p ≤ θ we get ∥∥∥Dνf − f
(ν)
φ(T )

∥∥∥
∞,G

≤

≤ C
∑

∅̸=e⊆en

∏
j∈e

(φj(Tj))
se,j,0


te0∫

0e

∥△me (φ(t))Dkef∥p,φ,β∏
j∈e

(φj(tj))
lj−kj


θ∏
j∈e

dφj(tj)

φj(tj)


1
θ

.

As Tj → 0, j ∈ e, then
∥∥∥Dνf − f

(ν)
φ(T )

∥∥∥
∞,G

→ 0. Since f
(ν)
φ(T ) (x) is continuous on G the

convergence on L∞ (G) coincides with the uniform convergence. Then the limit function
Dνf(x) is continuous on G. Theorem 2 is proved.

Let γ be an n-dimensional vector.

Theorem 3. Let all the conditions of Theorem 2 be satisfied. Then for µj > 0 (j ∈ en)
the generalized derivatives Dνf satisfies on G the generalized Hölder condition, i.e. the
following inequality is valid:

∥∆(γ,G)Dνf∥q,G ≤ C ∥f∥Slp,φ,βB(Gφ)

∏
j∈en

(σj(|γj |)), (22)

where

σj(|γj |) =

{
max

{(
φj(|γ∗j |)

)µj
,
(
φj(|γ∗j |)

)µj−1
}
, for j ∈ e,

(φj(Tj))
µj−lj , for j ∈ e′,

If µj,0 > 0 (j ∈ en), then

sup
x∈G

|∆(γ,G)Dνf(x)| ≤ C∥f∥Slp,φ,βB(G)

∏
j∈en

(σj,0(|γj |)). (23)

where σj,0 satisfies the same conditions as σj, but with µj replaced µj,0.
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Proof. By Lemma 8.6 from [1] there exists a domain Gω ⊂ G (ω = (ω1, ω2, . . . , ωn) ,
ωj = λjρ(x), λj > 0 (j ∈ en), ρ(x) = dist (x, ∂G) , x ∈ G).

Suppose that |γj | < ωj , j ∈ en, then for any x ∈ Gω the segment connecting the points
x, x+ γ is contained in G. Consequently, for all the points of this segment, identity (20)
with the same kernels are valid. After same transformations, from (20) we get

|∆(γ,G)Dνf (x)| ≤ C1

∑
e⊆en

∏
j∈e′

(φj (Tj))
−νj−2×

|γe1 |∫
0

· · ·
|γen|∫
0

∏
j∈e

(φj (tj))
−νj−2

∏
j∈e

φ′
j(tj)

φj(tj)
×

+∞e∫
−∞e

∫
Rn

∣∣∣∣∣∣M (ν)
e

 y

φ (te + T e′)
,
ρ
(
φ
(
te + T e

′
, x

))
φ (te + T e′)

 ×

×Je
(

u

φ(t)
,
ρ (φ (t) , x)

φ (t)
,
1

2
ρ′ (φ (t) , x)

)∣∣∣∣×∣∣∆(γ,G)△me(φ(δ)u)f(x+ y + ue)
∣∣ duedydt+ ∏

j∈e′
(φj (Tj))

−νj−3×

∏
j∈en

|γj |
T e1∫

|γe1 |

· · ·
T en∫

|γen|

∏
j∈e

(φj (tj))
−νj−3

∏
j∈e

φ′
j(tj)

φj(tj)
×

+∞e∫
−∞e

∫
Rn

∣∣∣∣∣∣M (ν)
e

 y

φ (te + T e′)
,
ρ
(
φ
(
te + T e

′
, x

))
φ (te + T e′)

∣∣∣∣∣∣×
×Je

(
u

φ(t)
,
ρ (φ (t) , x)

φ (t)
,
1

2
ρ′ (φ (t) , x)

)∣∣∣∣×
1∫

0

· · ·
1∫

0

∣∣△me(φ(δ)u)f(x+ y + ue + γv)
∣∣ dvdyduedt =

= C1

∑
e⊆en

(
B1
e (x, γ) +B2

e (x, γ)
)
, (24)

where |γej | = |γ| (j ∈ e), 0 < Tj ≤ t0,j j ∈ en. We also assume that |γj | < Tj(j ∈ en), and
consequently, |γj | < min (ωj , Tj)(j ∈ en). If x ∈ G \Gω, then

∆ (γ,G)Dνf (x) = 0.
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Based around (24) we have

∥∆(γ,G)Dνf∥q,G ≤ C1
∑
e⊆en

(∥∥B1
e (·, γ)

∥∥
q,Gω

+

+
∥∥B2

e (·, γ)
∥∥
q,Gω

)
(25)

By means of inequality (7), for U = G, ηj = |γj | (j ∈ e) we have

∥∥B1
e (·, γ)

∥∥
q,Gω

≤ C1

∥∥∥∥∥∥
∏
j∈e

(φj(tj))
−lj△me(φ(t))f

∥∥∥∥∥∥
p,φ,β;G

∏
j∈e′

(φj(Tj))
µj−lj . (26)

and by means of inequality (8) for U = G, ηj = |γj | (j ∈ en) we have

∥∥B2
e (·, γ)

∥∥
q,Gω

≤ C2

∥∥∥∥∥∥
∏
j∈e

(φj(tj))
−lj△me(φ(t))f

∥∥∥∥∥∥
p,φ,β;G

∏
j∈e′

φj(Tj)
µj−lj×

×
∏
j∈e

(φj(|γj |))µj−1. (27)

Now suppose that |γj | ≥ min (ωj , Tj) , (j ∈ en), then

∥∆(γ,G)Dνf∥q,G ≤ 2 ∥Dνf∥q,G ≤ C (ω, T ) ∥Dνf∥
∏
j∈en

(σj(|γj |)).

Estimating for ∥Dνf∥q,G by means of inequality (17), in this case, we again get the required
inequality. Theorem 3 is proved.
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Basic Property of Eigenfunctions of the Eigenvalue Prob-
lem for Fourth-Order Ordinary Differential Equations with
a Spectral Parameter Contained in ll Boundary Condi-
tions

Ayna E. Fleydanli

Abstract. This paper considers the spectral problem for fourth-order ordinary differential equa-
tions, all boundary conditions of which contain a spectral parameter. This problem describes small
bending vibrations of an Euler-Bernoulli beam in the cross sections of which a longitudinal force
acts, at both ends of which follower forces act, and also loads are attached to these ends using
weightless rods, which are kept in balance by elastic springs. The basis properties of the system
of eigenfunctions of the problem under consideration in the space Lp, 1 < p <∞, are studied.

Key Words and Phrases: Euler-Bernoulli beam, spectral parameter, eigenvalue, eigenfunction,
basis property
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74H45

1. Introduction

We consider the following eigenvalue problem

ℓ(y)(x) ≡ y(4)(x)− (q(x)y′(x))′ = λy(x), 0 < x < 1, (1.1)

y′′(0)− aλy′(0) = 0, (1.2)

Ty(0)− bλy(0) = 0, (1.3)

y′′(1)− cλy′(1) = 0, (1.4)

Ty(1)− dλy(1) = 0, (1.5)

where λ ∈ C is a spectral parameter, Ty ≡ y′′′ − qy′, q is a positive absolutely continuous
function on [0, 1], a, b, c, d are real constants such that a > 0, b > 0, c > 0 and d < 0.

http://www.cjamee.org 28 © 2013 CJAMEE All rights reserved.
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Note that since the second half of the last century, boundary value problems for the
Sturm-Liouville equations of the second and fourth orders with boundary conditions de-
pending on the spectral parameter have been intensively studied (see [1-10, 13, 16-25]).
This is due to the fact that these problems describe small longitudinal, torsional and
transverse vibrations of a beam, at the ends of which either loads or inertial loads are con-
centrated, or tracking forces act (see [14-16, 18, 24]). For example, the spectral problem
(1.1)-(1.5) we are studying arises when describing small bending vibrations of an elastic
homogeneous cantilever beam, in the cross sections of which a longitudinal force acts,
loads are attached to the ends using weightless rods, which are kept in balance by elastic
springs, as well as both of them are subject to tracking forces [14]. It should be noted
that to study this problem of mechanics, we need to study the convergence of expansions
in the system of root functions of problem (1.1)-(1.5) in various function spaces.

The spectral properties of second-order Sturm-Liouville problems with a spectral pa-
rameter in boundary conditions and fourth-order Sturm-Liouville problems with a spectral
parameter in boundary conditions (but not in all boundary conditions) were studied in
works [1-10, 13, 16-25] (see also their bibliography).

The purpose of this article is to study the spectral properties, including the basic
properties of the system of root functions in the space Lp, 1 < p < ∞ of the spectral
problem (1.1)-(1.5).

2. Some properties of solutions to the initial boundary value problem
(1.1), (1.3)-(1.5)

In this section we consider the initial boundary value problem (1.1), (1.3)-(1.5). For
the study of this problem we introduce the following boundary condition

y′(0) cosα− y′′(0) sinα = 0, α ∈ [0, π/2]. (2.1)

Following the corresponding reasoning carried out in [8], we can prove the following
oscillatory theorem for the eigenvalue problem (1.1), (2.1), (1.3)-(1.5).

Theorem 2.1. For each α the spectrum of problem (1.1), (2.1), (1.3)-(1.5) consists
real and simple eigenvalues forming an infinitely increasing sequence {λk(α)}∞k=1 such that
λ1(α) = 0 and λk(α) > 0 for k ≥ 2. {λk(α)}∞k=1 such that λ1(α) = 0 and λk(α) > 0 for
k ≥ 2. Moreover, for each k ∈ N the eigenfunction yk, α(x) corresponding to the eigenvalue
λk, α(x) and its derivative has the following oscillatory property:

(i) the eigenfunction yk, α(x)for k ≥ 3 has either k − 2 or k − 1 simple zeros in (0, 1),
while the function y1, α(x) has no zeros and y2, α(x) has one simple zero in (0, 1);

(ii) the function y′k,α(x) for k ≥ 2 has exactly k− 2 simple zeros in the interval (0, 1).

By the maximum-minimum property of eigenvalues (see [15, Ch. 6, § 1, p. 405]), it
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follows from Theorem 2.1 that the following relation holds:

λ1 (π/2) = λ1(α) = λ1(0) = 0 < λ2 (π/2) < λ2(α) < λ2(0) < λ3 (π/2) <

λ3(α) < λ3(0) < . . . .
(2.2)

Theorem 2.2. For each fixed λ ∈ C\{0} there is a nontrivial solution y(x, λ), unique
up to a constant factor, of problem (1.1), (1.3)-(1.5). The function y(x, λ) for each fixed
x ∈ [0, l] is an entire function of parameter λ, which has the following representation:

y(x, λ) = −D2(λ) {ψ1(x, λ) + dλψ4(x, λ)}+D1(λ) {ψ2(x, λ) + cλψ3(x, λ)} , (2.3)

where φk(x, λ), k = 1, 4, is solutions of equation (1.1) satisfying the Cauchy conditions
(normalized for x = 1)

ψ
(s−1)
k (1, λ) = δks, s = 1, 2, 3, Tψk(1, λ) = δk4, (2.4)

δks is the Kronecker delta, and

D1(λ) = Tψ1(0, λ) + dλTψ4(0, λ)− bλ {ψ1(0, λ) + dλψ4(0, λ)} ,

and
D2(λ) = Tψ2(0, λ) + cλTψ3(0, λ)− bλ {ψ2(0, λ) + cλψ3(0, λ)} ,

.
The proof of this theorem is similar to the proof of Theorem 2.2 of [8] with regard to

Theorem 2.1.
Remark 2.1. Let y(x, λ), λ ∈ R\{0}, be the nontrivial solution of the spectral problem

(1.1), (1.3)-(1.5). Then this function can be normalized using the condition

y′(1, λ) = 1, (2.5)

if λ > 0, and using the condition
y′(0, λ) = 1, (2.6)

if λ < 0, in view of [12, Theorems 2.1 and 2.2].
By the second part of [12, Lemma 2.1] we get D1(λ) < 0. Therefore, by Remark 2.1

and formula (2.3), without loss of generality, we can represent the function y(x, λ) for
λ > 0 in the form

y(x, λ) = −D2(λ)
D1(λ)

{ψ1(x, λ) + dλψ4(x, λ)}+ ψ2(x, λ) + cλψ3(x, λ). (2.7)

Remark 2.2. If λ = 0, then according to relations (2.4) problem (1.1), (1.3)-(1.5) has
two linearly independent solutions y1(x, 0) = ψ1(x, 0) = 1 and y2(x, 0) = ψ2(x, 0), x ∈
[ 0, 1].

Remark 2.3. By [8, formulas (2.10) and (2.11)] (with replacement x = 0 by x = 1)
from (2.4) for y(x, λ) we obtain the following representation

y(x, λ) = A(λ) {ψ1(x, λ) + dλψ4(x, λ)}+ ψ2(x, λ) + cλψ3(x, λ), (2.8)
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where

A(λ) = −

1∫
0

ψ2(t, λ) dt + cλ
1∫
0

ψ3(t, λ) dt + b {ψ2(0, λ) + cλψ3(0, λ)}

1∫
0

ψ1(t, λ) dt − d + dλ
1∫
0

φ4(t, λ) dt + b {ψ1(0, λ) + dλψ4(0, λ)}
. (2.9)

Then passing to the limit as λ→ 0 in (2.8) we get

lim
λ→0

y(x, λ) = ψ2(x, 0)−

1∫
0

ψ2(t, 0) dt+ bψ2(0, 0)

1 + b− d
.

Therefore, if we put

y(x, 0) = ψ2(x, 0)−

1∫
0

ψ2(t, 0) dt+ bψ2(0, 0)

1 + b− d
. (2.10)

then the solution y(x, λ) to problem (1.1), (1.3)-(1.5) will be defined everywhere on [0, 1]×
C.

We consider the function

G(λ) =
y′′(0, λ)

y′(0, λ)

which is well defined on

M ≡ (C\R) ∪ (−∞, λ2(0)) ∪

( ∞⋃
k=3

(λk−1(0), λk(0))

)
.

It follows from Theorems 2.1 and 2.2 that G(λ) is a meromorphic function of finite order
and the eigenvalues λk (π/2) and λk(0), k = 2, 3, . . . , of problem (1.1), (2.1), (1.3)-(1.5)
for α = π/2 and α = 0 are zeros and poles of this function, respectively.

Lemma 2.1 One has the following relations:

dG(λ)

dλ
=

1

y′2(0, λ)


1∫

0

y2(x, λ) dx+ by2(0, λ) + cy′2(1, λ)− dy2(1, λ)

 , λ ∈ M. (2.11)

lim
λ→−∞

G(λ) = −∞ (2.12)

The proof of formulas (2.11) and (2.12) is similar to that of [8, formula (2.19)] and [6,
formula (3.8)], respectively.

Remark 2.4 By conditions b > 0, c > 0 and d < 0 it follows from (2.11) that

dG(λ)

dλ
> 0 for λ ∈ M. (2.13)
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Remark 2.5 By (2.3), it follows from the second part of [12, Lemma 2.1] that

ψ2(x, λ) < 0, ψ′
2(x, λ) > 0, ψ′′

2(x, λ) < 0 and Tψ2(x, λ) > 0 for x ∈ [0, 1) and λ > 0.

Hence we have

ψ′′
2(x, 0) ≤ 0 and Tψ2(x, 0) ≥ 0 for x ∈ [0, 1]. (2.14)

In view of (2.14) we get

ψ′′′
2 (x, 0) ≥ q(0)ψ′(x, 0) > 0 for x ∈ [0, 1].

By the relation ψ′′
2(1, 0) = 0 it follows from last relation that ψ′′

2(0, 0) < 0, and conse-
quently, we have the following relation

G(0) =
ψ′′
2(0, 0)

ψ′
2(0, 0)

< 0. (2.15)

3. The properties of eigenvalues of the eigenvalue problem (1.1)-(1.5)

Lemma 3.1 The non-zero eigenvalues of problem (1.1)-(1.5) are real and simple.

Proof. It is obvious that the non-zero eigenvalues of problem (1.1)-(1.5) are the roots
of the equation

y′′(0, λ)− aλy′(0, λ) = 0. (3.1)

If λ is a non-real eigenvalue of problem (1.1)-(1.5), then, due to the realness of the
coefficients q, a, b, c and d from (1.1)-(1.5) it follows that λ is also its eigenvalue. Note that
in this case to the eigenvalue λ corresponds the eigenfunction y(x, λ) = y(x, λ), therefore
(3.1) also holds for λ.

By (1.1) for any λ, µ ∈ C we have

(Ty(x, µ))′ y(x, λ)− (Ty(x, λ))′ y(x, µ) = (µ− λ)y(x, µ)y(x, λ). (3.2)

Integrating equality (3.2) from 0 to 1, using the formula integration by parts to this
resulting equality, and taking into account boundary conditions (1.3)-(1.5) we get

y′′(0, µ) y′(0, λ)− y′′(0, λ) y′(0, µ) = (µ− λ)

{
1∫
0

y(x, µ) y(x, λ)dx+

by(0, µ) y(0, λ) + cy′(1, µ) y′(1, λ)− dy(1, µ) y(1, λ)} .

(3.3)

Setting µ = λ in (3.3), using (3.1) and the relation λ ̸= λ we obtain

1∫
0

| y(x, λ)|2dx − a|y′(0, λ)|2 + b |y(0, λ)|2 + c |y′(1, λ)|2 − d |y(1, λ)|2 = 0. (3.4)
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On the other hand multiplying (1.1) by y(x, λ), integrating resulting equality from 0
to 1, using the formula integration by parts, and taking into account boundary conditions
(1.2)-(1.5) we get

1∫
0

{
| |y′′(x, λ)|2 + q(x)|y′(x, λ)|2

}
dx =

λ

{
1∫
0

| y(x, λ)|2dx − a|y′(0, λ)|2 + b |y(0, λ)|2 + c |y′(1, λ)|2 − d |y(1, λ)|2
}
,

(3.5)

which, by (3.4), implies that

1∫
0

{
| |y′′(x, λ)|2 + q(x)|y′(x, λ)|2

}
dx = 0.

Since q is a positive continuous function on [0, 1] it follows from last relation that y′(x, λ) ≡
0, which contradicts equality (1.1). The proof of this lemma is complete.

Remark 3.1 Note that the function on the left side of the equation (3.1) is entire and,
by Lemma 3.1, does not have zero values for non-real λ. Hence, this function does not
vanish identically. Consequently, the zeros of this function form a countable set without
a finite limit point.

Lemma 3.2 The non-zero eigenvalues of problem (1.1)-(1.5) are simple.
Proof. If λ ̸= 0 is an eigenvalue of (1.1)-(1.5) such that y′(0, λ) = 0, then it follows

from (3.1) that y′′(0, λ) = 0 in contradiction with relation (2.2). Hence by (3.1) non-zero
eigenvalues of problem (1.1)-(1.5) are the roots of the equation

G(λ) = aλ. (3.6)

Let λ̃ ̸= 0 be the double eigenvalue of problem (1.1)-(1.5). Then we have

G(λ̃) = aλ̃ and G′(λ̃) = a. (3.7)

By the second relation on (3.7) from (2.11) we obtain

1∫
0

y2(x, λ̃)dx − ay′2(0, λ̃) + b y2(0, λ̃) + c y′2(1, λ̃)− d y2(1, λ̃) = 0. (3.8)

Since λ̃ is real by (3.8) it follows from (3.5) that

1∫
0

{
y′′2(x, λ̃) + q(x)y′2(x, λ̃)

}
dx = 0. (3.9)

which implies that y′(x, λ̃) ≡ 0, in contradiction with equality (1.1). The proof of this
lemma is complete.
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Remark 3.2 For λ = 0, the general solution to problem (1.1), (1.3)-(1.5) has the form

v(x) = τ1 + τ2ψ2(x, 0), x ∈ [ 0, 1].

Then it follows from (3.1) that τ2ψ
′′
2(0, 0) = 0. Hence by Remark 2.5 we have ψ′′

2(0, 0) ̸=
0, and consequently, τ2 = 0. Therefore, λ = 0 is a simple eigenvalue of the spectral
problem (1.1)-(1.5) and without loss of generality we can assume that this eigenvalue has
an eigenfunction v(x) ≡ 1.

Lemma 3.3 In each of the intervals (−∞, 0), (0, λ2(0), (λk−1(0), λk(0)), k = 3, 4, . . . ,
equation (3.6) cannot have more than one solution.

Proof. Let λ∗ ∈ (−∞, 0) be a solution of problem (3.6). Then by Lemma 3.2 we have
G′(λ)− a ̸= 0. Since λ∗ ∈ (−∞, 0) it follows from (3.5) (with λ̃ replaced by λ∗) that

1∫
0

y2(x, λ∗)dx − ay′2(0, λ∗) + b y2(0, λ∗) + c y′2(1, λ∗)2 − d y2(1, λ∗) < 0. (3.10)

and consequently, G′(λ∗) − a < 0. Therefore, the function G(λ) − aλ except λ∗ cannot
have another solution in the interval (−∞, 0).

The remaining cases are considered similarly. The proof of this lemma is complete.
Theorem 3.1 The eigenvalues of problem (1.1)-(1.5) form an infinitely increasing

sequence {λk}∞k=1 such that

λ1 ∈ (−∞, 0), λ2 = 0, λ3 ∈ (λ2(π/2), λ2(0)), ... , λk ∈ (λk−1(π/2), λk−1(0)), ... . (3.11)

Proof. Following the corresponding reasoning carried out in the proof of Lemma 3.3
of [7], we can verify that for the function G(λ) the following representation holds

G(λ) = G(0) +
∞∑
k=2

ckλ

λk(0)(λ− λk(0))
, λ ∈ M, (3.12)

where ck = res
λ=λk(0)

G(λ) < 0, k = 2, 3, . . . . Hence it follows from (3.12) that

G′′(λ) = 2

∞∑
k=2

ck
(λ− λk(0))3

, λ ∈ M. (3.13)

By (3.13) we have G′′(λ) > 0 for λ ∈ (−∞, λ2(0)), i.e. the function G(λ) is convex on
(−∞, λ2(0)).

In view of Lemma 2.1 and representation (3.12) we get the following relations:

lim
λ→λk(0)− 0

G(λ) = +∞, lim
λ→λk(0)+ 0

G(λ) = −∞, k = 2, 3, . . . . (3.14)

Since the function G(λ) is increasing (see Remark 2.4) and convex in the interval
(−∞, λ2(0)) and G(0) < 0, and the function aλ is increasing in the same interval, the
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straight line aλ intersects the graph of the function G(λ) in the interval (−∞, λ2(0)) at
two points, one of which lies in (−∞, 0), and the other lies in the interval (λ2(π/2), λ2(0)).
Thus, by Remark 3.2, problem (1.1)-(1.5) in the interval (−∞, λ2(0)) has three simple
eigenvalues λ1, λ2 and λ3 such that

λ1 ∈ (−∞, 0), λ2 = 0 and λ3 ∈ (λ2(π/2), λ2(0)).

Next, by relations (2.11), (3.14) and Lemma 3.3, for each k ∈ N, k ≥ 3, the straight
line aλ intersects the graph of the functionG(λ) in the interval (λk−1(0), λk(0)) at one point
which lies in (λk(π/2), λk(0)). Therefore, problem (1.1)-(1.5) in the interval (λk−1(0), λk(0)),
k = 3, 4, . . . , has one simple eigenvalues λk+1 such that

λk+1 ∈ (λk(π/2), λk(0)).

The proof of this theorem is complete.
Theorem 3.1 For the eigenvalues and eigenfunctions of problem the following asymp-

totic formulas hold:
4
√
λk = (k − 7/2)π +O (1/k) , (3.15)

yk(x) = − c
√
λk
2 {sin (k − 7/2)π(x− 1) + cos (k − 7/2)π(x− 1)+

(−1)ke− (k−7/2)πx − e(k−7/2)π(x−1) +O (1/k)
}
,

(3.16)

where relation (3.16) holds uniformly for x ∈ [ 0, 1].
The proof of this theorem is similar to that of [21, Theorem 3.1] with the use of [8,

Theorem 3.2] and (3.11).

4. Operator interpretation of the eigenvalue problem (1.1)-(1.5)

It is known (see, for example, [6, 8]) that the spectral problem (1.1)-(1.5) reduces to
the eigenvalue problem for the linear operator L in the Hilbert space H = L2(0, 1)⊕ C4,
equipped with scalar product

(ŷ, v̂)H = ({y,m, n, ϱ, σ}, {v, s, t, ς, τ})H =

1∫
0

y(x) v(x) dx+ | a|−1ms̄ + | b|−1nt̄+ | c|−1ϱσ̄ + | d|−1ςτ̄ ,

(4.1)

where operator L define by

Lŷ = L{y,m, n, τ, σ} = {ℓ(y), y′′(0), T y(0), y′′(1), T y(1)}

on the domain

D(L) = {{y (x), m, n} ∈ H : y ∈W 4
2 (0, 1), ℓ(y) ∈ L2(0, 1),

m = ay′(0), n = by(0), τ = cy′(1), σ = dy(1)}.
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which is dense everywhere in H. Then problem (1.1)-(1.5) is equivalent to the spectral
problem

Lŷ = λŷ, ŷ ∈ D(L),

i.e., the eigenvalues λk, k ∈ N, of problem (1.1)-(1.5) and the operator L coincide and
between the eigenvectors, there is a one-to-one correspondence

yk(x) ↔ ŷk = {yk(x), mk, nk, τk, σk}, mk = ay′k(0),

nk = byk (0), ϱk = cy′k(1), σk = dyk (1), k ∈ N.

If a < 0, then L is a positive, self-adjoint and discrete operator in H, and consequently,
the system of eigenvectors {yk(x),mk, nk, ϱk, σk}∞k=1 of this operator forms an orthogonal
basis in H.

If a > 0, then L is a closed (nonself-adjoint) and discrete operator in H.
Let J be the linear operator defined in H by

J{y,m, n, τ, σ} = {y,−m,n, τ, σ}

Note that J is a unitary and symmetric operator in H spectrum of which consists of two
eigenvalues: − 1 with multiplicity 1 and +1 with infinite multiplicity (see [13, Lemma
2.1]). Hence this operator generates the Pontryagin space Π1 = L2(0, 1) ⊕ C4 equipped
with inner product (or more precisely J-metric) [11]

(ŷ, v̂)Π1 = (ŷ, Jv̂)H = ({y,m, n, ϱ, σ}, {v, s, t, ς, τ})Π1 =

1∫
0

y(x) v(x) dx− a−1ms̄ + b−1nt̄+ c−1ϱσ̄ − d−1ςτ̄ .

(4.2)

Theorem 4.1 L is a J-self-adjoint operator in Π1.
The proof of this Theorem is similar to that of [13, Theorem 2.2] with the use of [11,

Propostions 1o and 2o].
Theorem 4.2 If L is the adjoint operator of L in H, then L = JLJ . Moreover,

the system of eigenvectors {ŷk}∞k=1, ŷk = {yk,mk, nk, ϱk, σk}, of the operator L forms an
unconditional basis in H.

The first statement of this theorem follows from [11, § 3, Propostion 5] and the second
statement follows from [11, § 4, Theorem 4.2].

By Theorem 3.1 we get
Lŷk = λkŷk, k ∈ N. (4.3)

Let {v̂∗k}∞k=1, v̂
∗
k = {vk, sk, tk, ςk, τk}, be the system of eigenvectors of operator L∗.

Then, view of Theorem 3.1 and (4.3), we have

L∗v̂k = λkv̂k, k ∈ N. (4.4)

On the base of first part of Theorem 4.2 it follows from (4.3) and (4.4) that

v̂∗k = Jŷk, k ∈ N. (4.5)
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By (4.1), (4.2), (4.5) and Theorem 4.1 for any k, l ∈ N, k ̸= l, we get

(ŷk, v̂l)H = (ŷk, ŷl)Π1 = 0. (4.6)

By Lemma 3.2 and Remark 3.2 we have G′(λk)− a ̸= 0 which, by (2.1), implies that

(ŷk, v̂k)H = (ŷk, ŷk)Π1 =

1∫
0

y2k(x)dx − ay′2k (0) + b y2k(0) + c y′2k (1)
2 − d y2k(1) ̸= 0. (4.7)

Theorem 4.3 Let δk = (ŷk, ŷk)Π1. Then each element v̂k = {vk, sk, tk, ςk, τk}, k ∈ N,
of the system {v̂k}∞k=1 adjoint to the system {ŷk}∞k=1 is defined as follows:

v̂k = δ−1
k ŷk. (4.8)

The proof of this theorem follows from (4.6) and (4.7).

5. Basis property of subsystems of the system of eigenfunctions of the
spectral problem (1.1)-(1.5)

Let i, j, r and l be different arbitrary fixed natural numbers and

∆i, j, r, l =

∣∣∣∣∣∣∣∣
si ti ςi τi
sj tj ςj τj
sr tr ςr τr
sl tl ςl τl

∣∣∣∣∣∣∣∣ . (5.1)

Theorem 4.3 If ∆i, j, r, l ̸= 0, then the system {yk(x)}∞k=1, k ̸= i, j, r, l is a basis in
Lp(0, 1), 1 < p < ∞ (and even an unconditional basis for p = 2). If ∆i, j, r, l = 0, then the
system {yk(x)}∞k=1, k ̸= i, j, r, l is neither complete nor minimal in Lp(0, 1), 1 < p <∞.

The proof of this theorem is similar to that of [5, Theorem 4.1] with the use of (3.15)
and (3.16).

By (4.8) from (5.1) we obtain

∆i, j, r, l = δ−1
i δ−1

j δ−1
r δ−1

l ∆̃i, j, r, l, (5.2)

where

∆̃i, j, r, l =

∣∣∣∣∣∣∣∣
y′i(0) yi(0) y′i(1) yi(1)
y′j(0) yj(0) y′j(1) yj(1)

y′r(0) yr(0) y′r(1) yr(1)
y′l(0) yl(0) y′l(1) yl(1)

∣∣∣∣∣∣∣∣ .
Since δk ̸= 0 for any k ∈ N it follows from (5.1) and (5.2) that

∆i, j, r, l ̸= 0 ⇐⇒ ∆̃i, j, r, l ̸= 0. (5.3)
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By refining the asymptotic formulas for eigenvalues and eigenfunctions of problem
(1.1)-(1.5) and applying Theorems 5.1, it is possible to establish sufficient conditions for
the system {yk(x)}∞k=1, k ̸= i, j, r, l to form a basis in Lp(0, 1), 1 < p <∞.

Theorem 4.3 Let i = 2 and j, r, l, j < r < l, be arbitrary sufficiently large fixed natu-
ral numbers, two of which are even and the third odd. Then the system {yk(x)}∞k=1, k ̸= i, j, r, l

is a basis in Lp(0, 1), 1 < p <∞, which is an unconditional basis in L2(0, 1).

Proof. Following the corresponding reasoning carried out in the proof of formulas
(5.15) and (5.17) of Theorem 5.4 in [7] we obtain the following asymptotic formulas

ϱk =
(
k − 7

2

)
π +O

(
1
k

)
, y′k(0) = (− 1)k c

a

(
1 +O

(
1
ϱ2k

))
,

yk(0) = (−1)k c
b ϱk

(
1 +O

(
1
ϱ2k

))
, yk(1) =

c
d ϱk

(
1 + 1

dϱk
+O

(
1
ϱ2k

))
,

(5.4)

where ϱk = 4
√
λk.

Let i = 2, j, l, r, j < r < l, be arbitrary fixed sufficiently large natural numbers such
that j and r be even, and l be odd. Then, by (5.4) we have

∆̃1, j, r, l =
c
a

∣∣∣∣∣∣∣∣
0 1 0 1
1 c

bϱj 1 c
dϱj +

c
d2

1 c
bϱr 1 c

dϱr +
c
d2

− 1 − c
bϱl 1 c

dϱl +
c
d2

∣∣∣∣∣∣∣∣+O
(

1
ϱj

)
=

2c
a

∣∣∣∣∣∣
0 1 1
1 c

bϱj
c
dϱj +

c
d2

1 c
bϱr

c
dϱr +

c
d2

∣∣∣∣∣∣+O
(

1
ϱj

)
= 2c

a

∣∣∣∣∣∣
0 1 1
0 c

b(ϱj − ϱr)
c
d(ϱj − ϱr)

1 c
bϱr

c
dϱr +

c
d2

∣∣∣∣∣∣+
O
(

1
ϱj

)
= 2c2

a

(
1
d − 1

b

)
(ϱj − ϱr) +O

(
1
ϱj

)
> 0.

Hence bin view of (5.2) and (5.3) it follows from Theorem 5.1 that the system {yk(x)}∞k=1, k ̸= i, j, r, l

is a basis in Lp(0, 1), 1 < p <∞, and for p = 2 this basis is an unconditional basis.

Other cases are considered similarly. The proof of this theorem is complete.
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Abstract. The Stark equation with a step-like perturbed potential is considered. Using transfor-
mation operators, we obtain representations of solutions of this equation with conditions at infinity.
Estimates for the kernels of the transformation operators are obtained.
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1. Introduction

The Stark effect is the shifting and splitting of spectral lines of atoms and molecules due
to presence of an external electric field. The effect is named after Stark, who discovered it
in 1913. The Stark effect has been of marginal benefit in the analysis of atomic spectra,
but has been a major tool for molecular rotational spectra. The perturbation theory of
the Stark effect is of particular interest. The application of transformation operators to
the perturbation theory of linear operators is well known (see [1], [2] and the references
therein). These operators arose from the general ideas of the theory of generalized shift
operators created by Delsarte [3].

For arbitrary Sturm–Liouville equations, transformation operators were constructed
by Povzner [4]. Marchenko [5] used transformation operators for studying inverse spectral
problems and the asymptotic behavior of the spectral function of the singular Sturm–
Liouville operator. Levin [6] introduced transformation operators of a new form that
preserve the asymptotic expansions of solutions at infinity. Marchenko [5] used them
to solve the inverse problem of scattering theory. Similar problems for the Schrodinger
equation with unbounded potentials were considered in [7]- [9].

We consider the differential equation

−y′′ + xy + p (x) y + q (x) y = λy, −∞ < x <∞, λ ∈ C. (1)

where real potentials p (x) and q (x) satisfy the conditions

p (x) =

{
α+, x ≥ 0,
α−, x < 0,

(2)

http://www.cjamee.org 41 © 2013 CJAMEE All rights reserved.
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q (x) ∈ C (−∞,+∞) ,

∫ ∞

−∞
|xq (x)| dx <∞. (3)

In the present paper, using transformation operators, we obtain representations of
solutions of this equation with conditions at infinity. The results obtained can be used to
solve inverse spectral problems for an equation (1). Some questions of the spectral theory
of the one-dimensional Stark equation were studied in [10]-[13].

2. The transformation operators

In what follows, we deal with special functions satisfying the Airy equation

−y′′ + zy = 0.

It is well known (e.g., see [14]) that this equation has two linearly independent solutionsAi (z)
and Bi (z) with the initial conditions

Ai (0) = 1

3
2
3 Γ( 2

3)
, Ai′ (0) = 1

3
1
3 Γ( 1

3)
,

Bi (0) = 1

3
1
6 Γ( 2

3)
, Bi′ (0) = 3

1
6

Γ( 1
3)
.

The Wronskian {Ai (z) , Bi (z)} of these functions satisfies

{Ai (z) , Bi (z)} = Ai (z)Bi′ (z)−Ai′ (z)Bi (z) = π−1.

Both functions are entire functions of order 3
2 and type 2

3 . Note that the functions
Ai (x− λ), Ai (x− λ)− iBi (x− λ) satisfy the relations (see [2]) Ai (x− λ) ∈ L2 (0,+∞),
Ai (x− λ)− iBi (x− λ) ∈ L2 (−∞, 0) for Imλ ≥ 0.

In what follows we will need special solutions of the unperturbed equation

−y′′ + xy + p (x) y = λy, −∞ < x <∞, λ ∈ C. (4)

Lemma 1. For any λ from the complex plane, equation (4) has solutions ψ± (x, λ) in the
form

ψ+ (x, λ) =

=


Ai (x+ α+ − λ) , x ≥ 0,

π [Ai (α+ − λ)Bi′ (α− − λ)−Ai′ (α+ − λ)Bi (α− − λ)]Ai (x+ α− − λ)+

+π [Ai (α− − λ)Ai′ (α+ − λ)−Ai (α+ − λ)Ai′ (α− − λ)]Bi (x+ α− − λ) , x < 0,

(5)
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ψ− (x, λ) =



π {Bi′ (α+ − λ) [Ai (α− − λ)− iBi (α− − λ)]−

Bi (α+ − λ) [Ai′ (α− − λ)− iBi′ (α− − λ)]}Ai (x+ α+ − λ)+

π {Ai (α+ − λ) [Ai (α− − λ)− iBi (α− − λ)]−

Ai′ (α+ − λ) [Ai′ (α− − λ)− iBi′ (α− − λ)]}Bi (x+ α+ − λ) , x ≥ 0

Ai (x+ α− − λ)− iBi (x+ α− − λ) , x < 0.

(6)

Proof. Obviously, when x ≥ 0 one of the solutions of equation (4) is functionAi (x+ α+ − λ).
On the other hand, for x ≤ 0 any solution of equation (4) can be represented as

CAi (x+ α− − λ) +DBi (x+ α− − λ) .

If we glue these solutions at a point x = 0 , we get

C = π [Ai (α+ − λ)Bi′ (α− − λ)−Ai′ (α+ − λ)Bi (α− − λ)] ,

D = π [Ai (α− − λ)Ai′ (α+ − λ)−Ai (α+ − λ)Ai′ (α− − λ)] .

Thus, formula (5) is established. Formula (6) is derived similarly.

The lemma is proved.

We shall use the following notation

σ± (x) = ±
∫ ±∞

x
|p (t)− α± + q (t)| dt.

In the following theorem the representation of solution from the equation (1) is found by
means of transformation operator.

Theorem 1. If the potentials p (x) and q (x) satisfy the conditions (2), (3) then for any
λ from the closed upper half-plane equation (1) has a solution f+ (x, λ) that can be repre-
sented in the form

f+ (x, λ) = ψ+ (x, λ) +

∫ ∞

x
K+ (x, t) ψ+ (t, λ) dt, (7)

where kernel K+ (x, t) is continuous function and satisfies relations

K+ (x, t) = O

(
σ+

(
x+ t

2

))
, x+ t→ ∞,K+ (x, x) =

1

2

∫ ∞

x
[p (t)− α+ + q (t)] dt. (8)

Proof. We rewrite the perturbed equation (1) in the form

−y′′ + xy +Q (x) y = (λ− α+) y, −∞ < x <∞. (9)
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where Q (x) = p (x) − α+ + q (x). Obviously, the Q (x) function for all x > a, a > −∞
satisfies the condition

Q (x) ∈ C (−∞,+∞) ,

∫ ∞

a
|xQ (x)| dx <∞. (10)

Let f+ (x, λ) be solution of equation (10) with the asymptotic behavior f+ (x, λ) =
f0 (x, λ) (1 + o (1)) , x → +∞, where f0 (x, λ) = Ai (x+ α+ − λ). Subject to the condi-
tions (11), such solution exist, is determined uniquely by its asymptotic behavior. With
the aid of operator transformations, we have the representation

f+ (x, λ) = f0 (x, λ) +

∫ ∞

x
K (x, t) f0 (t, λ) dt, (11)

Moreover, the kernel K (x, t) is a continuous function and satisfies the following relations

K (x, t) = O

(
σ+

(
x+ t

2

))
, x+ t→ ∞, (12)

K (x, x) =
1

2

∫ ∞

x
Q (t) dt. (13)

In addition, rewriting the unperturbed equation (4) in the form

−y′′ + xy +Q0 (x) y = (λ− α+) y, −∞ < x <∞.

where Q0 (x) = p (x)− α+ , we obtain

ψ+ (x, λ) = f0 (x, λ) +

∫ ∞

x
K0 (x, t) f0 (t, λ) dt . (14)

Moreover, in this case, K0 (x, t) satisfies the identityK0 (x, t) ≡, x ≥ 0. From the well-
known properties of the transformation operators it follows that (see [5]) the function
f0 (x, λ) also admits the representation

f0 (x, λ) = ψ+ (x, λ) +

∫ ∞

x
K̃0 (x, t) ψ+ (t, λ) dt , (15)

where the kernelsK0 (x, t) , K̃0 (x, t) are connected by the equality

K0 (x, t) + K̃0 (x, t) +

∫ t

x
K̃0 (x, u) K0 (u, t) du = 0. (16)

Substituting the expression (16) from the f0 (x, λ) in (12), we get

f+ (x, λ) = ψ+ (x, λ) +
∫∞
x K (x, t)

[
ψ+ (t, λ) +

∫∞
t K̃0 (t, u)ψ+ (u, λ) du

]
dt =

= ψ+ (x, λ) +
∫∞
x K (x, t)ψ+ (t, λ) dt+

∫∞
x K (x, t)

∫∞
t K̃0 (t, u)ψ+ (u, λ) dudt =

= ψ+ (x, λ) +
∫∞
x K (x, t)ψ+ (t, λ) dt+

∫∞
x

(∫ t
xK (x, u) K̃0 (u, t) du

)
ψ+ (t, λ) dt.
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Setting

K+ (x, t) = K (x, t) +

∫ t

x
K (x, u) K̃0 (u, t) du, (17)

one can recast the last relation in the form

f+ (x, λ) = ψ+ (x, λ) +

∫ ∞

x
K+ (x, t) ψ+ (t, λ) dt.

Formula (8) is a straightforward consequence of (13), (17) . Taking t = x in the equality
(17), we find thatK+ (x, t) = K (x, t). Whence, by virtue of (15), formula (9) follows.

The theorem is proved.

The following theorem is proved in a similar way.

Theorem 2. If the potentials p (x) and q (x) satisfy the conditions (2), (3), then, for any
λ from the closed upper half-plane, equation (1) has a solution f− (x, λ) representable as

f− (x, λ) = ψ− (x, λ) +

∫ x

−∞
K− (x, t) ψ− (t, λ) dt.

where the kernel K− (x, t) is continuous function and satisfy the following conditions

K− (x, t) = O

(
σ−

(
x+ t

2

))
, x+ t→ −∞,K− (x, x) =

1

2

∫ x

−∞
[p (t)− α− + q (t)] dt.
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Problem Statement about the Unsymmetrical Oscilla-
tions of a Cylindrical cover Reinforced with rods Sub-
jected to a Compressive Force Along the Axis with a
Fluid

O. SH. Salmanov

Abstract. In the article, a physical and mathematical model was built to study the issue of asym-
metric oscillations of a cylindrical cover reinforced with rods under the influence of a compressive
force in the direction of the axis, together with a liquid. The frequency equation of the system was
established and calculated by the asymptotic method. effect has been studied. Problem statement
about the unsymmetrical oscillations of a cylindrical cover reinforced with rods subjected to a
compressive force along the axis with a fluid.

Key Words and Phrases: compressive force, reinforced with rods, cylindrical cover, dances.

2010 Mathematics Subject Classifications: Primary 34A55, 34B20, 34L05

1. Introduction

A rod-reinforced cylindrical cover is a structural element consisting of a combination
of cover and rods that deforms together. It is assumed that the cover and the rods interact
along a certain line and the conditions of equality of displacements on their contact line
are satisfied. This method was used in [1] to obtain the equilibrium equations and natural
boundary conditions of a cylindrical cover reinforced with rods. Equilibrium equations for
a cover reinforced with rods were obtained in [2]. The system of equilibrium equations of
a cover with rods in an arbitrary position on its surface was obtained in works [3].

2. Problem solving method

The system we studied consists of a cylindrical cover reinforced with rods and a liquid
that completely fills its interior. Therefore, in order to study the oscillations of such a
system, we will use the system of equations of motion of a cylindrical cover reinforced with
rods and the contact conditions added to them.

A rod-reinforced cylindrical cover means a cylindrical cover and a system consisting
of rods rigidly attached to it along the coordinate lines (Fig. 1). It is assumed that

http://www.cjamee.org 47 © 2013 CJAMEE All rights reserved.
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the coordinate axes coincide with the main curvature lines of the coating, and the rods
are in rigid contact with the coating along these lines. Using the Ostrogradsky-Hamilton
variation principle, the system of basic equations of the mentioned system can be deduced.
It is considered that the stress-strain state of the cylindrical cover is completely determined
by the equations of the linear theory of covers based on the Kirchhoff-Liav hypothesis. In
the calculation of rods, equations based on the Kirchhoff-Klebsch theory are used for
straight-axis rods. If the cylindrical coating is under the influence of compressive stress
along the axis, its potential energy is determined as follows [2]:

Ψ =
Eh

2 (1− ν2)

∫ ξ1

0

∫ 2π

0

{(
∂u

∂ξ
+

∂υ

∂θ
− w

)2

+ 2 (1−ν)

[
∂u

∂ξ

(
∂υ

∂θ
− w

)
−

−1

4

(
∂u

∂θ
+

∂υ

∂ξ

)2
]}

dξdθ +
Eh3

24 (1−ν2)R2

∫ ξ1

0

∫ 2π

0

{(
∂2w

∂ξ2
+

∂2w

∂θ2
+

∂υ

∂θ

)2

−

−2 (1−ν)

[
∂2w

∂ξ2

(
∂2w

∂θ2
+

∂υ

∂θ

)
−
(

∂2w

∂ξ∂θ
+

∂υ

∂ξ

)2
]}

dξdθ+

+
Es

2R

k1∑
j=1

∫ 2π

0

[
Fs

(
∂υ

∂θ
− w − hs

R

∂2w

∂θ2

)2

+
Ixs
R2

(
∂2w

∂θ2
+ w

)2

+
Gs

R2Es
Ikp.s× (1)

×
(

∂2w

∂ξ∂θ
+

∂u

∂θ

)2
]∣∣∣∣∣

ξ=ξj

dθ− σxh

2

∫ ξ1

0

∫ 2π

0

(
∂w

∂ξ

)2

dξdθ− σxFc

2R

k∑
i=1

∫ ξ1

0

(
∂w

∂ξ

)2
∣∣∣∣∣
θ=θi

dξ+

+
Ec

2R

k2∑
i=1

∫ ξ1

0

[
Fc

(
∂u

∂ξ
− hc

R

∂2w

∂ξ2

)2

+
Ius
R2

(
∂2w

∂ξ2

)2

+
Gc

Ec
Ikp.s

(
∂2w

∂ξ∂θ
+

∂υ

∂ξ

)2
]∣∣∣∣∣

θ=θi

dξ .

In his expressions u, υ, w - cover displacements, E, ν− respectively, the modulus of elas-
ticity and Poisson’s ratio of the material of the cylindrical coating, R, h- respectively, the
radius and thickness of the cylindrical coating, Ec, Es- the modulus of elasticity of the
longitudinal bar and the ring, respectively, Fc, Fs - the cross-sectional areas of the longitu-
dinal bar and the ring, respectively, Ius, Ikp.s - moments of inertia of the cross section of
the longitudinal bar, Ixs, Ikp.s - moments of inertia of the cross section of the ring, qx, qθ, qr
- components of the pressure force acting on the cylindrical cover by the medium, Gc, Gs

- are the shear modulus of the longitudinal bar and the ring, respectively.

K =
Eh

2(1− ν2)

∫ ξ1

0

∫ 2π

0

[(
∂u

∂t1

)2

+

(
∂v

∂t1

)2

+

(
∂w

∂t1

)2
]
dξdθ+

+
ρ̄cEcFc

2R (1− ν2)

k2∑
i=1

∫ ξ1

0

[(
∂u

∂t1

)2

+

(
∂w

∂t1

)2
]∣∣∣∣∣

θ=θj

dξ+
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Fig 1. Cylindrical cover reinforced with rods subjected to compressive force
and in contact with the environment. The kinetic energy of the

rod-reinforced coating is as follo

+
ρ̄sEsFs

2R (1− ν2)

k1∑
i=1

∫ 2π

0

[(
∂v

∂t1

)2

+

(
∂w

∂t1

)2
]∣∣∣∣∣

ξ=ξj

dθ (2)

Using the decision condition of the Ostrogradsky-Hamilton effect, the equation of motion
of the cover reinforced with rods can be obtained:

δW = δ (Ψ +K) = 0 (3)

Expressions of potential and kinetic energy (1) and (2)- is also shown. Here W =
∫ t1
t0

L̃dt

Hamilton effect, L̃ = K−. It is a lag function. (3) if we carry out the operation of
taking variations in the equation and δu, δv, δw If we take into account that the variation
is arbitrary and independent, we get the following system of equations of motion:

Lx(u, v, w) + qx = 0
Ly(u, v, w) + qy = 0
Lz(u, v, w)− (qz − qzz) = 0

(4)

The propagation of small excitations in an ideal fluid is expressed by the following equation.

∇2Φ− 1

a2
∂2Φ

∂t2
= 0. (5)

Here Φ- potential of liq, a- is the speed of sound propagation in a liquid. In a harmonic
dance (5) converts the equation to the Helmolts equation:
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∇2Φ+
ω2

a2
Φ = 0. (6)

When the fluid is incompressible a2 → ∞ since (6) transforms the equation into Laplace’s
equation:

∇2Φ = 0. (7)

If the liquid is an ideal liquid with two-phase bubbles, the propagation of small perturba-
tions in such a liquid is given by the following equation [2]:

∂2p

∂x2
− 1

a2
∂2p

∂t2
− 2ρj>R

Eh

∂2p

∂t2
= 0. (8)

Here, a2 = 1
a20(1−a20)

(
ρ10

ρ10−ρ20

)
p0
p010

, ρ10, ρ20- true density of liquid and gas; p0- static

pressure; ρjo- density of the mixture; α20- volume of gas bubbles; The equilibrium values
of the parameters correspond to the zero index;

ρj> = (1− α20)ρ10 + α2ρ20.

Contact conditions are also added to the system of equations of motion of the coating (3),
equations of motion of the fluid (4), (6). The normal components of velocity and pressure
on the contact surface of the coating with the liquid are assumed to be equal, and the
tangential stresses are equal to zero:

ϑr =
∂w

∂t
, qz = −p, qx = qy = 0 (r = R) (9)

Here qx, qy, qz are the components of the pressure force exerted by the fluid on the coating.
The systems of equations of motion of the rod-reinforced coating and liquid (4)-(8) to-
gether with the contact conditions (9) allow solving the problem of free oscillations of the
constructive-orthotropic coating-liquid system. In other words, the study of the free oscil-
lations of an orthotropic cylindrical coating in contact with a solid medium and a liquid is
brought to the joint integration of the system of equations of the constructive-orthotropic
coating and the equation of motion of the liquid within the contact conditions.
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