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Abstract. In this paper we study some initial-boundary value problem for partial differential
equation of fourth order subject the nonclassical boundary conditions. We show the existence,
uniqueness and stability of the classical solution of this problem.
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1. Introduction

Let T ∈ R be the positive constant and DT = {(x, t) ∈ R2 : 0 < x < 1, 0 < t < T}.
We consider the following initial-boundary value problem for partial differential equa-

tion

(p (x)ux,x(x, t))x,x − (q(x)ux(x, t))x + r(x)utt(x, t) = f(x, t), (x, t) ∈ DT , (1)

subject the non-local conditions

u(x, 0) + δ1u(x, T ) = φ(x), ut(x, 0) + δ2u(x, T ) = ψ(x), 0 ≤ x ≤ 1, (2)

and non-classical boundary conditions

u(0, t) = µ1(t), 0 ≤ t ≤ T, (3)

uxx(0, t) = µ2(t), 0 ≤ t ≤ T, (4)

p (1)uxx(1, t) + ux(1, t) = µ3(t), 0 ≤ t ≤ T, (5)

(p (x)uxx(x, t))x|x=1 − q(1)ux(1, t)− r(1)utt(1, t) = µ4(t), 0 ≤ t ≤ T, (6)
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where δi, i = 1, 2, are nonnegative constants, p ∈ C2([0, 1]; (0,+∞)), q ∈ C1([0, 1]; (0,+∞)),
r ∈ C([0, 1]; (0,+∞)), µi ∈ C1([0, T ];R), i = 1, 2, 3, 4, φ,ψ ∈ C4([0, 1];R), f ∈ C0,1(DT )
is a given function and u(x, t) is the desired function. Moreover, the following conditions
hold:

µ1(0) + δ1µ1(T ) = φ(0), µ′1(0) + δ2µ
′
1(T ) = ψ(0),

µ2(0) + δ1µ2(T ) = φ′′(0), µ′2(0) + δ2µ
′
2(T ) = ψ′′(0),

µ3(0) + δ1µ3(T ) = p (1)φ′′(1) + φ′(1), µ′3(0) + δ2µ
′
3(T ) = p (1)ψ′′(1) + ψ′(1),

µ4(0) + δ1µ4(T ) = (p (x)φ′′(x))′ |x=1 − q(1)φ′(1)− (f(1, 0) + δ1f(1, T )) +(
(p (x)φ′′(x))′′ − (q(x)φ′(x)

)′ |x=1 ,

µ′4(0) + δ2µ
′
4(T ) = (p (x)ψ′′(x))′ |x=1 − q(1)ψ′(1) + (ft(1, 0) + δ2ft(1, T ))+

+ ((p (x)ψ′′(x))′′ − (q(x)ψ′(x))′ |x=1 .

Problem (1)-(6) describes the small bending vibrations of a non-homogeneous rod, the
left end of which is elastically fixed, and at the right end the mass is concentrated (see,
for example, [6, 9]).

For studying the classical solution of boundary value problems and initial-boundary
value problems for partial differential equations one of the main methods is the Fourier
method. The justification of this method is traditionally based on the uniform convergence
of the series representing the formal solution of the problem and the series obtained by its
term-by-term differentiation the required number of times (see, for example, [3-7, 9, 10,
12-14]). Uniform convergence of the series representing the formal solution of the problem
and obtained from it by term-by-term differentiation is proved using the basic properties
of the corresponding spectral problems.

In this work, using the Fourier method, we prove the existence of a classical solution
to problem (1)-(6), and also prove the uniqueness and stability of this solution.

2. Uniqueness of the solution of the initial-boundary value problem
(1)-(6)

In this section, we prove the uniqueness of the classical solution to the initial-boundary
value problem (1)-(6).

Let

C4,2(DT ) =
{
u(x, t) : u(x, t) ∈ C2(DT ), uxxxx(x, t) ∈ C(DT )

}
.

The classical solution of problem (1)-(6) is called the function u(x, t) ∈ C4,2(DT )
satisfying equation (1) in DT , conditions (2) in [0, 1] and conditions (3)-(6) in [0, T ] in the
usual sense (see, e.g., [9, 10]).

Theorem 1. Suppose that δ21 + δ22 < 1. Then problem (1)-(6) cannot have more than
one classical solution, i.e. if this problem has a classical solution u(x, t), then it is unique.
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Proof. Suppose that there are two classical solutions u1(x, t) and u2(x, t) of problem
(1)-(6) and let

v(x, t) = u1(x, t)− u2(x, t), (x, t) ∈ DT .

Obviously, the function v(x, t), satisfies the following homogeneous equation

(p(x)vxx(x, t))xx − (q(x)vx(x, t))x + r(x)vtt(x, t) = 0, (x, t) ∈ DT , (7)

and conditions

v(x, 0) + δ1v(x, T ) = 0, vt(x, 0) + δ2vt(x, T ) = 0, 0 ≤ x ≤ 1, (8)

v(0, t) = 0, 0 ≤ t ≤ T, (9)

vxx(0, t) = 0, 0 ≤ t ≤ T, (10)

p (1)uxx(1, t) + ux(1, t) = 0, 0 ≤ t ≤ T, (11)

(p(x)vxx(x, t))x |x=1 − q(1)vx(1, t)− r(1)vtt(1, t) = 0, 0 ≤ t ≤ T. (12)

Multiplying (7) by the function 2vt(x, t) and integrating the resulting equality in the
range from 0 to 1, we obtain

2
1∫
0

(p (x)vxx(x, t))xxvt(x, t)dx− 2
1∫
0

(q(x)vx(x, t))xvt(x, t)dx+

2
1∫
0

r(x)vtt(x, t)vt(x, t)dx = 0.

(13)

Note that

2

1∫
0

r(x)vtt(x, t)vt(x, t)dx =
d

dt

1∫
0

r(x)v2t (x, t)dx, 0 ≤ t ≤ T. (14)

Using the formula for the integration by parts and taking into account conditions (9)-(12)
we get the following relations

2
1∫
0

(p (x)vxx(x, t))xxvt(x, t)dx = 2(p(x)vxx(x, t))x |x=1 vt(1, t)−

2(p (x)vxx(x, t))x |x=0 vt(0, t)− 2
1∫
0

(p (x)vxx(x, t))xvtx(x, t)dx =

2(p (x)vxx(x, t))x |x=1 vt(1, t)− 2
1∫
0

(p (x)vxx(x, t))xvtx(x, t)dx =

2(p (x)vxx(x, t))x |x=1 vt(1, t)− 2p (1)vxx(1, t)vtx(x, 1) + 2p (0)vxx(0, t)vtx(0, t)+

2
1∫
0

p(x)vxx(x, t)vtxx(x, t)dx =2(p (x)vxx(x, t))x |x=1 vt(1, t)−

2p (1)vxx(1, t)vtx(x, 1) +
d
dt

1∫
0

p (x)v2xx(x, t)dx, 0 ≤ t ≤ T.

(15)
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2
1∫
0

(q(x)vx(x, t))xvt(x, t)dx = 2q(1)vx(1, t)vt(1, t)− 2q(0)vx(0, t)vt(0, t)−

−2
1∫
0

q(x)vx(x, t)vtx(x, t)dx = 2q(1)vx(1, t)vt(1, t)− d
dt

1∫
0

q(x)v2x(x, t)dx,

(16)

Then by (14)-(16) it follows from (13) that

d
dt

1∫
0

p (x)v2xx(x, t)dx+ d
dt

1∫
0

q(x)v2x(x, t)dx+ d
dt

1∫
0

r(x)v2t (x, t)dx−

2q(1)vxx(1, t)vtx(1, t) + 2((p (x)vxx(x, t))x − q(x)vx(x, t)) |x=1 vt(1, t) = 0,

d
dt

1∫
0

p (x)v2xx(x, t)dx+ d
dt

1∫
0

q(x)v2x(x, t)dx+ d
dt

1∫
0

r(x)v2t (x, t)dx+

2vx(1, t)vtx(1, t) + 2r(1)vtt(1, t)vt(1, t) = 0, 0 ≤ t ≤ T.

which implies that

d
dt

(
1∫
0

(
p (x)v2xx(x, t) + q(x)v2x(x, t) + r(x)v2t (x, t)

)
dx+v2x(1, t) + r(1)v2t (1, t)

)
= 0.

(17)

Let

z(t) =
1∫
0

(
p (x)v2xx(x, t) + q(x)v2x(x, t) + r(x)v2t (x, t)

)
dx+

v2x(1, t) + r(1)v2t (1, t), 0 ≤ t ≤ T.

(18)

then it follows from (17) that

z′(t) = 0, t ∈ [0, T ],

and consequently,

z(t) = C, t ∈ [0, T ] (19)

where C is some positive constant.

By (8) we get

z(0)− (δ21 + δ22)z(T ) =
1∫
0

r(x)(v2t (x, 0)− (δ21 + δ22)v
2
t (x, T ))dx+

1∫
0

q(x)(v2x(x, 0)− (δ21 + δ22)v
2
x(x, T ))dx+

1∫
0

p (x)(v2xx(x, 0)− (δ21 + δ22)v
2
xx(x, T ))dx+

r(1)(v2t (1, 0)− (δ21 + δ22)v
2
t (1, T )) + v2x(1, 0)− (δ21 + δ22)v

2
x(1, T ) =

−δ21
1∫
0

r(x)v2t (x, T ))dx− δ21

1∫
0

q(x)v2x(x, T ))dx− δ22

1∫
0

p(x)v2xx(x, T ))dx−

− r(1)δ21v
2
t (1, T )− δ22v

2
x(1, T ) = C(1− (δ21 + δ22)) ≤ 0.
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whence, by relations δ21 + δ22 < 1 and C ≥ 0, implies that C = 0. Then in view of (19), by
(18), we obtain

1∫
0

(
p (x)v2xx(x, t) + q(x)v2x(x, t) + r(x)v2t (x, t)

)
dx+ v2x(1, t) + r(1)v2t (1, t) ≡ 0.

Therefore, it follows from last relation that

vt(x, t) ≡ 0, vx(x, t) ≡ 0, vxx(x, t) ≡ 0,

and consequently,
vt(x, t) = B, (x, t) ∈ DT ,

where B is some constant.
In view of (8) we have

v(x, 0) + δ1v(x, T ) = B(1 + δ1) = 0,

which, by δ1 ≥ 0, we get B = 0, i.e.,

v(x, t) ≡ 0 in DT .

The proof of this theorem is complete.

3. Stability of the solution of the initial-boundary value problem (1)-(6)

In this section we prove the stability of the classical solution of the initial-boundary
value problem (1)-(6).

Theorem 2. Let δ1 = δ2 = 0, µi ≡ 0, i = 1, 2, 3, 4, and let the function u(x, t) ∈
C4,2(DT ) solves problem (1)-(6). Then for this function the following inequality holds

1∫
0

(
p (x)u2xx(x, t) + q(x)u2x(x, t) + r(x)u2t (x, t)

)
dx+ u2x(1, t) + r(1)u2t (1, t) ≤

≤ er0T
{

1∫
0

(
r(x)ψ2(x) + q(x)[φ′(x)]2 + p (x)[φ′′(x)]2

)
dx + [φ′(1)]2+

+ r(1)ψ2(1) +
T∫
0

1∫
0

f2(x, t)dtdx

}
.

(20)

Proof. Multiplying both parts of (1) by the function 2ut(x, t) and integrating the
resulting equality by x in the range from 0 to 1, we obtain

2
1∫
0

(p (x)uxx(x, t))xxut(x, t)dx− 2
1∫
0

(q(x)ux(x, t))xut(x, t)dx+

2
1∫
0

r(x)utt(x, t)ut(x, t)dx = 2
1∫
0

f(x, t)ut(x, t)dx

(21)
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It is obvious that

2

1∫
0

f(x, t)ut(x, t)dx ≤
1∫

0

f2(x, t)dx+

1∫
0

u2t (x, t)dx. (22)

By (17) and (22) we get

d
dt

(
1∫
0

(
p (x)u2xx(x, t) + q(x)u2x(x, t) + r(x)u2t (x, t)

)
dx+ u2x(1, t) + r(1)u2t (1, t)

)
≤

1∫
0

f2(x, t)dx+
1∫
0

u2t (x, t)dx ≤
1∫
0

f2(x, t)dx+
1∫
0

1
r(x)

(
p (x)u2xx(x, t) + q(x)u2x(x, t) + r(x)u2t (x, t)

)
dx ≤

1∫
0

f2(x, t)dx+ 1
r0

1∫
0

(
p (x)u2xx(x, t) + q(x)u2x(x, t) + r(x)u2t (x, t)

)
dx, t ∈ [0, T ],

(23)

where r0 = min
x∈[0,1]

r(x).

In view of (18), by (23) we obtain

z′(t) ≤
1∫

0

f2(x, t)dx+ r0z(t), t ∈ [0, T ],

or

d

dt

(
z(t)e−r0t

)
≤ e−r0t

1∫
0

f2(x, t)dx, t ∈ [0, T ].

It follows from last relation that

z(t) ≤ er0T

z(0) +
T∫
0

1∫
0

f2(x, t)dxdt

 , t ∈ [0, T ]. (24)

By initial conditions (2) we have the following relation

z(0) =
1∫
0

(
p (x)u2xx(x, 0) + q(x)u2x(x, 0) + r(x)u2t (x, 0)

)
dx+ u2x(1, 0)+

r(1)u2t (1, 0) =
1∫
0

(
p(x)φ′′2(x) + q(x)φ′2(x) + r(x)ψ2(x)

)
dx+ φ′2(1)+

r(1)ψ2(1) +
T∫
0

1∫
0

f2(x, t)dtdx

(25)

Using (25) from (24) we obtain (20). The proof of this theorem is complete.
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Corollary 1. Let q(x) > 0 for x ∈ [0, 1] and let the conditions of Theorem 2 be
satisfied. Then the following inequality holds:

|u(x, t)|2 ≤M

{
1∫
0

(
p (x)φ′′2(x) + q(x)φ′2(x) + r(x)ψ2(x)

)
dx + φ′2(1)+

+ r(1)ψ2(1) +
T∫
0

1∫
0

f2(x, t)dtdx

}
, (x, t) ∈ DT ,

where M = er0T
(

1∫
0

dx
q(x)

) 1
2

.

Remark 1. If the function q takes zero values, then we have the following inequality:

|ux(x, t)|2 ≤ D̃

{
1∫
0

(
p (x)φ′′2(x) + q(x)φ′2(x) + r(x)ψ2(x)

)
dx + φ′2(1)+

r(1)ψ2(1) +
T∫
0

1∫
0

f2(x, t)dtdx

}
,

4. The existence of a classical solution to problem (1)-(6)

Suppose that f ≡ 0 in DT and µi ≡ 0 in [0, T ] for i = 1, 2, 3, 4. In order to solve
problem (1)-(6) we apply the method of separation of variables. We will sought for a non-
trivial particular solution of equation (1) that satisfies the boundary conditions (3)-(6) in
the following form

u(x, t) = y(x)ϑ(t), x ∈ [0, 1], t ∈ [0, T ]. (26)

Taking (26) into account from (1) we obtain

(p (x)y′′(x))′′ϑ(t)− (q(x)y′(x))′ϑ(t) + r(x)y(x)ϑ′′(t) = 0 (27)

which implies that

(p(x)y′′(x))′′ − (q(x)y′(x))′

r(x)y(x)
= −ϑ

′′(t)

ϑ(t)
= λ, λ ∈ C. (28)

Then the functions y(x) and ϑ(t) will satisfy the following ordinary differential equations

(p (x)y′′(x))′′ − (q(x)y′(x))′ = λr(x)y(x), 0 < x < 1, (29)

and
ϑ′′(t) + λϑ(t) = 0, 0 < t < T, (30)

respectively.
By (26) and (28) it follows from (3)-(6) (with the use of conditions µi ≡ 0 in [0, T ] for

i = 1, 2, 3, 4) that

y(0) = 0, y′′(0) = 0, p (1)y′′(1) + y′(1) = 0, T y(1) + λr(1)y(1) = 0,



10 Maryam H. Jafarova

where
T y ≡ (py′′)′ − qy′.

Thus, problem (1), (3)-(6) is reduced by the change of variables (26) to the spectral
problem

(p (x)y′′(x))′′ − (q(x)y′(x))′ = λr(x)y(x), 0 < x < 1, (31)

y(0) = y′′(0) = y′(1) + p (1)y′′(1) = 0, (32)

T y(1) + λr(1)y(1) = 0. (33)

A more general form of the spectral problem (31)-(33) was considered in [8] (see also [1]),
where the oscillatory properties of eigenfunctions and the basis properties of subsystems
of eigenfunctions in the space Lp (0, 1), 1 < p <∞, were considered.

Remark 2. By [8, Lemma 2.2 and Theorem 2.2] the eigenvalues of problem (31)-
(33) are real and simple and form an infinitely increasing sequence {λk}∞k=1. Moreover,
multiplying both parts of (31) by y and integrating the resulting relation in the range
from 0 to 1 (using integration by parts) and taking the boundary conditions (32), (33)
into account we obtain

1∫
0

{
p (x)y′′2(x) + q(x)y′2(x)

}
dx+

1

p (1)
y′2(1) = λ


1∫

0

r(x)y2(x)dx+ r(1)y2(1)


whence, by the first condition in (32), implies that the eigenvalues of problem (31)-(33)
are positive, i.e., λk > 0 for any k ∈ N.

Remark 3. It follows from [8, formulas (3.3) and (3.4)] that

4
√
λk =

(k − 1)π

γ
+O

(
1

k

)
, (34)

yk(x) = sin (k−1)πx
γ − cos (k−1)πx

γ − e
− (k−1)πx

γ +

(−1)ke
(k−1)π (x−1)

γ +O
(
1
k

)
,

(35)

where relation (35) holds uniformly for x ∈ [0, 1] and

γ =

1∫
0

(
r(x)

p (x)

)1/4

dx.

Remark 4. Let s be an arbitrary fixed natural number. Then, by [8, Theorem 5.1],
the system {yk}∞k=1, k ̸=s of eigenfunctions of problem (31)-(33) forms a basis in the space
Lp ((0, 1); r), 1 < p < ∞, which is an unconditional basis in L2((0, 1); r). Moreover, it
follows from the proof of [8, formula (4.3)] that each element vk of the system {vk}∞k=1, k ̸=s

conjugate to the system {yk}∞k=1, k ̸=s is defined as follows:

vk(x) = δ−1
k

{
yk −

yk(1)

ys(1)
ys(x)

}
, (36)
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where

δk =

1∫
0

r(x)y2k(x)dx+ r(1)y2k(1) > 0.

Remark 5. In view of [8, Lemma 4.1 and relations (4.11)] we have the following
relation

vk(x) = yk(x) +O

(
1

k

)
. (37)

||yk||22, r = 1 +O

(
1

k

)
and yk(1) = O

(
1

k

)
, (38)

where || · ||2, r is the norm in L2((0, 1); r).
Let H = L2((0, 1); r)⊕ C be the Hilbert space with inner product

(û, v̂)H = ({y,m}, {v, n})H =

1∫
0

r(x)y(x)v(x) dx+ r(1)−1ms̄ , (39)

We define the linear operator L : D(L) ⊂ H → H as follows:

Lŷ = L{y,m} =

{
1

r(x)
(T y(x))′ ,−T y(1)

}
,

where
D(L) = {{y (x), m} : y ∈W 4

2 (0, 1),
1

r(x) (T y(x))
′ ∈ L2(0, 1),

y(0) = y′′(0) = y′(0) + p (1)y′′(1) = 0, m = r(1)y(1)}

which is everywhere in H (see [1]). Then problem (31)-(33) is equivalent to the spectral
problem

Lŷ = λŷ, ŷ ∈ D(L), (40)

i.e., the eigenvalues λk, k ∈ N, of problems (31)-(33) and (39) coincide (counting multi-
plicities), and there exists a one-to-one correspondence between the their eigenfunctions,

yk(x) ↔ {yk(x), mk}, mk = r(1)yk(1).

Since r is positive on [0, 1], the operator L is a self-adjoint discrete lower-semibounded
in H and hence the system of eigenvectors {ŷk}∞k=1 of this operator forms an orthogonal
basis in H (see [1]).

For any k, n ∈ N, k ̸= n, we have

(ŷk, ŷn) = 0,

and consequently,

1∫
0

r(x)yk(x)yn(x)dx+ r(1)yk(1)yn(1) = 0 for any k, ∈ N, k ̸= n. (41)
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Note that yk(1) ̸= 0 for any k ∈ N. Indeed, if yk(1) = 0 for some k ∈ N, then it
follows from (33) that Tyk(1) = 0. Moreover, due to the third condition in (32) we have
y′(1)y′′(1) < 0. Then by the second part of Lemma 2.1 of [2] we get y′(0)y′′(0) < 0 in
contradiction the second condition in (32).

Let k0 be the arbitrary fixed positive integer. Then by (41) we have

1∫
0

r(x)yk(x)yk0(x)dx+ r(1)yk(1)yk0(1) = 0 for any k ∈ N, k ̸= k0,

which implies that

r(1)yk(1) +
yk0(1)

1∫
0

r(x)yk(x)yk0(x)dx = 0 for any k ∈ N, k ̸= k0, (42)

Thus, by (42), λk, k ∈ N, k ̸= k0, are eigenvalues and yk, k ∈ N, k ̸= k0, are
corresponding eigenfunctions of the following spectral problem

(p (x)y′′(x))′′ − (q(x)y′(x))′ = λr(x)y(x), 0 < x < 1,

y(0) = y′′(0) = y′(1) + p (1)y′′(1) = 0,

r(1)y(1) + 1
yk0 (1)

1∫
0

r(x)y(x)yk0(x)dx = 0.

(43)

Note that, unlike problem (31)-(33), problem (43) does not contain a spectral parameter
in the boundary conditions.

By first relation of (38), without loss of generality, we can assume that the functions yk,
k ∈ N, are normalized in L2((0, 1); r). Then, by Remark 4.3, the system {yk(x)}∞k=1, k ̸=k0
forms a Riesz basis in the space L2((0, 1); r). In this case the system {vk(x)}∞k=1, k ̸=k0

,
where

vk(x) = δ−1
k

{
yk −

yk(1)

yk0(1)
yk0(x)

}
,

is conjugate to the system {yk(x)}∞k=1, k ̸=k0
. Hence for any function g ∈ L2((0, 1); r) we

have

g =

∞∑
k=1,k ̸=k0

gkyk(x), (44)

where

gk =
1∫
0

r(x)g(x)vk(x)dx = δ−1
k

1∫
0

r(x)g(x)yk(x)dx

− δ−1
k

yk(1)
yk0 (1)

1∫
0

r(x)g(x)yk0(x)dx.

(45)
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Let the following conditions hold:

g(x), g′(x), g′′(x), T g(x) ∈ C[0, 1], g(0) = 0, g′′(0) = 0, g′(1) + p (1)g′′(1) = 0,

J(g) = r(1)g(1) +
1

yk0(1)

1∫
0

r(x)g(x)yk0(x)dx = 0 and
1

r(x)
(T g(x))′ ∈ L2(0, 1).

For any g ∈ D(L) we have

(Lŷk, ĝ) = λk(ŷk, ĝ), k ∈ N,

whence, by (39), we get

λk

1∫
0

r(x)yk(x)g(x)dx + λkr(1)yk(1)g(1) = λk(ŷk, ĝ)H = (Lŷk, ĝ)H =

(
ŷk, Lĝ

)
H

=

1∫
0

yk(x)(Tg(x))
′dx− yk(1)Tg(1), k ∈ N.

Thus, for any g ∈ D(L) we obtain

λk

1∫
0

r(x)yk(x)g(x)dx = −λkr(1)yk(1)g(1)− yk(1)Tg(1) +

1∫
0

yk(x)(Tg(x))
′dx, k ∈ N.

whence implies that

λk0
yk(1)

yk0(1)

1∫
0

r(x)yk0(x)g(x)dx = −λk0r(1)yk(1)g(1)− yk(1)Tg(1)+

yk(1)

yk0(1)

1∫
0

r(x)yk0(x)(Tg(x))
′dx, k ∈ N.

It follows from two last relations that

λk

1∫
0

r(x)g(x)

{
yk(x)−

yk(1)

yk0(1)
yk0(x)

}
dx + (λk − λk0)

yk(1)

yk0(1)

1∫
0

r(x)yk0(x)g(x)dx =

−(λk − λk0)r(1)yk(1)g(1) +

1∫
0

{
yk(x)−

yk(1)

yk0(1)
yk0(x)

}
(T g)′(x)dx,
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and consequently,

λk

1∫
0

r(x)g(x)

{
yk(x)−

yk(1)

yk0(1)
yk0(x)

}
dx =

−(λk − λk0)yk(1)

r(1)g(1) + 1

yk0(1)

1∫
0

r(x)yk0(x)g(x)dx

+

1∫
0

{
yk(x)−

yk(1)

yk0(1)
yk0(x)

}
(T g)′(x)dx.

Since J(g) = 0 we have the following relation

1∫
0

r(x)g(x)vk(x)dx =
1

λk

1∫
0

(T g)′(x)vk(x)dx.

Lemma 1. Let the conditions g ∈ C3[0, 1], g ∈ W 4
2 (0, 1), g(0) = g′′(0) = g′(1) +

p (1)g′′(1) = 0 and J(g) = 0 be satisfied. Then the following relation holds:

gk = λ− 1
k gk,1,

where

gk,1 =

1∫
0

r(x)G(x)vk(x)dx, G(x) =
(T g)′(x)
r(x)

, x ∈ [0, 1].

Corollary 2. Let the conditions of Lemma 4.1 be satisfied. Then one has the relation

∞∑
k=1, k ̸=k0

λ2kg
2
k =

∞∑
k=1,k ̸=k0

g2k,1 ≤
1∫
0

(Tg(x))′2

r(x) dx .

Lemma 2. Let g1 = (Tg)′ and the following conditions hold: p ∈ C4[0, 1], q ∈ C2[0, 1],
g ∈ C7[0, 1], g ∈ W 8

2 (0, 1), g(0) = g′′(0) = g′(1) + p (1)g′′(1) = 0, J(g) = 0 and g1(0) =
g′′1(0) = g′1(1) + p (1)g′′1(1) = 0, J(g1) = 0. Then we have the following relation:

gk = λ− 2
k gk,2, k ∈ N, k ̸= k0,

where

gk,2 =

1∫
0

r(x)g1(x)vk(x)dx.
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Corollary 3. Let the conditions of Lemma 4.2 hold. Then one has the relation

∞∑
k=1, k ̸=k0

λ4kg
2
k =

∞∑
k=1,k ̸=k0

g2k,2 ≤
1∫
0

(Tg(x))′2

r(x) dx .

We will seek the solution to problem (1)-(6) in the form

u(x, t) =

∞∑
k=1, k ̸=k0

uk(t)yk(x), (46)

where

uk(t) =

1∫
0

r(x)u(x, t)vk(x)dx,

vk(x) = δ−1
k

(
yk(x)−

yk(1)

yk0(1)
yk0(x)

)
, k ∈ N, k ̸= k0.

We apply the method of separation of variables to determine the desired functions
uk(t), k ∈ N, k ̸= k0. Then from (1) we obtain

u′′k(t) + λkuk(t) = 0, k ∈ N, k ̸= k0, t ∈ [0, T ], (47)

uk(0) + δ1uk(T ) = φk, u
′
k(0) + δ2u

′
k(T ) = ψk, k ∈ N, k ̸= k0, (48)

where

φk =

1∫
0

r(x)φ(x)vk(x)dx, ψk =

1∫
0

r(x)ψ(x)vk(x)dx, k ∈ N, k ̸= k0.

Solving problem (47), (48) by using Remark 4.1 we get

uk(t) =
1

ϱk(T )
[φk(cos ρkt+ δ2 cos ρk(T − t))+

ψk

ρk
(sin ρkt− δ1 sin ρk(T − t))

]
,

where
ρk =

√
λk, ϱk(T ) = 1 + (δ1 + δ2) cos ρkT + δ1δ2.

The following theorem is the main result of this paper.
Theorem 3. Let the following conditions hold:

(i) 1 + δ1δ2 ≥ δ1 + δ2,

(ii) µi ≡ 0, i = 1, 2, 3, 4, p ∈ C4([0, 1]; (0,+∞)), q ∈ C2([0, 1]; [0,+∞)),

(iii) φ ∈ C7([0, 1];R), ϕ ∈W 8
2 (0, 1), φ(0) = φ′′(0) = φ′(1) + p (1)φ′′(1) = 0, J(φ) = 0
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and ϕ(0) = ϕ′′(0) = ϕ′(1) + p (1)ϕ′′(1) = 0, J(ϕ) = 0, where ϕ = 1
r (Tφ)

′,

(iv) ψ ∈ C3([0, 1];R), ψ ∈W 4
2 (0, 1), ψ

′′(0) = ψ′(1) + p (1)ψ′′(1) = 0.
Then the function

u(x, t) =
∞∑

k=1, k ̸=k0

1

ϱk(T )
[φk(cos ρkt+ δ2 cos ρk(T − t))+

ψk

ρk
(sin ρkt− δ1 sin ρk(T − t))

]
yk(x)

is a classical solution of problem (1)-(6).
The proof of this theorem is similar to the proof of the justification of the Fourier

method in [10, § 23.5] (see also [9]) with the use of Lemmas 1, 2 and Corollaries 2, 3.
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Construction of a Basis in Lp From Root Functions of a
Differential Operator With Non-strongly Regular Bound-
ary Conditions
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Abstract. We study a spectral problem for an ordinary differential equation of the second order
with non-strengthened regular boundary conditions on a finite interval [0,1]. Such problems arise
when solving a non-local boundary value problem for partial differential equations by the Fourier
method. They arise, for example, when solving non-stationary diffusion problems with boundary
conditions of the Samarskii-Ionkin type, or when solving a stationary diffusion problem with op-
posite flows on a part of an interval. The boundary conditions of this problem are regular, but
not strengthened regular in the sense of Birkhoff. The system of eigenfunctions of such a problem
is complete and minimal, but does not form a basis in the space Lp [0, 1]. In this case, direct
application of the Fourier method is impossible. Based on these eigenfunctions, a new system of
functions is constructed, which already forms a basis in Lp [0, 1].

Key Words and Phrases: non-strongly regular boundary conditions, eigenfunctions, almost
normalized system, uniform minimality, basis.
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1. Introduction

The solution of some elliptic equations with nonlocal boundary conditions using the
Fourier method leads to spectral problems with boundary conditions that are regular but
not strongly regular. For this reason, the root functions of these problems do not generally
form a basis in the corresponding function space. In such a case, direct application of the
Fourier method is impossible. Based on these eigenfunctions, a new system of functions is
constructed consisting of linear combinations of root functions, which already forms a basis
in Lp [0, 1]. However, the resulting system is not a system of eigenfunctions of the spectral
problem. Nevertheless, this system is used to solve the equation under consideration by
the Fourier method. One of such problems is the following initial-boundary value problem
for the parabolic equation

∂U

∂t
=
∂2U

∂x2
, 0 < x < 1, t > 0,

∗Corresponding author.
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with initial condition

U (x, 0) = φ (x) , 0 ≤ x ≤ 1,

and boundary conditions

U (0, t) = 0,
∂U

∂x
(0, t) =

∂U

∂x
(1, t) + αU (1, t) , t ≥ 0.

This problem leads to the following spectral problem

−u′′ (x) = λ u (x) , 0 < x < 1,
u (0) = 0, u′ (0)− u′ (1) + α u (1) = 0.

}
(1)

The boundary conditions of this spectral problem are regular, but not strongly regular.
A number of works by the authors [1-5] are devoted to the study of such problems in
the Lebesgue space L2[0, 1]. It should be noted that issues related to this topic in the
case of α = 0 were also considered in works [6-11]. All these spectral problems are not
self-adjoint. The case of α = 0 differs from the case of α ̸= 0 in that in the first case
all eigenvalues are double and they correspond to one eigenfunction and one associated
function, and together they form a basis in L2 [0, 1]. In the second case, all eigenvalues
are simple, but the corresponding eigenfunctions are not a basis in L2 [0, 1]. One of the
methods for constructing a basis, based on the system of eigenfunctions of problem (1) in
the case of α > 0 was proposed in [1]. Using the eigenfunctions of this problem, a special
system of functions is constructed, which will form a basis in L2 [0, 1]. And this fact is
applied to solve a nonlocal initial-boundary value problem for the heat equation. It is used
in [3] to solve an inverse nonlocal boundary value problem for the heat equation, and in [4]
to solve a nonlocal boundary value problem for the Helmholtz operator in a semicircle. A
similar method was used in [5] to study the classical solvability of one nonlocal boundary
value problem for the Laplace equation in a semicircle.

The aim of this work is to construct a basis in Lp [0, 1] from the system of eigenfunctions
of problem (1) for any complex value of the parameter α.

2. Preliminaries

Let us present briefly the main definitions and facts which will be used in what follows.
Let X be a Banach space. A system{xn}n∈N of elements X is said to be complete in X

if L
(
{xn}n∈N

)
= X; that is, any element of the space X can be approximated by a linear

combination of elements of this system with any accuracy in the norm of the space X.

A system {xn}n∈N of elements X is said to be minimal in X if xn /∈ L
(
{xk}k ̸=n

)
. It

is well known that a system {xn}n∈N is minimal if and only if there exists a biorthogonal
system which is dual to it, that is, a system of linear functionals {x∗n}n∈N from X∗ such
that ⟨xn, x∗k⟩ = δnk for all n, k ∈ N . Moreover, if the initial system is complete and
minimal in X, then the biorthogonal system is uniquely defined.
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We say that a system {xn}n∈N is uniformly minimal in X, if there exists γ > 0 such
that for all n ∈ N ,

dist (xn, Xn) ≥ γ∥xn∥X ,

where Xn = L
[
{xk}k ̸=n

]
. It is also well known that a complete and minimal system

{xn}n∈N is uniformly minimal in X if and only if:

sup
n∈N

∥xn∥X∥x∗n∥X∗ <∞ .

A system {xn}n∈N forms a basis of the space X if, for any element x ∈ X, there exists
a unique expansion into a series

x =
∞∑
n=1

cnxn

converging in the norm of the space X.
Two systems {xn}n∈N and {yn}n∈N of a Banach space X are called equivalent if

there exists an automorphism T : X → X that maps one of these systems to the other:
Txn = yn, ∀n ∈ N. A system equivalent to a basis is itself a basis in the same space.

A system in a Hilbert space that is equivalent to an orthonormal basis is called a
Riesz basis. A Riesz basis is also an unconditional basis, i.e. it remains a basis under any
permutation of its elements.

A system {xn}n∈N is called a basis with brackets in a Banach space X if there exists
a sequence {nk}k∈N of positive integers such that n1 < n2 < . . .< nk < nk+1 < . . . , and
for any x ∈ X there is a unique expansion into a series

x =
∞∑
k=0

nk+1∑
i=nk+1

cixi, (n0 = 0)

converging in the norm of the space X. In the case of a Hilbert space, an unconditional
basis with brackets is also called a Riesz basis with brackets.

We say that a system {xn}n∈N is almost normalized in X, if

0 < inf
n∈N

∥xn∥ ≤ sup
n∈N

∥xn∥ <∞ .

A uniformly minimal system is almost normalized if and only if its bioorthogonal
system is almost normalized.

Statement 1. Let {xn}n∈N be a minimal system in a Banach space X, {x∗n}n∈N be its
biorthogonal system. If the system {xn}n∈N has two asymptotically close subsystems, i.e.

there exist subsystems {xnk
}k∈N and

{
xn′

k

}
k∈N

such that

lim
k→∞

∥∥∥xnk
− xn′

k

∥∥∥
X

= 0, (2)

then the system {x∗n}n∈N is not almost normalized.
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Proof. By
{
x∗nk

}
k∈N and

{
x∗n′

k

}
k∈N

we denote the corresponding subsystems of

the biorthogonal system {x∗n}n∈N . Then from the biorthonormality conditions we have

〈
〈
xnk

, x∗nk

〉
= 1,

〈
xn′

k
, x∗nk

〉
= 0.. From here we get 〈

〈
xnk

− xn′
k
, x∗nk

〉
= 1. Then

1 =
∣∣∣〈xnk

− xn′
k
, x∗nk

〉∣∣∣ ≤ ∥∥∥xnk
− xn′

k

∥∥∥
X

∥∥x∗nk

∥∥
X∗

or ∥∥x∗nk

∥∥
X∗ ≥

(∥∥∥xnk
− xn′

k

∥∥∥
X

)−1
.

Then from condition (2) it follows that

lim
k→∞

∥∥x∗nk

∥∥
X∗ = ∞. (3)

Similarly, it is established that limk→∞

∥∥∥x∗n′
k

∥∥∥
X∗

= ∞. Consequently, the system {x∗n}n∈N
is not almost normalized.

Statement 2. If the system {xn}n∈N ⊂ X is almost normalized and has two asymptoti-
cally close subsystems, then it is not uniformly minimal and, moreover, cannot be a basis
in X.

Proof. Let {xnk
}k∈N and

{
xn′

k

}
k∈N

be asymptotically close subsystems of {xn}n∈N ,

and
{
x∗nk

}
k∈N and

{
x∗n′

k

}
k∈N

be the corresponding subsystems of the biorthogonal system

{x∗n}n∈N . Then, from the condition of almost normalization of the system {xn}n∈N , we
have: ∃m > 0 : ∥xnk

∥X > m, ∀k ∈ N. Taking into account (3), we obtain

lim
k→∞

∥xnk
∥X
∥∥x∗nk

∥∥
X∗ = ∞.

The latter means that the system {xn}n∈N is not uniformly minimal.
Any basis is a complete and minimal system in X, and, therefore, we can uniquely find

its biorthogonal dual system {x∗n}n∈N and hence the expansion of any element x ∈ X with
respect to the basis {x}n∈N coincides with its biorthogonal expansion, that is, cn = ⟨x, x∗n⟩
for all n ∈ N .

We will use also some facts about p-closure bases. Concerning these facts more details
one can see the works [12, 13].

Systems {xn}n∈N , {yn}n∈N ⊂ X in Banach space X are called p-closure if

∞∑
n=1

∥xn − yn∥pX <∞.

The minimal system {xn}n∈N ⊂ X with biorthogonal system {x∗n}n∈N ⊂ X∗ is called
p- besselian, if for any x ∈ X ( ∞∑

n=1

|⟨x, x∗n⟩|
p

) 1
p

≤M∥x∥X .
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If the basis {xn}n∈N for X is p- besselian, then we call it as p-basis.

It is valid the following

Theorem 1. [12, 13] Let the system {xn}n∈N is p -basis for Banach space X and the
system {yn}n∈N ⊂ X is p′– clouser to it, 1 < p < ∞. Then the following assertions are
equivalent:

1. {yn}n∈N is complete in X;

2. {yn}n∈N is minimal in X;

3. {yn}n∈N is isomorphic to {xn}n∈N basis for X.

It is valid the following

Statement 3. [14, 15] Let system {xn}n∈N forms a basis with parentheses for Banach
space X. If the system {xn}n∈N is uniformly minimal and condition

sup
k∈N

(nk+1 − nk) <∞ (4)

hold, then the system {xn}n∈N forms a basis for X.

Statement 4. [15] Let system {xn}n∈N forms a Riesz basis with parentheses for Hilbert
space X. If the system {xn}n∈N is almost normalized, uniformly minimal and condition
(4) hold, then it forms a basis Riesz for X.

3. Study of the Spectral Problem

In this section we will study the properties of the eigenvalues and eigenfunctions of the
following spectral problem

−u′′ (x) = λu (x) , 0 < x < 1, u (0) = 0, u′ (0) = u′ (1) + α u (1) , (5)

where the parameter α can take any complex value. In the case α ̸= 0, the eigenvalues of
the spectral problem can be divided into two series, which have the form

λ2k−1 = (ρ2k−1)
2, k ∈ N, λ2k = (ρ2k)

2, k ∈ Z+, (6)

where Z+ = {0} ∪N, ρ2k−1 = 2πk, and ρ2k are the roots of the equation

tg
ρ

2
=
α

ρ
. (7)

Using the standard method we obtain that (see [16]) the following is true

Lemma 1. Equation (7) for any complex α has a countable number of solutions that are
asymptotically simple and have the asymptotics

ρ2k = 2πk +
α

2πk
+O

(
1

k3

)
. (8)
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Each eigenvalue of problem (5) corresponds to a unique eigenfunction up to a non-zero
factor. Using the numbering introduced by equalities (6), the set of eigenfunctions can be
represented as

u2k−1 (x) = sin2πkx, k ∈ N ; u2k (x) = sinρk2x, k ∈ Z+; (9)

The problem conjugate to (5) is defined by the equality

−ϑ′′ (x) = λϑ(x), 0 < x < 1, ϑ(0) = ϑ(1), ϑ′(1) + α ϑ(1) = 0. (10)

It has the same eigenvalues (6) as problem (5). The corresponding eigenfunctions have
the form

ϑ2k−1 (x) = C2k−1

(
cos2πkx − α

2πk
sin2πkx

)
, k ∈ N ; (11)

ϑ2k (x) = C2k

(
cosρ2kx +

α

ρ2k
sinρ2kx

)
, k ∈ Z+,

where

C2k−1 = −4πk

α
, C2k =

4πk

α
+O

(
1

k

)
.

The systems of eigenfunctions of problems (5) and (10) are numbered in such a way that
⟨un, ϑm⟩ = δnm. The constants Cn are chosen so that ⟨un, ϑn⟩ = 1, n ∈ Z+.

Let’s show that the system {un (x)}n∈Z+ is not uniformly minimal in Lp (0, 1).

Theorem 2. The system of eigenfunctions {un (x)}n∈Z+ of problem (5) is complete,
minimal and almost normalized, but is not uniformly minimal in Lp (0, 1) , 1 < p <∞.

Proof. The spectral problem (5) is regular, but not strongly regular in the sense of
Birkhoff (see [16]). From the results of [17], in particular, it follows that the eigenfunctions
and associated functions of problem (5) form a basis with brackets in Lp (0, 1) , 1 < p <∞.
From this, in particular, follows the completeness of the system {un (x)}n∈Z+ in the space
Lp (0, 1) , 1 < p <∞. The system {ϑn (x)}n∈N is a biorthogonal to {un (x)}n∈Z+ system
regarding the space Lp (0, 1) , 1 < p < ∞, and therefore the system {un (x)}n∈Z+ is
minimal in Lp (0, 1).

Let us show the almost normalized nature of the system {un (x)}n∈Z+ . Let 1 < p <∞.
We denote 2δk = ρ2k − 2πk. Then from (8) we have 2δk = α

2πk + O
(

1
k3

)
or δk = O

(
1
k

)
.

From here for the eigenfunctions u2k (x) we obtain

sinρ2kx = sin (2πk + 2 deltak)x = sin2πkx +O

(
1

k

)
. (12)

Let’s estimate the norms of eigenfunctions:

∥u2k−1∥Lp
=

(∫ 1

0
|sin2πkx |pdx

) 1
p

≤ 1;
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∥u2k∥Lp
=

(∫ 1

0
|sin (2πk + 2δk)x |pdx

) 1
p

≤ 1 +O

(
1

k

)
.

From this we get
lim
k→∞

∥u2k∥Lp
≤ 1 . (13)

For the lower bound, we first consider the case 1 < p ≤ 2. Then for u2k−1 (x) we have

∥u2k−1∥pLp
=

∫ 1

0
|sin2πkx |pdx ≥

∫ 1

0
sin22πkx dx =

1

2
.

It follows from this

∥u2k−1∥Lp
≥
(
1

2

) 1
p

.

Similarly, for large values of k for the functions u2k−1 (x) we obtain

∥u2k∥Lp
=

(∫ 1

0
|sin (2πk + 2δk) x|pdx

) 1
p

≥

≥
(∫ 1

0
|sin2πkx |pdx

) 1
p

−O

(
1

k

)

≥
(
1

2

) 1
p

−O

(
1

k

)
→
(
1

2

) 1
p

, k → ∞.

Hence,

lim
k→∞

∥u2k∥Lp
≥
(
1

2

) 1
p

.

From here, taking into account (13), we obtain the almost normalized nature of the system
{un (x)}n∈Z+ for 1 < p ≤ 2.

Now let p > 2. Then we have a continuous embedding Lp (0, 1) ⊂ L2 (0, 1) and

∥u2k−1∥Lp
≥ ∥u2k−1∥L2

=

(
1

2

) 1
2

;

and also for large values of k

∥u2k∥Lp
≥ ∥u2k∥L2

≥ ∥u2k−1∥L2
−O

(
1

k

)
≥
(
1

2

) 1
2

−O

(
1

k

)
.

From this we have

lim
n→∞

∥u2k∥Lp
≥
(
1

2

) 1
p

.

Thus, for all p ∈ (1,∞)
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0 < inf
n∈N

∥un∥Lp
≤ sup

n∈N
∥un∥Lp

<∞,

i.e. the system { {un (x)}n∈Z+ is almost normalized in Lp (0, 1).
Let us now proceed to the proof of the last statement of the lemma. From the asymp-

totics (12) we have

u2k (x)− u2k−1 (x) = O

(
1

k

)
.

Hence∥u2k − u2k−1∥Lp
= O

(
1
k

)
, i.e. the subsystems {u2k−1 (x)}k∈N and {u2k (x)}k∈N are

asymptotically close. Then it follows from Statement 1 that

lim
k→∞

∥ϑ2k−1∥Lp′
= lim

k→∞
∥ϑ2k∥Lp′

= ∞. (14)

On the other hand, the system {un (x)}n∈Z+ is almost normalized in Lp (0, 1), so from
Statement 1.2 we obtain that the system {un (x)}n∈Z+ is not uniformly minimal. Note
that the validity of relations (14) can also be obtained directly from the explicit formulas
(11) for the functions ϑn (x) . The lemma is proven.

From this lemma follows

Corollary 1. The system {un (x)}n∈Z+ does not form a basis for Lp (0, 1) , 1 < p <∞.

4. Main results

Let us consider the case α = 0 separately. In this case, the spectral problem will take
the form

−w′′ (x) = λw (x) , 0 < x < 1, w (0) = w′ (0)− w′ (1) = 0. (15)

In obtaining the main results we essentially will use the basicity in Lp (0, π) the system
{wn (x)}n∈Z+ where

w0 (x) = x, w2k−1 (x) = sin2πkx, w2k (x) = xcos2πkx , k ∈ N,

which is a collection of root functions of the spectral problem (15).
It is valid

Theorem 3. The system {wn (x)}n∈N forms a q−basis for Lp (0, 1) , 1 < p < + ∞,
where q = max {p, p′} . In the case p = 2 this system is a Riesz basis for L2 (0, 1).

Proof. As in the case of spectral problem (5), spectral problem (15) is also not strongly
regular, and from the results of [17] it follows that the system {wn (x)}n∈Z+of eigen and
associated functions of this problem forms a basis with brackets in Lp (0, 1) , 1 < p <∞,
and in brackets you need to combine pairs of terms corresponding to w2k−1 and w2k, that
is nk+1 − nk = 2.

The problem conjugate to (15) has the form

−z′′ (x) = λ z (x) , 0 < x < 1, z′ (1) = z (0)− z (1) = 0. (16)
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The system of eigen and associated functions of the spectral problem (16) is the system{zn (x)}n∈Z+ ,
where

z0 (x) = 2, z2k−1 (x) = 4 (1− x) sin2πkx, z2k (x) = 4cos2πkx, k ∈ N.

The systems {wn (x)}n∈Z+ and {zn (x)}n∈Z+ are biorthonormal, i.e.

⟨wn, zm⟩ = δnm, ∀n,m ∈ Z+.

From the formulas for wn (x) and zn (x) it is obvious that

sup
n∈Z+

∥wn∥Lp(0,1)
∥zn∥Lp′ (0,1)

< +∞.

Thus, all the conditions of Statement 3 are satisfied, according to which the system
{wn (x)}n∈Z+ forms a basis in the space Lp (0, 1) , 1 < p <∞. Let us show that the system
{wn (x)}n∈Z+ is also a q−basis in this space, where q = max {p, p′} . Let p ∈ (1, 2], then
q = p′ and, as follows from the Hausdorff-Young inequality (see [18]), for any function
f (x) from Lp (0, 1) we have ( ∞∑

k=0

|⟨f, z2k⟩|p
′

) 1
p′

≤ C ∥f∥Lp
;

( ∞∑
k=1

|⟨f, z2k−1⟩|p
′

) 1
p′

=

( ∞∑
k=1

∣∣∣∣∫ 1

0
f (x) 4 (1− x) sin2πkx dx

∣∣∣∣p′
) 1

p′

≤

≤ 4

( ∞∑
k=1

∣∣∣∣∫ 1

0
f̃ (x) sin2πkx dx

∣∣∣∣p′
) 1

p′

≤ 4C
∥∥∥f̃∥∥∥

Lp

≤ 4C∥f∥Lp
,

wheref̃ (x) = (1− x) f (x) is denoted. Hence the system {wn (x)}n∈Z+ is a p′−basis in
Lp (0, 1).

If p ∈ (2;+∞), then p′ ∈ (1; 2) and q = p, and again applying the Hausdorff-Young
inequality and taking into account the embedding Lp (0, 1) ⊂ Lp′ (0, 1), we obtain( ∞∑

n=0

|⟨f, zn⟩|p
) 1

p

≤ C∥f∥Lp′
≤ C∥f∥Lp

,

i.e. the system {wn (x)}n∈Z+ is a p -basis in Lp (0, 1).
Consider the case p = 2. According to the results of [19], the system { {wn (x)}n∈Z+

forms a Riesz basis with brackets in L2 (0, 1), where the lengths of the brackets are uni-
formly bounded (nk+1 − nk = 2, ∀k ∈ N). In addition, it follows from the previous rea-
soning that this system is almost normalized and uniformly minimal in L2 (0, 1). Thus, all
the conditions of Statement 1.4 are satisfied, according to which the system {wn (x)}n∈Z+

forms a Riesz basis in the space L2 (0, 1) . Theorem is proved.
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Let us return to the case α ̸= 0. As shown above, in this case the eigenfunctions of
the spectral problem (5) do not form a basis in any space Lp (0, 1) , 1 < p <∞. However,
from the linear combinations of the elements of this system, it is possible to compose a
new system, which will already be a basis in Lp (0, 1), and, accordingly, a Riesz basis in
L2 (0, 1) .

Following the work [1] we introduce to the consideration the following system

φ2k−1 (x) = u2k−1 (x) ;φ2k (x) = (u2k (x)− u2k−1 (x)) (2δk)
−1,∀k ∈ N, (17)

which is a linear combination of the system {un (x)}n∈N . It is valid the following

Theorem 4. The system {φn}n∈Z+ forms an equivalent to the system {wn}n∈Z+ basis
for Lp (0, 1) , 1 < p <∞, with biorthogonal system {ψn}n∈Z+ where

ψ2k−1 = ϑ2k + ϑ2k−1, ψ2k = 2δkϑ2k,∀k ∈ N. (18)

In particular, for p = 2 the system {φn}n∈Z+ forms a Riesz basis in L2 (0, 1) .

Proof. Let us show that the system of functions {φn}n∈Z+ forms a basis in Lp (0, 1) , 1 <
p < ∞. It is obvious that it is complete and minimal in this space. Completeness follows
from the completeness of the system {un}n∈Z+ in Lp (0, 1). The minimality of this system
follows from the fact that it has a biorthogonal system {ψn}n∈Z+ , defined by formula (18),
which is verified directly.

From formulas (17) we have

φ2k−1 (x)− w2k−1 (x) = 0;

φ2k (x) =
1

2δk
(sin ((2πk + 2δk)x) − sin2πkx ) =

=
sinδkx

δkx
· xcos ((2πk + δk)x) = (1 +O (δk))xcos2πkx

(
1 +O

(
δ2k
))

=

= xcos2πkx +O (δk) = w2k (x) +O

(
1

k

)
,

or

φ2k (x)− w2k (x) = O

(
1

k

)
.

As a result, we obtain that for any s, p ∈ (1,+∞) we have

∞∑
n=0

∥φn − wn∥sLp
< +∞, (19)

i.e. the systems {φn}n∈Z+ and {wn}n∈Z+ are s -close in the space Lp (0, 1).
On the other hand, according to Theorem 3.1, the system {wn}n∈Z+ is a q− basis in

Lp (0, 1), where q = max {p, p′} . Choosing s = q′ in (19), we obtain that the systems
{φn}n∈Z+ and {wn}n∈Z+ are q′−close. Thus, all the conditions of Theorem 1.1 are satisfied
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and therefore the system {φn}n∈Z+ forms a basis in Lp (0, 1), equivalent to the basis
{wn}n∈Z+ .

The second part of the theorem, which concerns the case p = 2, follows from the
fact that according to Theorem 3.1 in this case the system {wn}n∈Z+ is a Riesz basis in
L2 (0, 1), and the system equivalent to the Riesz basis is itself a Riesz basis. The theorem
is proved.

Corollary 2. The system {φn}n∈Z+ is a q−basis in Lp (0, 1) , 1 < p < ∞, where q =
max {p, p′} .
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Asymptotics of the Eigenvalues and Eigenfunctions of a
Differential Operator with a conjugation conditions and
a Summable Potential

A.Q.Ahmadov

Abstract. In this paper is studied the spectral problem for a discontinuous second order differen-
tial operator with a summabl potential function and a spectral parameter in conjugation conditions,
that arises by solving the problem on vibrations of a loaded string with free ends. In the case of
a summable potential function, asymptotic formulas for the eigenvalues and eigenfunctions of the
spectral problem are obtained.
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Consider following spectral problem:

l (y) = −y”(x) + q (x) y = λy, x ∈
(
0,

1

3

)
∪
(
1

3
, 1

)
, (1)

y
′
(0) = y

′
(1) = 0,

y(13 − 0) = y(13 + 0),

y
′
(13 − 0)− y

′
(13 + 0) = mλy

(
1
3

)
,

 (2)

here, λ is spectral parameter, q (x) is a complex-valued function summing over the interval
(0, 1), m is complex nuber, and m ̸= 0. Such spectral problems arise when the problem
of vibrations of a loaded string with fixed ends is solved by applying the Fourier method
[1-3]. The case of boundary conditions corresponding to a string with fixed ends (i.e.
when instead of the boundary conditions y

′
(0) = y

′
(1) = 0 in (2) y(0) = y(1) = 0 are

taken), is investigated in [4-10]. In [11], the asymptotic expressions for the eigenvalues and
eigenfunctions of problem (1)–(2) in the case q (x) were obtained, a linearization operator
was constructed, and theorems on completeness and minimality were proved. Furthermore,
[12,13] in the case q (x) = 0 investigated the basis properties of the eigenfunctions of this
problem in the spaces Lp(0, 1)

⊕
C and Morrey spaces, respectively.

http://www.cjamee.org 30 © 2013 CJAMEE All rights reserved.
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1. The asymptotic of eigenvalues

Let us denote λ = ρ2, Imρ = τ . Also, let us denote by y1 (x, ρ) the solution of equation
(1) that satisfies the initial condition

y1 (0, ρ) = 1

y
′
1 (0, ρ) = 0

}
(3)

in the segment
[
0, 1

3

]
. Similarly let y2 (x, ρ) be the solution that satisfies the initial

condition
y2 (1, ρ) = 1

y
′
2 (1, ρ) = 0

}
(4)

in the segment
[

1
3 , 1
]
of the same equation.

Lemma 1. The following formulas are true for the solutions y1 (x, ρ) and y2 (x, ρ) of
the equation of (1) and their derivatives with respect to x.

y1(x, ρ) = cosρx+
1

ρ

∫ x

0
q (t) y1 (t, ρ) sinρ (x− t) dt, 0 < x <

1

3
, (5)

y
′
1 (x, ρ) = −ρ sin ρx+

∫ x

0
q (t) y1 (t, ρ) cos ρ (x− t) dt, 0 < x <

1

3
, (6)

y2 (x, ρ) = cosρ (1− x)− 1

ρ

∫ 1

x
q (t) y2 (t, ρ) sinρ (x− t) dt,

1

3
< x < 1, (7)

y
′
2 (x, ρ) = ρsinρ (1− x)−

∫ 1

x
q (t) y2 (t, ρ) cosρ (x− t) dt,

1

3
< x < 1. (8)

Proof. Since the function y1(x, ρ) is a solution of equation (1)∫ x

0
q (t) y1 (t, ρ) sinρ (x− t) dt =

=

∫ x

0
sin ρ (x− t) y

′′
1 (t, ρ) dt+ ρ2

∫ x

0
sin ρ (x− t) y1 (t, ρ) dt. (9)

If we intergarate the first integral on the right-hand side of the last equation twice by
patrs and consider (3), we obtain following∫ x

0
q (t) y1 (t, ρ) sin ρ (x− t) dt = ρy1 (x, ρ)− ρ cos ρx. (10)

That is, (5) is true. To get the equation (6), it is enough to differentiate the equation (5).
Equations (7) and (8) are obtained by making similar calculations.

Lemma 2. When ρ → ∞ , the following asymptotic formulas hold true:

y1 (x, ρ) = cos ρ x+O

(
e|τ |x

|ρ|

)
, x ∈

[
0,

1

3

]
, (11)
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y2(x, ρ) = cosρ(1− x) +O

(
e|τ |(1−x)

|ρ|

)
, x ∈

[
1

3
, 1

]
. (12)

Let us introduce the following functions to express the subsequent results:

q1 (x) =
1

2

∫ x

0
q (t) dt, q2 (x) =

1

2

∫ 1

x
q (t) dt (13)

Theorem 1. The eigenvalues of problem (1)-(2) are asymptotically simple and consist
of two series: λi,n = ρ2i,n, i = 1, 2; n ∈ Z+, Z+ = N ∪ {∅} and the following asymptotic
expressions hold for ρi,n.

ρ1,n = 3πn+ 3π
2 +O

(
1
n

)
,

ρ2,n=
3πn
2 + 3π

4 +O
(
1
n

)
.

}
(14)

Proof. If we substitute the asymptotic expression of y1 (x, ρ) from (11) into the right-
hand side of (5), we obtain following:

y1 (x, ρ) = cos ρx+
1

ρ

∫ x

0
q (t) sinρ (x− t)

[
cosρt+O

(
e|τ |

ρ

)]
dt =

= cosρx+
1

ρ

∫ x

0
q (t) sinρ (x− t) cosρtdt+

+
1

ρ2

∫ x

0
q (t) sinρ (x− t) O

(
e|τ |t

)
dt =

= cosρx+
1

2ρ

∫ x

0
q (t) [sinρ (x− 2t) + sinρx] dt+

+
1

ρ2

∫ x

0
q (t) sinρ (x− t) O

(
e|τ |t

)
=

= cosρx+
1

2ρ

∫ x

0
q (t) sinρ (x− 2t) dt+

sinρx

2ρ

∫ x

0
q (t) dt+

+
1

ρ2

∫ x

0
q (t) sinρ (x− t) O

(
e|τ |t

)
dt = cosρx+

1

2ρ

∫ x

0
q (t) sinρ (x− 2t) dt+

+
1

ρ
sinρx

(
1

2

∫ x

0
q (t) dt

)
+

e|τ |x

ρ2

∫ x

0

sinρ (x− t)

e|τ |(x−t)
dt.

Therefor,

y1 (x, ρ) = cosρx+
1

ρ
q1 (x) sinρx+

+
1

2ρ

∫ x

0
q (t) sinρ (x− 2t) dt+O

(
e|τ |x

|ρ|2

)
(15)

is true.
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Also, if we substitute the asymptotic expression of y1(x, ρ) from (11) into the right-
hand side of the equation (6), we obtain:

y
′
1 (x, ρ) = −ρsinρx+

∫ x

0
q (t) y1 (t, ρ) cosρ (x− t) dt =

= −ρsinρx+

∫ x

0
q (t) cosρ (x− t)

[
cosρt+O

(
e|τ |t

|ρ|

)]
dt =

= −ρsinρx+
1

2

∫ x

0
q (t) [cosρx+ cosρ (2t− x)] dt+

+

∫ x

0
q (t) cosρ (x− t) O

(
e|τ |t

|ρ|

)
dt = −ρsinρx+

+
1

2

∫ x

0
q (t) cosρxdt+

1

2

∫ x

0
q (t) cosρ (x− 2t) dt+

+

∫ x

0
q (t) cosρ (x− t) O

(
e|τ |t

|ρ|

)
dt = −ρsinρx+ q1 (x) cosρx+

+
1

2

∫ x

0
q (t) cosρ (x− 2t) dt+O

(
e|τ |x

|ρ|

)∫ x

0
q (t)

cosρ (x− t)

e|τ |(x−t)
O (1) dt =

= −ρsinρx+ q1 (x) cosρx+
1

2

∫ x

0
q (t) cosρ (x− 2t) dt+O

(
e|τ |x

|ρ|

)
.

Thus,

y
′
1 (x, ρ) = −ρsinρx+ q1 (x) cosρx+

+
1

2

∫ x

0
cosρ (x− 2t) · q (t) dt+O

(
e|τ |x

|ρ|

)
. (16)

By similar calculations, we obtain the following asymptotic equalities for y2 (x, ρ) and
y
′
2 (x, ρ):

y2 (x, ρ) = cosρ (1− x) +
1

ρ
· q2 (x) sinρ (1− x)+

+
1

2ρ

∫ 1

x
sinρ (2t− x− 1) · q (t) dt+O

(
e|τ |(1−x)

|ρ|2

)
, (17)

y
′
2 (x, ρ) = ρsinρ (1− x)− q2 (x) · cosρ (1− x)−

−1

2

∫ 1

x
cosρ (2t− x− 1) · q (t) dt+O

(
e|τ |(1−x)

|ρ|

)
. (18)
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The solution y (x, ρ) of problem (1)-(2) should be in the following form:

y (x, ρ) =

{
C1y1 (x, ρ) , 0 < x < 1

3 ,
C2y2 (x, ρ) ,

1
3 < x < 1,

(19)

Here C1 and C2 are complex numbers. Therefore, the function satisfies the conditions
given in (2). Now, let us impose the requirement that it also satisfies the conditions in
(3) and (4). In this case, to determine the coefficients C1 and C2 we obtain the following
system: {

C1y1
(
1
3 , ρ
)
− C2y2

(
1
3 , ρ
)
= 0

C1y
′
1

(
1
3 , ρ
)
− C2y

′
2

(
1
3 , ρ
)
= C1ρ

2my1
(
1
3 , ρ
) (20)

Taking into account the expressions (15), (16), (17), and (18) in (20), we obtain:



C1

(
cos13ρ+

1
ρq1sin

1
3ρ+

1
2ρ

∫ 1/3
0 sinρ

(
1
3 − 2t

)
q (t) dt+O

(
e1/3|τ |

|ρ|2

))
−

−C2

(
cos23ρ−

1
ρq2sin

2
3ρ+

1
2ρ

∫ 1
1/3 sinρ

(
2t− 4

3

)
q (t) dt+O

(
e2/3|τ |

|ρ|2

))
= 0

C1

(
−ρsin1

3ρ+ q1cos
1
3ρ+

1
2

∫ 1/3
0 cosρ

(
2t− 1

3

)
q (t) dt+O

(
e|τ |/3

|ρ|

))
−

−C2

(
ρsin2

3ρ− q2cos
2
3ρ−

1
2

∫ 1
1/3 cosρ

(
2t− 4

3

)
q (t) dt+O

(
e2/3|τ |

|ρ|

))
=

= C1ρ
2m
(
cos13ρ+

1
ρq1sin

1
3ρ+

1
2ρ

∫ 1/3
0 sinρ

(
1
3 − 2t

)
q (t) dt+O

(
e1/3|τ |

|ρ|2

))
.

Here,

q1 = q1

(
1

3

)
, q2 = q2

(
1

3

)
.

For the determination of the eigenvalues, we obtain the following equality:

∆
(
ρ2
)
=

∣∣∣∣ a11 (ρ) a12 (ρ)
a21 (ρ) a22 (ρ)

∣∣∣∣ = 0,

Here

a11ρ = cos
1

3
ρ+

1

ρ
q1 sin

1

3
ρ+

1

2ρ

∫ 1/3

0
sin ρ

(
1

3
− 2t

)
q (t) dt+O

(
e1/3|τ |

|ρ|2

)

a12 (ρ) = − cos
2

3
ρ+

1

ρ
q2 sin

2

3
ρ− 1

2ρ

∫ 1

1/3
sin ρ

(
2t− 4

3

)
q (t) dt−O

(
e2/3|τ |

|ρ|2

)

a21 (ρ) =

(
−ρ sin

1

3
ρ− ρ2m cos

1

3
ρ

)
+

(
q1 cos

1

3
ρ− ρmq1 sin

1

3
ρ

)
+
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1

2

∫ 1/3

0
cos ρ

(
2t− 1

3

)
q (t) dt− ρm

2

∫ 1/3

0
sin ρ

(
1

3
− 2t

)
q (t) dt

)
+O

(
e1/3|τ |

)

a22 (ρ) = −ρ sin
2

3
ρ+ q2 cos

2

3
ρ+

1

2

∫ 1

1/3
cos ρ

(
4

3
− 2t

)
q (t) dt−O

(
e2/3|τ |

|ρ|

)
.

For any arbitrary complex number z, by utilizing the inequalities

|sinz| ≤ e|Imz|, |cosz| ≤ e|Imz|,

the following results can be derived:∣∣cos ρ (13 − 2t
)∣∣ ≤ e1/3|τ |, 0 ≤ t ≤ 1

3 ,∣∣cos ρ (2t− 4
3

)∣∣ ≤ e2/3|τ |, 1
3 ≤ t ≤ 1,∣∣sin ρ (2t− 1

3

)∣∣ ≤ e1/3|τ |, 0 ≤ t ≤ 1
3 ,∣∣sin ρ (43 − 2t

)∣∣ ≤ e2/3|τ |, 1
3 ≤ t ≤ 1,

Here Imρ = τ is denoted. As |ρ| → ∞, by applying the previously mentioned inequalities,
the following is obtained:∫ 1/3

0
q (t) cos ρ

(
1

3
− 2t

)
dt = O

(
e1/3|τ |

)
,

∫ 1

1/3
q (t) cos ρ

(
2t− 4

3

)
dt = O

(
e2/3|τ |

)
,

∫ 1/3

0
q (t) sin ρ

(
2t− 1

3

)
dt = O

(
e1/3|τ |

)
,

∫ 1

1/3
q (t) sin ρ

(
4

3
− 2t

)
dt = O

(
e2/3|τ |

)
.

By applying the asymptotic formulas above, ∆
(
ρ2
)
can be expressed as follows:

∆
(
ρ2
)
=

∣∣∣∣∣∣
cos13ρ − cos 2

3ρ

−ρ sin 1
3ρ− ρ2m cos 1

3ρ −ρ sin 2
3ρ

∣∣∣∣∣∣+

+

∣∣∣∣∣∣
cos13ρ

1
ρq2 sin

2
3ρ

−ρ sin 1
3ρ− ρ2m cos 1

3ρ q2 cos
2
3ρ

∣∣∣∣∣∣+

+

∣∣∣∣∣∣∣
cos13ρ − 1

2ρ

∫ 1
1
3
sin ρ

(
2t− 4

3

)
· q (t) dt

−ρ sin 1
3ρ− ρ2m cos 1

3ρ
1
2

∫ 1
1
3
cos ρ

(
4
3 − 2t

)
· q (t) dt

∣∣∣∣∣∣∣+
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+

∣∣∣∣∣∣∣∣
cos13ρ O

(
e2/3|τ |

|ρ|2

)
−ρ sin 1

3ρ− ρ2m cos 1
3ρ O

(
e2/3|τ |

|ρ|

)
∣∣∣∣∣∣∣∣+

+

∣∣∣∣∣∣
1
ρq1 sin

1
3ρ − cos 2

3ρ

q1 cos
1
3ρ− ρmq1 sin

1
3ρ −ρ sin 2

3ρ

∣∣∣∣∣∣+
+

∣∣∣∣∣∣
1
ρq1 sin

1
3ρ

1
ρq2 sin

2
3ρ

q1 cos
1
3ρ− ρmq1 sin

1
3ρ q2 cos

2
3ρ

∣∣∣∣∣∣+

+

∣∣∣∣∣∣∣
1
ρq1 sin

1
3ρ − 1

2ρ

∫ 1
1
3
sin ρ

(
2t− 4

3

)
· q (t) dt

q1 cos
1
3 − ρmq1 sin

1
3ρ

1
2

∫ 1
1
3
cos
(
4
3 − 2t

)
· q (t) dt

∣∣∣∣∣∣∣+

+

∣∣∣∣∣∣∣∣
1
ρq1 sin

1
3ρ O

(
e2/3|τ |

|ρ|2

)
q1 cos

1
3ρ− ρmq1 sin

1
3ρ O

(
e2/3|τ |

|ρ|

)
∣∣∣∣∣∣∣∣+

+

∣∣∣∣∣∣∣∣
1
2ρ

∫ 1
3
0 sin ρ

(
1
3 − 2t

)
q (t) dt − cos 2

3ρ

1
2

∫ 1
3
0 cos ρ

(
2t− 1

3

)
q (t) dt− ρm

2

∫ 1/3
0 sin ρ

(
1
3 − 2t

)
q (t) dt −ρ sin 2

3ρ

∣∣∣∣∣∣∣∣+

+

∣∣∣∣∣∣∣∣
1
2ρ

∫ 1
3
0 sin ρ

(
1
3 − 2t

)
q (t) dt 1

ρq2 sin
2
3ρ

1
2

∫ 1
3
0 cos ρ

(
2t− 1

3

)
q (t) dt− ρm

2

∫ 1
3
0 sin ρ

(
1
3 − 2t

)
q (t) dt q2 cos

2
3ρ

∣∣∣∣∣∣∣∣+

+

∣∣∣∣∣∣∣
O
(
e1/3|τ |

|ρ|2

)
− cos 2

3ρ

O
(
e1/3|τ |

)
ρ sin 2

3ρ

∣∣∣∣∣∣∣+O

(
e|τ |

|ρ|

)
.

In the final expression, after expanding all the determinants and performing the corre-
sponding calculations, the following expression for ∆

(
ρ2
)
is obtained:

∆
(
ρ2
)
= cos3

1

3
ρ
(
−2ρ2m+ 4q1 − 2mq1q2

)
+

+sin3
1

3
ρ (4ρ− 2ρmq2 + 2ρmq1)+
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+ sin
1

3
ρ

(
−3ρ+ 2ρmq2 − ρmq1 −

1

ρ
q1q2

)
+

+cos
1

3
ρ
(
ρ2m− 3q1 + q2 + 2mq1q2

)
+ sin

1

3
ρ×

×


1
2

∫ 1
1
3
q (t) sin ρ

(
4
3 − 2t

)
dt− mq1

2

∫ 1
1
3
q (t) sin ρ

(
2t− 4

3

)
dt+O

(
e2/3|τ |

|ρ|

)
+

−
(
e2/3|τ |

|ρ|2

)
+ 1

2ρq1
∫ 1

1
3
q (t) cos ρ

(
2t− 4

3

)
dt+O

(
e2/3|τ |

|ρ|

)
+

+cos
1

3
ρ


1
2

∫ 1
1
3
q (t) cos ρ

(
2t− 4

3

)
dt−O

(
e2/3|τ |

|ρ|

)
+ ρm

2

∫ 1
1
3
q (t) sin ρ

(
4
3 − 2t

)
dt+

+ q1
2ρ

∫ 1
1
3
q (t) cos ρ

(
2t− 4

3

)
dt+O

(
e2/3|τ |

|ρ|2

)
+O

(
e

2
3
|τ |
)

+

+sin
1

3
ρ cos

1

3
ρ


∫ 1

3
0 q (t) sin ρ

(
2t− 1

3

)
dt+ q2m

∫ 1
3
0 q (t) sin ρ

(
1
3 − 2t

)
dt−

−1
ρq2
∫ 1

3
0 q (t) cos ρ

(
1
3 − 2t

)
dt+O

(
e1/3|τ |

|ρ|

)
+

+cos
2

3
ρ


1
2

∫ 1
3
0 q (t) cos ρ

(
1
3 − 2t

)
dt+ 1

2ρq2
∫ 1

3
0 q (t) sin ρ

(
1
3 − 2t

)
dt−

−ρm
2

∫ 1
3
0 q (t) sin ρ

(
1
3 − 2t

)
dt+O

(
e

1
3
|τ |
)

+

+O

(
e|τ |

|ρ|

)
(21)

Subsequently, we will consider that the parameter ρ varies within the strip |Imρ | ≤ α.
Under this condition, as |ρ| → +∞, the following asymptotic equalities hold:

O
(
e|τ |

ρ

)
= O

(
e1/3

|τ |

ρ

)
= O

(
e2/3|τ |

ρ

)
= O

(
1
ρ

)
O
(
e2/3|t|

ρ2

)
= O

(
1
ρ2

)
,

O
(
e|τ |
)
= O (1)

 (22)

On the other hand,as |ρ| → +∞ within the strip |Imρ | ≤ α the following relations hold:∫ 1/3
0 q (t) cos ρ

(
1
3 − 2t

)
dt = o (1) ,∫ 1

1/3 q (t) cos ρ (2t− 4/3) dt = o (1) ,

∫ 1/3
0 q (t) sin ρ

(
2t− 1

3

)
dt = o (1) ,∫ 1

1/3 q (t) sin
(
4
3 − 2t

)
dt = o (1) ,


(23)
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Taking (22) and (23) into account in (21), we obtain the following:

∆
(
ρ2
)
= ρsin

ρ

3

(
β1 + β2sin

2 ρ

3
+O

(
1

ρ

))
+ ρ2m cos

ρ

3
− 2ρ2mcos3

ρ

3
+ O

(
1

ρ

)
. (24)

Here,

β1 = −3 + 2mq1 −mq2, β2 = 4 + 2mq1 − 2mq2

is denoted. From the resulting expression (23), based on Rouche’s theorem, it is clear that
the function ∆

(
ρ2
)
has two series of zeros, ρ1,n and ρ2,n which are asymptotically close

to the zeros of the functions cosρ3 and cos2ρ3 , respectively. Thus, the following asymptotic
formulas hold for, ρ1,n and ρ2,n :

ρ1,n= 3πn+
3π

2
+O

(
1

n

)
, ρ2,n=

3πn

2
+

3π

4
+O

(
1

n

)
.

The estimate of the remainder term of the asymptotics in these formulas is obtained by
the standard method (see [14]).

2. The asymptotic of eigenfunctions

We now proceed to determine the asymptotic formulas for the eigenfunctions associated
with the problem (1)-(2).

Theorem 2. Suppose that the function q (x) satisfies the conditions of Theorem 1.
Then, for the eigenvalues λi,n = (ρ1,n)

2, i = 1, 2;n ∈ N, the corresponding eigenfunctions
yi,n (x) satisfy the following asymptotic formulas:

y2,n(x) =


cos
(
3πn+ 3π

2

)
x+O

(
1
n

)
, x ∈

[
0, 13
]
,

O
(
1
n

)
, x ∈

[
1
3 , 1
]
,

(25)

y2,n(x) =


O
(
1
n

)
, x ∈

[
0, 13
]
,

cos
(
3πn
2 + 3π

4

)
(1− x) +O

(
1
n

)
, x ∈

[
1
3 , 1
]
,

(26)

Proof. First, let us determine the eigenfunction corresponding to the eigenvalue λ1,n.
To this end, let us substitute ρ = ρ1,n into equation (20) and choose:

C1,n = −y2

(
1

3
, ρ1,n

)

C1,n = −
(
cos

2

3
ρ1,n +

1

ρ1,n
q2sin

2

3
ρ1,n

)
+O

(
1

n

)
=

= −cos

(
π + 2πn+O

(
1

n

))
+O

(
1

n

)
= 1 +O

(
1

n

)
,
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C2,n = −y1

(
1

3
, ρ1,n

)
= −

(
cos

1

3
ρ1,n +

1

ρ1,n
q1sin

1

3
ρ1,n

)
+O

(
1

n

)
=

= −cos

(
π

2
+ πn+O

(
1

n

))
+O

(
1

n

)
= O

(
1

n

)
.

Consequently, we obtain:

y1,n(x) =


(
1 +O

(
1
n

))
y1 (x, ρ1,n) , x ∈

[
0, 13
]

O
(
1
n

)
y2 (x, ρ1,n) , x ∈

[
1
3 , 1
] =

=


cos
(
3πn+ 3πp

2

)
x+O

(
1
n

)
, x ∈

[
0, 13
]

O
(
1
n

)
, x ∈

[
1
3 , 1
] .

Now, let us determine the eigenfunction corresponding to the eigenvalue λ2,n. To this
end, we substitute ρ = ρ2,n into equation (20) and define

C1,n = (−1)ny2

(
1

3
, ρ2,n

)
, C2,n = (−1)ny1

(
1

3
, ρ2,n

)
.

Then, we obtain:

C1,n = (−1)ny2

(
1

3
, ρ2,n

)
= (−1)n

(
cos

2

3
ρ2,n +

1

ρ1,n
q2sin

2

3
ρ2,n

)
+O

(
1

n

)
=

= (−1)ncos

(
πn+ π +O

(
1

n

))
+O

(
1

n

)
= O

(
1

n

)
,

C2,n = (−1)ny1

(
1

3
, ρ2,n

)
= (−1)n

(
cos

1

3
ρ2,n +

1

ρ1,n
q2sin

1

3
ρ2,n

)
+O

(
1

n

)
=

= (−1)ncos

(
πn+

π

2
+O

(
1

n

))
+O

(
1

n

)
= (−1)n +O

(
1

n

)
.

Consequently, we obtain:

y2,n(x) =

{
O
(
1
n

)
, x ∈

[
0, 13
]
,

cos
(
3pn
2 + 3p

4

)
(1− x) +O

(
1
n

)
, x ∈

[
1
3 , 1
]
.

The theorem is proven.
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Nodal solutions of nondifferentiable perturbations of some
fourth-order half-linear boundary value problem
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Abstract. In this paper, we consider nondifferentiable perturbations of a certain half-linear
boundary value problem for ordinary differential equations of the fourth order. Using the re-
sults of global bifurcation for the corresponding nonlinear half-eigenvalue problems, we show the
existence of nodal solutions of the considered problem.
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1. Introduction

Consider the following nonlinear boundary value problem

ℓy ≡ (p (x) y′′)′′ − (q(x)y′)′ + r(x)y = χτ(x)h(y) + α(x)y+ + β(x)y−, x ∈ (0, l),
(1.1)

y(0) = y′(0) = y(l) = y′(l) = 0, (1.2)

where p (x) is a positive twice continuously differentiable function on [0, l], q(x) is a non-
negative continuously differentiable function on [0, l], r(x) is a real-valued continuous func-
tion on [0, l], τ(x) is a positive continuous function on [0, l], α(x) and β(x) are real-valued
continuous functions on [0, l] such that α(x) ̸≡ −β(x). The functions h has the form
h = f + g, where the real-valued functions f and g are continuous on R and satisfy the
following conditions: there exists a positive constant M such that

|f(s)|
|s|

≤M, s ∈ R, s ̸= 0; (1.3)

there exists positive constants g0 and g∞ such that

lim
|s|→0+

g(s)

s
= g0 and lim

|s|→+∞

g(s)

s
= g∞. (1.4)
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Nonlinear boundary value problems for ordinary differential equations of fourth order
arise in the mathematical modeling of various processes in mechanics, physics, and other
areas of natural science. Note that problem (1.1), (1.2) describes small bending vibrations
of an inhomogeneous beam, in the cross sections of which a longitudinal force acts and
both ends of which are rigidly fixed (see, e.g., [15]).

Note that in the papers of many authors the existence of nodal solutions to nonlinear
boundary value problems for ordinary differential equations of the second and fourth orders
was investigated (see [2, 3, 5-12, 14, 16] and references therein). Using various methods,
they established the conditions under which exist solutions with a fixed oscillation count of
the nonlinear problems under consideration. Should be noted that in [4, 6, 14] established
the existence of nodal solutions of nonlinear perturbations of half-linear boundary value
problems.

In this paper, we consider the question of the existence of nodal solutions to problem
(1.1), (1.2), depending on the parameter χ. Under some additional conditions on the data
of this problem, using the bifurcation technique, we establish intervals of this parameter
in which there are solutions to problem (1.1), (1.2), contained in classes of functions with
a fixed number of simple nodal zeros.

2. Preliminary

Let (b.c.) be the set of functions y ∈ C1[0, l] satisfying the boundary conditions (2).

By E we denote the Banach space C3[0, l] ∪ (b.c.) with the norm ||y||3 =
3∑

j=0
||y(j)||∞,

where ||y||∞ = max
x∈[0,l]

|y(x)|.

From on ν we will denote either + or −; − ν we will denote the opposite sign to ν.
For each k ∈ N and each ν let Sν

k be the set of functions of the space E constructed in
[1, § 3] using the Prüfer-type transformation. Note that these classes consist of functions
having the oscillatory properties of eigenfunctions (and their derivatives) of the linear
spectral problem which obtained from the half-linear problem{

ℓ(y) ≡ λτ(x)y + α(x)y+ + β(x)y−, x ∈ (0, l),
y ∈ (b.c.).

(2.1)

by setting α ≡ β ≡ 0.
We have the following oscillation theorem for problem (2.1).
Theorem 2.1 [6, Theorem 2.1] (see also [14, Theorem 3.3]. There exist two unbounded

sequences {λ+k }
∞
k=1 and {λ−k }

∞
k=1 of simple half-eigenvalues of problem (2.1) such that

λ+1 < λ+2 < . . . < λ+k < . . . and λ−1 < λ−2 < . . . < λ−k < . . . ;

the half-eigenfucntions y+k and y−k corresponding to the half-eigenvalues λ+k and λ−k lie
in S+

k and S−
k , respectively. Furthermore, aside from solutions on the collection of the
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half-lines {(λ+k , ty
+
k ) : t > 0} and {(λ−k , ty

−
k ) : t > 0} and trivial ones, problem (2.1) has

no other solutions.
By (1.4) for the function g we have the following representations:

g(s) = g0s+ s ξ(s) and g(s) = g∞s+ sζ(s), s ∈ R, s ̸= 0, (2.2)

where
lim

|s|→0+
ξ(s) = 0 and lim

|s|→+∞
ζ(s) = 0. (2.3)

Remark 2.1. We can extend ξ to s = 0 by ξ(0) = 0, and consequently, ξ ∈ C(R).
Let

φ(s) = sξ(s) and ϕ(s) = sζ(s), s ∈ R. (2.4)

Then it follows from (2.3) that

lim
|s|→0+

φ(s)

s
= 0 and lim

|s|→+∞

ϕ(s)

s
= 0. (2.5)

Remark 2.2. By Remark 2.1 we have φ ∈ C(R) and φ(0) = 0. In other hand by
(2.2) and (2.4) we get

ϕ(s) = g0s− g∞s+ φ(s), s ∈ R,

which implies that ϕ ∈ C(R) and ϕ(0) = 0.
To establish the existence of nodal solutions to problem (1.1), (1.2) we need the fol-

lowing result.
Lemma 2.1. The following relations hold:

||φ(u)||∞ = o(||u||3) as ||u||3 → 0 (u ∈ E); (2.6)

||ϕ(u)||∞ = o(||u||3) as ||u||3 → 0 (u ∈ E); (2.7)

||f(u)||∞ ≤M ||u||∞ for any u ∈ E. (2.8)

Proof. We define the continuous functions

φ̃ : [0,+∞) → [0,+∞) and ϕ̃ : [0,+∞) → [0,+∞)

as follows:
φ̃(t) = max

0≤|s|≤t
|φ(s)| and ϕ̃(t) = max

0≤|s|≤t
|ϕ(s)|. (2.9)

Obviously, the functions φ̃ and ϕ̃ are nondecreasing on the half-interval [0,+∞). Hence
for any t ∈ (0,+∞) there exists s∗(t) ∈ (− t, t), s∗(t) ̸= 0, such that

φ̃(t) = max
0≤|s|≤t

|φ(s)| = |φ(s∗(t))|,

and consequently,
φ̃(t)

t
=

|φ(s∗(t))|
|s∗(t)|

|s∗(t)|
t

≤ |φ(s∗(t))|
|s∗(t)|

. (2.10)
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Since |s∗(t)| ≤ t, by (2.5), it follows from (2.10) that

lim
t→0+

φ̃(t)

t
= 0. (2.11)

By the first relation of (2.9) for any u ∈ E we get

|φ(u)|
||u||3

=
φ̃(|u|)|
||u||3

≤ φ̃(||u||∞)

||u||3
≤ φ̃(||u||3)

||u||3
,

whence implies that
||φ(u)||∞
||u||3

≤ φ̃(||u||3)
||u||3

. (2.12)

By (2.11) from (2.12) we obtain (2.6).

For any t ∈ (0,+∞) there exists s•(t) ∈ (− t, t), s•(t) ̸= 0, such that

ϕ̃(t) = max
0≤|s|≤t

|ϕ(s)| = |ϕ (s•(t))|.

Then by the second relation of (2.9) we get

ϕ̃(t)

t
=

|ϕ(s•(t))|
t

=
|ϕ(s•(t))|
|s•(t)|

|s•(t)|
t

≤ |ϕ(s•(t))|
|s•(t)|

. (2.13)

If t→ +∞, then either

(a) |s•(t)| → 0, or

(b) |s•(t)| → +∞, or

(c) there exist positive constants κ0 and κ∞ such that κ0 ≤ |s•(t)| ≤ κ∞.

By Remark 2.2 we have ϕ ∈ C(R), and consequently, there exists a positive constant
K such that

|ϕ(s)| ≤ K for any s ∈ R, κ0 ≤ |s| ≤ κ∞. (2.14)

In the case (a) by Remark 2.1 it follows from (2.13) that

ϕ̃(t)

t
=

|ϕ(s•(t))|
t

→ 0 as t→ +∞;

in the case (b) by the second relation of (2.5) from (2.13) we obtain

ϕ̃(t)

t
≤ |ϕ(s•(t))|

|s•(t)|
→ 0 as t→ +∞;

in the case (c) by (2.14) we get

ϕ̃(t)

t
=

|ϕ(s•(t))|
|s•(t)|

|s•(t)|
t

≤ K

κ0

κ1
t

→ 0 as t→ +∞.
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Thus we show that
ϕ̃(t)

t
→ 0 as t→ +∞. (2.15)

Since the function ϕ̃ is nondecreasing on (0,+∞) for any u ∈ E, u ̸= 0, we have the
following relation

|ϕ(u)|
||u||3

≤ ϕ̃(|u|)
||u||3

≤ ϕ̃(||u||∞)

||u||3
≤ ϕ̃(|3|u||3)

||u||3
.

From the last relation we obtain

||ϕ(u)||∞
||u||3

≤ ϕ̃(|3|u||3)
||u||3

,

whence, by relation (2.13), implies (2.7).
Finally, due to (1.3) we get inequality (2.8). The proof of this lemma is complete.

3. Behavior of global continua of nontrivial solutions bifurcating from
zero and infinity of an auxiliary nonlinear half-eigenvalue problem

To investigate the existence of nodal solutions to problem (1.1), (1.2), we consider the
following nonlinear half-eigenvalue problem{

ℓ(y) = λχg0τ(x)y + α(x)y+ + β(x)y− + χτ(x)f(y) + χτ(x)φ(y), x ∈ (0, l),
y ∈ (b.c.).

(3.1)

Remark 3.1. Let χ ∈ R, χ ̸= 0, be fixed. Then the first relation of (2.5) shows that
(3.1) is a bifurcation from zero problem. Due to relations (2.6) and (2.8) of Lemma 2.1,
we can apply the results of Sections 2 and 3 of [7] to problem (3.1). Then, by Lemma 2.2
and Theorem 3.1 of [7], for each k ∈ N and each ν, there exists a component Cν

k of the
set of nontrivial solutions of problem (3.1) which bifurcates from Ik ×{0}, is contained in
R× Sν

k and is unbounded in R×E (in this case either Cν
k meet (λ,∞) for some λ ∈ R or

the projection of Cν
k onto R× {0} is unbounded), where

Iνk =

[
λ̃νk −

Nα +Nβ

χτ̃0
− M

g0
, λ̃νk +

Nα +Nβ

χτ̃0
+
M

g0

]
, (3.2)

λ̃+k and λ̃−k are k-th half-eigenvalues of the half-linear problem{
ℓ(y) = λχg0τ(x)y + α(x)y+ + β(x)y−, x ∈ (0, l),
y ∈ (b.c.).

(3.3)

τ̃0 = g0τ0, τ0 = min
x∈[0,l]

τ(x), Nα = max
x∈[0,l]

|α(x)|, Nβ = max
x∈[0,l]

|β(x)|.

By (3.3) it follows from (2.1) that

λνk = λ̃νkχg0 for each k ∈ N and each ν, (3.4)
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where λ+k and λ−k are k-th half-eigenvalues of the half-linear problem (2.1). Then, by (3.4),
from (3.2) we get

Iνk =

[
λ+k
χg0

−
Nα +Nβ

χg0τ0
− M

g0
,
λνk
χg0

+
Nα +Nβ

χg0τ0
+
M

g0

]
. (3.5)

Remark 3.2. By the second relations of (2.2) and (2.4), we rewrite problem (3.1) in
the following form

ℓ(y) =
(
λ+ g∞

g0
− 1

)
χg0τ(x)y + α(x)y+ + β(x)y− + χτ(x)f(y)+

+χτ(x)ϕ(y), x ∈ (0, l),
y ∈ (b.c.).

(3.6)

The second relation of (2.5) shows that problem (3.6) is a bifurcation at infinity problem.
By the relations (2.6)-(2.8) of Lemma 2.1, we can apply the results of [6, Section 3] and [8,
Section 3] to problem (3.6). Then, by [8, Theorem 3.1 and Theorem 3.2], for each k ∈ N
and each ν, there exists a component Dν

k of the set of nontrivial solutions of problem (3.6)
which emanates from Jk × {∞}, is contained in R × Sν

k and either meets (λ, 0) for some
λ ∈ R or its projection onto R× {0} is unbounded, where

Jν
k =

[
λ̄νk −

Nα +Nβ

τ̃0
− M

g0
, λ̄νk +

Nα +Nβ

τ̃0
+
M

g0

]
, (3.7)

λ̄+k and λ̄−k are k-th half-eigenvalues of the half-linear problem{
ℓ(y) =

(
λ+ g∞

g0
− 1

)
χg0τ(x)y + α(x)y+ + β(x)y−, x ∈ (0, l),

y ∈ (b.c.).
(3.8)

By (3.8) it follows from (2.1) that for each k ∈ N and each ν the relation

λνk =

(
λ̄νk +

g∞
g0

− 1

)
χg0

holds. Then it follows from last relation that

λ̄νk =
λνk
χg0

− g∞
g0

+ 1.

Consequently, from (3.7) we obtain

Jν
k =

[
λνk
χg0

−
Nα +Nβ

χg0τ0
− g∞ +M

g0
+ 1,

λνk
χg0

+
Nα +Nβ

χg0τ0
− g∞ −M

g0
+ 1

]
. (3.9)

We have the following result.
Lemma 3.2. If Cν

k meets (λ,∞) for some λ ∈ R, then λ ∈ Jk, and if Dν
k meets (λ, 0)

for some λ ∈ R, then λ ∈ Ik.
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The proof of this lemma follows from [7, Lemma 2.2] and [8, Remark 3.2] (see also [13,
Theorem 3.3]) due to the above arguments.

Lemma 3.2. For each k ∈ N and each ν, the projection of Cν
k and Dν

k onto R × {0}
are bounded.

Proof. Let k ∈ N and ν are arbitrary fixed and let (λ̂, ŷ) ∈ R× Sν
k be the solution of

problem (2.15), where |λ| is large enough.
We introduce the following notations:

ψ̂(x) =

{
f(ŷ(x))
ŷ(x) if ŷ(x) ̸= 0,

0 if ŷ(x) = 0,
, and ξ̂(x) = ξ(ŷ(x)), x ∈ [0, l]. (3.10)

Then λ = λ̂νk, where λ̂
ν
k is the k-th half-eigenvalue of the half-linear problem{

ℓ(y) = λχg0τ(x)y + a(x)y+ + b(x)y− + χτ(x)(ψ̂(x) + ζ̂(x))y, x ∈ (0, l),
y ∈ (b.c.).

(3.11)

In view of condition (1.3) by the first notation of (3.10) we obtain

|ψ̂(x)| ≤M, x ∈ [0, l]. (3.12)

It follows from relations (2.2) and (2.4) that

ξ(s) = g∞ − g0 + ζ(s), s ∈ R.

Since ζ ∈ C(R) by (2.3) there exists a positive constant L such that

|ζ(s)| ≤ L|s|, s ∈ R.

which, by the second relation of (3.10), implies that

|ξ̂(x)| ≤ L, x ∈ [0, l]. (3.13)

Then, in view of (3.12) and (3.13), it follows from [3, relation (2.16)] that

|λ̂νk − λνk| ≤
Nα +Nβ

χg0τ0
+
M + L

g0
. (3.14)

Therefore, we have the following estimate

|λ̂| = |λ̂νk| ≤ |λ̂νk − λνk|+ |λνk| ≤ |λνk|+
Nα +Nβ

χg0τ0
+
M + L

g0
,

which contradicts the fact that |λ̂| is large enough.
Thus, we have shown that the projection of Cν

k onto R× {0} is bounded. In a similar
way it can be shown that the projection of Dν

k onto R × {0} is also bounded. The proof
of this lemma is complete.

Corollary 3.1. For each k ∈ N and each ν the components Cν
k and Dν

k of the set of
nontrivial solutions of problem (3.1) coincide.

Thus, by Corollary 3.1, we have the following result.
Theorem 3.1. For each k ∈ N and each ν the component Cν

k of the set of nontrivial
solutions to problem (3.1) is contained in R × Sν

k and meets the intervals Ik × {0} and
Jk × {∞}.
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4. Existence of nodal solutions to problem (1.1), (1.2)

The following theorem is the main result of this paper.

Theorem 4.1. Let the following conditions hold:

(i) g0 > M and g∞ > M ;

(ii) for some k ∈ N and some ν, λνk −
Na+Nb

τ0
> 0, and either

λνk
g0 −M

+
Nα +Nβ

τ0(g0 −M)
< χ <

λνk
g∞ +M

−
Nα +Nβ

τ0(g∞ +M)
, (3.15)

or
λνk

g∞ −M
+

Nα +Nβ

τ0(g∞ −M)
< χ <

λνk
g0 +M

−
Nα +Nβ

τ0(g0 +M)
. (3.16)

Then there exists a solution υνk of problem (1.1), (1.2) such that υνk ∈ Sν
k , i.e. the function

υνk has exactly k − 1 simple nodal zeros in the interval (0, l).

Proof. It is obvious that any nontrivial solution (λ, y) ∈ R×E with λ = 1 of problem
(3.1) is a nontrivial solution of problem (1.1), (1.2). Then, according to Theorem 3.1, if
for some k ∈ N the right end of the interval Ik is to the left of 1 and the left end of the
interval Jk is to the right of 1 on the real axis, or the right end of the interval Jk is to
the left of 1 and the left end of the interval Ik is to the right of 1 on the real axis, then
problem (1.1), (1.2) will have a solution that is contained in the class Sν

k .

Let conditions (i) and (ii) of this theorem be satisfied. If (3.15) holds, then we have
the following relations

λνk
g0 −M

+
Nα +Nβ

τ0(g0 −M)
< χ and χ <

λνk
g0 +M

−
Nα +Nβ

τ0(g0 +M)
,

which implies that

λνk
χg0

+
Nα +Nβ

χg0τ0
+
M

g0
< 1 and 0 <

λνk
χg0

−
Nα +Nβ

χg0τ0
− g∞ +M

g0
. (3.17)

From (3.17) we obtain

λνk
χg0

+
Nα +Nβ

χg0τ0
+
M

g0
< 1 <

λνk
χg0

−
Nα +Nβ

χg0τ0
− g∞ +M

g0
+ 1,

which show that the right end of the interval Ik is to the left of 1, and the left end of the
interval Jk is to the right of 1 on the real axis.

If (3.16) is satisfied, then it can be shown in a similar way that the right end of the
interval Jk is to the left of 1, and the left end of the interval Ik is to the right of 1 on the
real axis. The proof of this theorem is complete.
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